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Abstract

In this article, we derive closed-form estimators for the parameters of certain exponen-
tial family distributions using maximum a posteriori (MAP) equations. A Monte Carlo
simulation study is conducted to assess the performance of the proposed estimators. The
results indicate that their accuracy improves with increasing sample size. Moreover, the
proposed estimators exhibit similar performance to that of traditional MAP and maxi-
mum likelihood (ML) estimators. A notable advantage of the proposed approach is its
computational simplicity, as it avoids the numerical optimization required by MAP and
ML estimation. To illustrate the methodology, we analyze a real dataset of 2023 South
American gross domestic product per capita values.

Keywords: Bayesian estimation - Income data - Monte Carlo simulation - Point
estimation - R software
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1. INTRODUCTION

Closed-form estimators are generally computationally efficient, avoiding the convergence
issues and high computational costs commonly found in iterative optimization methods.
In this article, we clarify that a “closed-form” expression may involve quadratic roots.
Several authors have proposed closed-form estimators derived from likelihood-based meth-
ods. For instance, in [1], analytical estimators were obtained for the gamma distribution
by considering the generalized gamma, distribution. Similar methodologies have been em-
ployed for the Nakagami distribution [2, 3], the weighted Lindley distribution [4, 5], and for
distributions within the exponential family framework [6, 7], which include the previously
mentioned cases. For other distributions, some works have used simulation settings and the
modeling of complex data structures [8, 9, 10]. Recently, a novel approach was proposed
in [11] for deriving closed-form estimators by extending the Box-Cox transformation.
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Following this line, we propose closed-form estimators for the parameters of a family of
probability distributions belonging to the exponential class. The proposed estimators are
based on maximum a posteriori (MAP) equations and use the same conceptual framework
introduced in [1, 12] to develop analytical estimators for certain distributions within the
exponential family.

The MAP method is a widely used Bayesian approach for deriving point estimates of
distribution parameters. Nevertheless, it is uncommon for multi-parameter distributions
to yield MAP estimators in closed form. Therefore, the proposed method may serve as an
alternative to traditional MAP estimators. In fact, our Monte Carlo results show that the
proposed estimators improve with larger samples, with both bias and MSE decreasing, and
they match the performance of traditional MAP and maximum likelihood (ML) estimators
in the gamma case.

The article is structured as follows. Section 2 presents the proposed estimation methodol-
ogy, along with relevant theoretical developments and examples of closed-form estimators.
In Section 3, we report a Monte Carlo simulation study designed to evaluate the per-
formance of the proposed estimators. In Section 4, the proposed approach is illustrated
through an application to South American gross domestic product (GDP) per capita data.
Section 5 concludes the article with final considerations.

2. THE NEW ESTIMATORS

The family of probability distributions belonging to the exponential class, considered in
this work, has a probability density function (PDF) defined as

(po )
IN(D)

where 2 € (0,00), 9 = (1,0) ", with p,o > 0, and T (0,00) — (0,00) is a real, strictly
monotonic and at least twice continuously differentiable function, referred to as the gen-
erator. Here, T"(x) denotes the derivative of T'(x) with respect to . Note that T'(x) may
involve other known parameters; see Table Al in Appendix A.

By applying the transformation Y = X/ with p > 0 and assuming that X follows the
PDF stated in (1), the corresponding PDF of Y takes the form given by

flz;9) = ()| T () exp(—poT (), (1)

F(y:9,p) = p%yp—lw’(ymw—l(yp) exp(—poT(W)), ye (0,00,  (2)

where ¥ = (u,0)" and p, 0, p > 0. Table A1, presented in Appendix A, includes examples
of generator functions T'(z) that can be used in the expressions formulated in (1) and (2).

