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Abstract

Goodness-of-fit tests based on the likelihood ratio are widely used to assess whether a
given probability distribution adequately describes observed data. However, certain like-
lihood ratio-based tests do not have known asymptotic distributions, making it necessary
to rely on pre-tabulated critical values obtained through Monte Carlo simulations. A
major limitation of this approach is that practitioners must generate additional critical
values via simulations for sample sizes not explicitly tabulated, which restricts the ap-
plicability of these tests in practice. This study addresses this limitation by developing
asymptotic critical value functions for likelihood ratio-based goodness-of-fit tests un-
der the exponential distribution. The proposed methodology employs response surface
analysis to express simulated critical values as functions of sample size, enabling rapid
computation of finite-sample critical values without requiring extensive simulations. The
response surface regressions are estimated using median regression, ensuring robustness
to outliers and heteroskedasticity. Extensive Monte Carlo experiments demonstrate that
the estimated asymptotic critical value functions provide highly accurate test sizes across
a wide range of sample sizes.

Keywords: Asymptotic critical values · Goodness-of-fit tests · Median regression
· Response surface methodology

1. Introduction

The exponential distribution is one of the most widely used continuous distributions in
statistical analysis due to its simplicity, as it has only a single parameter. It is also recognized
for its memoryless property, meaning that the probability of an event occurring in the next
unit of time does not depend on how long it has been since the last event. This property
simplifies calculations and predictions in reliability analysis, eliminating the need to track
the age or history of a component or system. Consequently, the exponential distribution
is a frequent choice in reliability studies, which focus on how long a component or system
can function without failing. It is also employed in hydrology to analyze extreme values of
variables such as monthly or annual maximum daily rainfall and river discharge volumes
(Ritzema, 1994), and it finds further applications in queueing theory, quality control, medical
research, and various other fields (Asmussen and Bladt, 1996; Willig, 1999; Santiago and
Smith, 2013; Mukherjee et al., 2015; Tomitaka et al., 2016).
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When a specific distribution is assumed for a dataset without confirmation that it truly
underpins the data-generating process, the resulting inferences can be misleading. This is
because statistical methods are sensitive to the distributional assumptions of the data. Thus,
erroneous assumptions can lead to invalid conclusions and different outcomes across studies.
In reliability research, where precision is paramount, incorrect distributional assumptions
can introduce harmful bias (Ossai et al., 2022). In recognition of these practical concerns,
the literature features numerous tests for exponentiality, with early contributions by Massey
Jr (1951), Anderson and Darling (1952, 1954) and others. The present study adds to this
ongoing discussion by estimating asymptotic critical value functions for Zhang (2001, 2002)’s
likelihood ratio tests under the null of exponentiality, employing response surface analysis—
an approach not extensively explored in the existing literature.

Zhang (2001, 2002) derived goodness-of-fit tests based on the likelihood ratio for verifying
whether a hypothesized distribution aligns with observed data. Monte Carlo studies pro-
posed by Zhang and Wu (2005) and Torabi et al. (2016) showed that these tests outperform
conventional normality tests, such as the Jarque-Bera (Jarque and Bera, 1987), Shapiro-
Wilk (Shapiro and Wilk, 1965), and Anderson-Darling (Anderson and Darling, 1952, 1954)
tests. Recently, Ossai et al. (2022) examined 91 tests for exponentiality and compared 40
of them via Monte Carlo simulations, showing that in many cases, Zhang (2001, 2002)’s
likelihood ratio tests offer higher power than their competitors. A limitation, however, is
that the asymptotic distributions of these tests remain unknown, and a small number of
critical values were reported. Practitioners are forced to resort to Monte Carlo simulations
to obtain critical values for unlisted sample sizes. Despite the superior performance of these
tests in many scenarios, this requirement has constrained their adoption in practice.