Let {Y;;i =1,...,n} be a random sample of size n from Y having the PDF defined in
(2) and y; be its observed value. The likelihood function for (¥, p) is defined as

L(9,ply) = p" Hy T )| T () exp( MUZT (vi ) (3)

Let 7(9) be the joint PDF of ¥ = (u,0)", and let p ~ Gamma(as, 33), for known
hyperparameters a3 and (3, with PDF 7 (p). Furthermore, suppose that 9 is independent
of p. Note that, in this notation, we are committing a notational abuse by using u, o, and
p to denote both the random variables and their values. This notational abuse is common
in Bayesian statistics, as it avoids overloading the notation.
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The posterior PDF is given by

(9, ply)m(9)m(p)
m(y)

L
(9, ply) = : (4)
where 7(y) = f(O,oo)3 L(9, ply)m(¥)m(p)dddp is the finite predictive distribution. The MAP

method estimates (9, p) ", with 9 = (u, )T, as the mode of the posterior PDF (9, p | y),
that is,

(9, P)map = arg max (9, p | y).
(9,p)

Because log(m (¥, p | y)) is differentiable on the parameter space, a necessary condition for
a maximum is obtained as

Viog(m(9,p | y)) =0, (5)

where V = (0/0p,0/00,0/0p)" is the gradient vector, and 0 denotes the zero vector in
R3. The system stated in (5) is known as the MAP equations, and we now specify the
prior distributions required to compute them.

For simplicity we assume independent gamma priors: u ~ Gamma(aq, 1), 0 ~
Gamma(ag, f2), and p ~ Gamma(ag, 53) with ag > 1.

To streamline the expressions, we revert the transformation Y; = Xil/ P so0 that X; = YP.
All derivatives are now written in terms of Xj.
Taking logarithm in the expressions given in (4) and substituting the formulation stated
in (3) yield
log(m(d,p | y)) = log(L(?,p | y)) + log(m(n)) + log(m(o) = +log(m(p)) — log(7(y))
= nlog(p) + nu(log(p) + log(c)) — nlog(I'(u)) — log(w(y))
n n n
+ > 1og(IT' WD) + (0 — 1) D log(ys) — o > T(yF) + (on — 1) log()
i=1 i=1

=1
+ (= 1)) log(T () — Bip + (a2 — 1) log(0) — Bao + (a3 — 1) log(p)
=1
— B3p + a1 log(B1) — log(I'(a1)) + azlog(B2) — log(T'(a2)) + a3 log(Bs)

—log(I'(a3)).

To obtain the MAP equations defined in (5), we now compute the gradient of log(m (¢, p |
y)) with respect to (u, o, p), after re-parameterizing Y; = Xil/p7 obtaining that

dlog(m(9,p | y))
o

— nlog() + nlog(0) +n — O () — o S T(X:) + 3 log(T(X))
=1 =1

+a1—1
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dlog(m(¥,p|y)) _ np
oo ZT

dlog(m(9,p | y))
ap +ZT’ Xlg +Zlog

=0,

— MJZT D)X log(X;) + (n—1) Z 1;(())?)) X;log(X;) + as — 1);
i=1 ¢

- 53 = 07
Since Y; = Xil/p for every i = 1,...,n, the derivatives can be written in terms of X;.

Now, suppose p ~ Gamma(as, f3). Then, we have E(1/p) = f3/(ag — 1), for ag > 1.
Taking the expectation in the score equation with respect to p yields

( + Z T// log(X;) + Z log(X;)
i=1

— ,uaZT i) Xilog(X;) + (u—1) Z :,;(())?)) Xilog(X;) + as — 1)
i=1 !

B3

a3 —

—ﬂ3—0

Hence, the bracketed term equals a3 — 1, that is,

n+ ; 1;:(())2)) X; log(X;) + ZZ:; log(X;) — po ZT ) Xilog(X);
—~T'(X
= T((X ))X 1

=1

g(X); =0.

Now, set g = f3 = k and let £ — oo. By dividing the last equation by n yields

T” 1<
1+ = Z (Xi)—&-ngog(Xz
=1

— po ~ ZT’ )X log(X;) + (u — 1)% Z 1;(())?)) X log(X;) = 0.
i=1 !

We can express i as a function of o as

1+ YQ
== 6
plo) = == (6)

with
1 n 1" T ’
Xz = =3 ha(Xo), ha(a) = log(a) + (72 — T ) wlog(a)
i=1
- T()
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_ 1 &
1= ;:1 4(Xi), 4(z) (z) z log(x) (7)

Such formulations for hs, hg, and hy are used to obtain a closed-form estimator for o.

Substituting the expression given in (6) into the score equation dlog /9o = 0 yields the
quadratic equation Ao? 4 Bo +C = 0, whose positive root gives the closed-form estimator
defined as

%Ys —(1+ X2) X1 + \/(%Ys — (1+X2) X1)" — 4(Ba/n) X4 ((2271) X5 — (1 + X))

2(B2/n) X4 - ’

o=

provided that the discriminant inside the square root is non-negative and X, # 0.
In the formulation stated in (8), we get

X =

X5 = Xs+ (= ) Xu= - Y hs(X0), hs(@) = Boha(e) + (a2 = Dhale),  (9)

with X3, X4 being defined in (7).
Now, substituting the expression presented in (8) back into the formulation given in (6)
gives

14+ X,

0Xy4— X3 (10

ﬁ:

REMARK 1 The estimator & depends only on the hyper-parameters as, f2, whereas i de-
pends on as, B9 only indirectly through &. Both estimators are free of a1, 5.

REMARK 2 Let p ~ Gamma(as, 83) with g = 3 = k > 1. Its cumulative distribution
function is

v k
Fy(v) = /0 F]zk)uk_l exp(—ku)du, v > 0.

For every fixed v > 0 we have, as k — oo,
FP(U) - ]l[l,oo)(v)a
that is, the distribution of p converges weakly to a Dirac mass at 1. Hence, we have that

D P
p —1 = p——1
k—o0 k—o0

where 2 and 2> denote convergence in distribution and in probability, respectively. We
slightly abuse notation by writing “1” for the degenerate random variable that equals 1
with probability one.
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A constructive way to see the same limit is to express p as the average of k independent
and identically distributed (IID) exponential variables with mean 1 is given by

k
p=— Z E;, E; 0 Exponential(1).
i=1

By the strong law of large numbers,

k
1 almost surely
- E(E) =1
k z_: k%oo ( 1)

. 1 1 . . .
with X mesely denoting almost sure convergence. Thus, p — 1 almost surely, which im-
plies the previous modes of convergence. Moreover, the event {limy_,..(p, X)" = (1, X) "}
occurs with probability one. Hence, we have

almost surely
_—

(p, X)" (1,X)"

k—o0

Almost-sure convergence is preserved under continuous functions; hence, for any bivariate
continuous function g on (0, c0)?,

almost surely
) ——4(

g(p, X g(1,X).

k—oo
Choosing g(u,v) = v¥/%(u,v > 0) gives

almost surel
y = xl/p 2R, X

k—o0

Consequently, as a3 = ff3 = k — 0o we have p ~ 1 and Y = X¥/P ~ X almost surely.
In simple terms, collapsing to p = 1 is justified because the extended model ¥ = X 1/p
reduces to the original model X. Estimators obtained from the MAP equations with p =~ 1
are therefore approximations to the full MAP solution for X.

ProposiTION 1 If T'(z) = 2%, for s # 0, then, the closed-form estimators for o and p are

given by
1— - 1— —\? —1\ —
Xg-Xi+V%X5—XJ —4&X4<C” )XK—Q
n n n (11)
U = M
2%,
n
provided
2 B az—1
< X5—X1> _ 4P X4<( >X3—1>>0, (12)
n
and
- 1
1= (13)
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respectively, where

_ 1 n s — 1 i —s ~ 1 = —5 —5
Xl:ﬁzxz y X3_n12110g(Xz )7 X4_nZZIX1 log(Xl )’

X =/ <:L Zlog(XfS)) + (a2 1) (:L > X bg(X;S)) |
‘ =1

The formulas stated in (13) and (11) are valid provided that X4 # 0, that ¢ X4 — X3 #
0, and that the discriminant condition stated in (12) holds. For continuous data these
requirements are satisfied with probability one.