Response surface methodology is often employed to estimate asymptotic distributions or
asymptotic critical value functions for test statistics that do not follow standard distributions
or deviate from their null asymptotic distributions. For example, Lawford (2005) and Wuertz
and Katzgraber (2005) used this method to generate approximate critical value functions for
variants of the Jarque-Bera test (Jarque and Bera, 1987; Urzua, 1996), correcting for their
finite-sample properties. Similarly, MacKinnon (2010) relied on response surface analysis
to obtain finite-sample critical values for Dickey-Fuller unit root (Dickey and Fuller, 1979;
Fuller, 2009) and Engle-Granger cointegration tests (Engle and Granger, 1987), as neither
test follows a standard asymptotic distribution. In the same vein, Munir et al. (2023) applied
response surface analysis to compute approximate critical value functions for Zhang (2001,
2002)’s likelihood ratio tests, albeit under normality. While response surface analysis entails
extensive Monte Carlo experiments, its utility is twofold. First, it can efficiently approximate
critical values for tests with no closed-form limit distributions. Second, it condenses the
outcomes from only a limited number of simulations into tables covering all sample sizes.

Building on this framework, the present study fills a gap in the literature by estimating
asymptotic critical value functions for Zhang (2001, 2002)’s likelihood ratio tests under the
null of the exponential distribution. These functions are derived by regressing Monte Carlo-
based critical values on a small set of functions of the sample size, allowing practitioners to
generate finite-sample critical values quickly, even with a standard calculator. We also in-
troduce a methodological improvement by using median regression to estimate the response
surfaces, thereby enhancing robustness and mitigating potential biases due to outliers or
heteroskedasticity in the simulated data.

In what follows, Section 2 summarizes the formulation of Zhang (2001, 2002)’s likelihood
ratio tests. In Section 3, we discuss the Monte Carlo setup, the response surface estima-
tion, and evaluate the finite-sample performance of the proposed critical value functions.
In Section 4, a real-data illustration is offered with three applications: inter-failure times of
air conditioning systems, lifespans of ball bearings, and durations of blood cancer patients.
Conclusions and potential avenues for further research are provided in Section 5.
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2. Likelihood ratio-based tests

Zhang (2001, 2002) proposed a family of likelihood ratio-based goodness-of-fit tests to assess
whether a given dataset follows an exponential distribution. These tests rely on the empir-
ical distribution function and are based on three distinct test statistics: ZK , ZA, and ZC ,
each capturing different aspects of the deviation between the observed and hypothesized
distributions. In this section, we detail these tests.

2.1 Test statistics

Let X be a random variable with continuous cumulative distribution function G(x), and
let X1, . . . , XT be a random sample of size T from X. Denote the order statistics by
X(1), . . . , X(T ). To test the null hypothesis H0: G(x) = G0(x) against the alternative
H1: G(x) 6= G0(x), the likelihood ratio-based tests are defined using the empirical cumula-
tive distribution function and the test statistics given by
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1≤t≤T

{(
t− 1

2

)
log
(

t−1
2

TG0(X(t))

)
+
(
T − t+ 1

2
)

log
(

T−t+ 1
2

T (1−G0(X(t)))

)}
,

ZA = −
T∑
t=1

{
log{G0(X(t))}

T−t+ 1
2

+ log{1−G0(X(t))}

t−1
2

}
,

ZC =
T∑
t=1

log

 G0(X(t))−1−1((
T−1

2 )
/

(t−3
4

))
−1


2

,

where G0(X(t)) is the hypothesized cumulative distribution function evaluated at the tth
order statistic.

The test statistic ZK represents the maximum weighted logarithmic deviation between
the empirical cumulative distribution function and G0(x), emphasizing the largest pointwise
discrepancy. The statistic ZA quantifies the sum of weighted logarithmic deviations, giving
greater importance to observations in the tails. In contrast, ZC is the sum of squared log-
arithmic deviations, making it particularly sensitive to multiple moderate departures from
G0(x) rather than a few large ones. These tests are designed to detect both symmetric and
asymmetric deviations from the hypothesized distribution and have been shown to be more
powerful than classical tests such as Kolmogorov-Smirnov (Massey Jr , 1951; Stephens, 1970,
1974), Anderson-Darling (Anderson and Darling, 1952, 1954; Stephens, 1970, 1974), and
Cramér-von Mises (Stephens, 1970, 1974) in various practical applications (Zhang, 2002).
The null hypothesis is rejected for sufficiently large values of ZK , ZA, and ZC .