Proof [Proposition 1] If T'(x) = 7% with s # 0, then X9 = 0. Substituting this into the
expressions given in (8) and (10) reduces them exactly to the formulations given in (13)
and (11), respectively. |

REMARK 3 When p = g is constant, the MAP equations yield

i(l + Xo) 4+ X3
X4 '

o=

See Table Al (Appendix A) for distributions that satisfy u = pup, por example,
Maxwell-Boltzmann, Rayleigh, Weibull, inverse Weibull (Fréchet), Gompertz, traditional
Weibull, flexible Weibull, Burr XII (Singh—Maddala), and Dagum (Mielke beta-kappa).

Likewise, when o = o is constant,

~ 1+ X,
B= 00Y4—Y3'

The only distribution in Table Al that meets o = gg is the Modified Weibull extension.

REMARK 4 When o is a function of u, that is, 0 = g(u) for a given function g, insert g(u)
into the relationship presented as

1+Y2
oX4— X3

This gives the nonlinear equation stated as

_ _ _ 14 X9+ uXs
pg()Xa —pXz=1+Xy <= ug(u)zy—-
4

Solving this equation for u yields fi, after which ¢ = g(i). Examples in Table A1 that
satisfy o = g(u) are the §-gamma distribution (g(z) = 1/(dz),d known) and the chi-
squared distribution (g(z) = 1/(2z)).
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3. ILLUSTRATIVE MONTE CARLO SIMULATION STUDY

We perform two Monte Carlo simulation studies. The first assesses the performance of the
proposed closed-form estimators for y and o under the gamma, inverse gamma, Weibull,
and inverse Weibull distributions. The second focuses on the gamma distribution, compar-
ing the proposed estimators with traditional MAP estimators.

To evaluate the performance of the proposed and traditional MAP estimators, we com-
pute the mean absolute relative error (MARE) —also known as the absolute (unsigned)
relative bias— and the mean squared error (MSE), defined respectively as

/\ .
’L

1 1 &
MARE(# NZ: ., MSE(0 N;( ) , (14)

where 6 € {y, 0} denotes the true parameter value and 8@ € {9, 5} is the ith Monte
Carlo estimate. The number of replications is N = 10,000.

Throughout all simulations, we use noninformative priors by setting the hyperparam-
eters @y = 1 = ag = [ = 1/100, which correspond to gamma priors with large
variances. We consider the following sample sizes: n € {15,30, 60, 120,240,480, 760}.
We set u = 1, 0 = 2, and § = 1.5. All computational analyses were performed in R
(www.R-project.org), and the complete source code are publicly available on GitHub at
github.com/heltonsaulo/mapEstimators. We carried out simulations to assess the perfor-
mance of the proposed closed-form estimators of o and p under the gamma, inverse gamma,
Weibull, and inverse Weibull distributions.

Note that, when the condition stated in (12) is satisfied, the estimators of o and pu
based on these distributions are given by the expressions presented in Proposition 1 and

formulated as
1— - I— —\? B as—1\ —
—X5— X1+ <X5—X1> —4—= X4<< )Xg—l)
n n n

o= (15)
2
iy,
and
1
m = — = ].6
=== (16)
respectively, with
1 = 1 - 1
= Z X3 = o ZIOg(Xi_S)a X4 = I in—s log(X; ™),
i=1 i=1 i=1

(17)

= [ (i Zlog(Xi_s)) (g — 1) ( ZX *log(X ))

where the choice of s dictates the appropriate estimator for the parameters of the four
distributions (see Table 1). Moreover, in the simulations conducted, the condition stated
in (12) was satisfied for all Monte Carlo samples under the selected parameter values.

Figure 1 shows the Monte Carlo results computed according to the expressions given
n (14). From this figure, we observe that, as expected, both the relative bias and MSE
decrease as the sample size increases, for all distributions and parameters. In particular,
the relative biases for ¢ remain close to zero even for small samples.
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Table 1: Some values of s to be used in the expressions given in (15), (16), and (17).

Distribution Gamma Inverse gamma Weibull Inverse Weibull

Value of s -1 1 -9 1)

We compare the proposed closed-form estimators with the traditional MAP and ML
estimators in the gamma case. Figure 2 shows the relative bias and MSE of all three
estimators for p and o across different sample sizes. As expected, the performance of
all estimators improves as n increases. The MAP estimators exhibit slightly lower bias
for p, whereas the ML estimator for ¢ shows noticeably higher bias compared to both
the proposed and MAP estimators. In terms of MSE, all three approaches yield similar
performance.

Overall, the methods provide comparable results, with the proposed estimators having
the advantage of computational simplicity, as they avoid numerical optimization.

Relative Bias of the Estimator of u MSE of the Estimator of u
0.25
0.15 0.20
@ Model Model
o - Gamma w 015 -~ Gamma
_f’;’ 010 - Inverse Gamma g - Inverse Gamma
5 - Weibull 0.10 - Weibull
o - Inverse Weibull == Inverse Weibull
0.05
0.05
0.00 0.00
0 200 400 600 0 200 400 600
Sample Size (n) Sample Size (n)
Relative Bias of the Estimator of ¢ MSE of the Estimator of ¢
1 0.3
|
0.003 |
® ! Model Model
K 1 0.2
Eg 0.002{ * -~ Gamma w -~ Gamma
2 . = Inverse Gamma & - Inverse Gamma
2 e Weibull o= Weibull
o - i - i
0.001 Inverse Weibull 0.1 > Inverse Weibull
0.000 0.0
0 200 400 600 0 200 400 600
Sample Size (n) Sample Size (n)

Figure 1: Monte Carlo results for the estimators iz and & for the indicated models.

Relative Bias: Proposed vs MAP vs ML estimators MSE: Proposed vs MAP vs ML estimators

- MAP -e= ML =-e- Proposed - MAP -e ML -~ Proposed

»
o
o
w

2 %; 0.02
© 05
[}
o« 0.01

0.0 0.00

0 200 400 600 0 200 400 600
Sample Size (n) Sample Size (n)

Figure 2: Monte Carlo results comparing the bias and MSE of the proposed, MAP, and
ML estimators for the gamma distribution parameters.
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4. APPLICATION TO REAL DATA

In this section, we illustrate the proposed estimation method using a dataset on South
American GDP per capita for 2023, expressed in international dollars at 2021 prices.
All monetary values reported below are expressed in thousands of international dollars.
The data, available at ourworldindata.org/grapher/gdp-per-capita-worldbank, exhibit sub-
stantial variation across countries. In 2023, GDP per capita ranged from $9.844 in Bo-
livia to $49.315 in Guyana. The countries, listed in descending order of GDP per capita,
are: Guyana ($49.315), Uruguay ($31.019), Chile ($29.463), Argentina ($27.105), Suri-
name ($19.044), Brazil ($19.018), Colombia ($18.692), Paraguay ($15.783), Peru ($15.294),
Ecuador ($14.472), and Bolivia ($9.844).

The gamma distribution is commonly used to model positive individual-level quantities
such as income; see, for example, [13]. Hence, we assume a gamma model for the South
American GDP data and compare the proposed closed-form estimators with traditional
MAP and ML estimators.

Table 2 reports the estimates of p and o. Figure 3 displays goodness-of-fit diagnostics
(empirical quantile versus theoretical quantile (QQ) plot and empirical versus fitted CDF)
for the three estimators. All of them yield similar and satisfactory fits.

Table 2: Estimates of  and o for the gamma distribution obtained with different methods.

Method

[ o
Proposed 6.7217 0.0436
MAP 4.4965 0.0433
ML 5.4710 0.0442
Proposed: QQ-plot Proposed: Empirical vs Gamma CDF
8 %0 . 1.00 - — = — =
€ 40 - 075
8 _--"" L
T 30 e -¢-""" 0 050 -
Kol - (@)
S 20 e e 025 -
£ s -~ ®
& 10die--" 0.00
10 20 30 40 10 20 30 40 50
Theoretical quantiles GDP per capita
MAP: QQ-plot MAP: Empirical vs Gamma CDF
§ 50 . 1.00 = —
€ 40 -7 075 -
g _--=" . L 4
T 30 P . 0 050 -
o .- o
g—ZO . ’.‘_‘,"o . 0.25 _
S 10l e--"" 0.00
10 20 30 40 10 20 30 40 50
Theoretical quantiles GDP per capita
ML: QQ-plot ML: Empirical vs Gamma CDF
g %0 . 1.00 - — =
€ 40 -7 075 -
g 30 e a -
Q —“—.___.- 00.50
g—EO .—‘._",.". ° 0.25
$ 10 .-~ 0.00

=)

20 30
Theoretical quantiles

40

20 30

GDP per capita

40 50

Figure 3: Goodness-of-fit diagnostics —QQ plot and CDF— for the gamma fits based on
the proposed, MAP, and ML estimators.


https://ourworldindata.org/grapher/gdp-per-capita-worldbank

32 Vila, Saulo, and Nakano

We now apply the Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM)
goodness-of-fit tests; Table 3 presents the results. Because the usual critical values of
these tests tend to be liberal for small samples, we report bootstrap p-values.

From Table 3 we observe that the bootstrap p-values for both tests are well above
the conventional 5% threshold for all three estimators, providing no evidence against the
gamma assumption. The ML fit attains the largest bootstrap p-values (KS = 0.234, ppoot =
0.655; CvM = 0.067, ppoot = 0.916), indicating the closest agreement with the theoretical
CDF.

Overall, the proposed, MAP, and ML approaches all provide an adequate gamma fit to
the 2023 South American GDP per capita data.

Table 3: Goodness-of-fit statistics and bootstrap p-values for the gamma fits.

Method KS statistic KS ppoot CvM statistic  CvM ppoot

Proposed 0.267 0.553 0.095 0.861
MAP 0.223 0.575 0.069 0.853
ML 0.234 0.655 0.067 0.916

5. CONCLUSIONS

In this article, we introduced closed-form estimators for a flexible exponential family de-
rived from maximum a posteriori equations. The main advantage of the proposed method-
ology lies in the elimination of numerical optimization. This feature makes the estimators
particularly attractive in applications where computational simplicity is essential.

Monte Carlo simulations revealed that, as expected, the performance of the proposed
estimators improves with increasing sample size. In the gamma case, the proposed es-
timators demonstrated performance comparable to that of the traditional maximum a
posteriori and maximum likelihood estimators. In addition, the real-data application to
South American GDP per capita in 2023 showed that the proposed estimators provide an
adequate fit.

Future research should focus on exploring the proposed methodology to multivariate
distributions and exploring additional distribution families. Furthermore, bias-reduction
techniques can be considered to reduce the bias of the proposed estimators [14, 15]. These
investigations are currently underway, and we expect to report the results in future work.

APPENDIX A. EXAMPLES OF GENERATORS T

Table Al: Some forms of generators T'(z) to be used in the expression given in (1).

Distribution w o T(x)
Burr type XII (Singh-Maddala) [16] 1 k log(z¢+ 1)
Chi-squared [17] L. x
Dagum (Mielke beta-kappa) [18] 1 k log (& +1)
Flexible Weibull [19] 1 a exp (bz — £)
Gamma [20] a L x
Generalized gamma [20] g O%i x°
Generalized inverse gamma [21] o %6 L
Gompertz [22] 1 a exp(dzx) — 1
Inverse gamma [23] o g 1
Inverse Weibull (Fréchet) [24] 1 B j—é

Continued on next page
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Table A1 — Continued from previous page

Distribution w o T(x)
Maxwell-Boltzmann [25] 3 ﬁ 22
Modified Weibull extension [26] A1 exp ((g)’6 ) -1
Nakagami [27] m é 72
New exponentiated generalized gamma 5 aF 10g5(:c +1)
New exponentiated generalized inverse gamma  § aiﬁg log;‘S (% + 1)
New extended log-generalized gamma g %55 2 (exp(z) — 1)°
New log-generalized gamma g aiﬁs (exp(z) —1)°
New log-generalized inverse gamma g aiﬁa (exp(1) —1)°
New modified log-generalized gamma 5 aiﬁg exp® (a: — %)
Rayleigh [28] 1 ﬁ 72
Scaled inverse chi-squared [29] ¥ o7 i
Traditional Weibull [30] 1 a  z’(exp(cx?) — 1)
Weibull [17] S 0

B
d-gamma [31] % % x°

In Table A1, we are assuming that m > 1/2 and Q, a,b,¢,d, k, o, 6, A, B,v, 72 > 0.
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