2.2 Distribution-free conditions and parameter estimation

If G0(x) is fully specified, meaning that all parameters are known, the test statistics ZK ,
ZA, and ZC are distribution-free, allowing their critical values to be determined directly
through simulations under G0. However, when G0(x) includes unknown parameters that
need to be estimated from the sample, the distribution-free property no longer holds, and
the test statistics do not follow standard tabulated distributions. In such cases, practitioners
must rely on Monte Carlo simulations to obtain critical values for specific sample sizes T .
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Zhang (2002) provided tabulated critical values for fully specified distributions, such as
the exponential distribution with a known rate parameter and the normal distribution with a
known mean and variance. However, these tables are only applicable when all distributional
parameters are known in advance. When parameters must be estimated from the data, the
critical values in these tables are no longer valid.

For instance, Zhang and Wu (2005) generated Monte Carlo-based critical values for a
normal distribution in which the mean and variance were unknown. In such cases, the
population mean µ and variance σ2 must first be estimated using the sample mean and
sample variance before computing the test statistics ZK , ZA, or ZC . Because the estimation
of parameters affects the distribution of these statistics, they become likelihood ratio tests
for normality rather than direct goodness-of-fit tests.

More recently, Munir et al. (2023) applied response surface analysis to approximate these
critical values as functions of the sample size T , enabling users to compute finite-sample
critical values without requiring new simulations. This approach allows practitioners to
obtain critical values efficiently using simple calculations rather than relying on precomputed
tables limited to a fixed set of sample sizes.

2.3 Application to the exponential distribution

Drawing on the methodology of Munir et al. (2023), MacKinnon (2010), and Lawford (2005),
the present work derives critical value functions for ZK , ZA, and ZC under the assumption
G0(x) = 1 − e−λx for x ≥ 0, where λ is unknown. Similar to the normal case, we estimate
λ by its sample counterpart, λ̂ = (1/X), where X = (1/T )

∑T
t=1 Xt, and then substitute

λ̂ into the formulas for ZK , ZA, and ZC . This approach extends the applicability of the
likelihood ratio tests to the exponential distribution with an unknown rate parameter. In
the following sections, we develop convenient asymptotic critical value functions for these
tests, enabling practitioners to conduct exponentiality checks without the need for case-by-
case Monte Carlo simulations.

3. Monte Carlo experiments

This section describes the Monte Carlo simulations used to estimate the asymptotic critical
value functions for the test statistics ZK , ZA, and ZC . By systematically varying the sample
size T and generating repeated realizations under the null hypothesis of exponentiality,
response surface analysis is applied to model the relationship between simulated critical
values and sample size, allowing for efficient approximation of finite-sample critical values.

3.1 Simulation design

In the present context, the response variable is the finite-sample critical value of each
test statistic (ZK , ZA, and ZC), and the control variable is the sample size T . The
procedure for obtaining the response and control variables is as follows. Using simula-
tion code and the MonteCarlo package (Leschinski, 2019) of the R software (R Core
Team, 2024), 20,000 realizations of ZK , ZA, and ZC were generated under the null
hypothesis of exponentiality with λ = 1 for each integer T in the interval [5, 4500].
For each test statistic, the 10%, 20%, 5%, 1%, 2%, 0.5%, 2.5%, and 0.1% critical val-
ues (that is, quantiles) were computed as the q(20,000)th largest values, where q ∈
{90%, 80%, 95%, 99%, 98%, 99.5%, 97.5%, 99.9%}. Since there are 4496 integer values of T
from 5 through 4500, this step yielded 4496 simulated critical values for each of the eight
percentage points and for each of the three test statistics. Note that ZK , ZA, and ZC are
invariant under affine transformations of the data (Zhang and Wu, 2005), implying that
the resulting critical values are also invariant to the specific choice of λ. Consequently, the
estimated response surfaces are valid for all λ.
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3.2 Response surface specification

To estimate critical values as smooth functions of T , a parsimonious functional form is
specified in which the simulated critical values are regressed on an intercept and power
transformations of 1/T . This approach follows guidance from MacKinnon (2010), Munir
et al. (2023), and Lawford (2005), who highlight the importance of carefully choosing a
functional form. After extensive experimentation with alternatives, a specification proved
both parsimonious and accurate is given by

cvq(T )l = γ0 + γ1T
−1

2 + γ2T
−1 + γ3T

−3
2 + γ4T

−2 + εt, l ∈ {ZK , ZA, ZC},

where γ0 represents the asymptotic critical value since T−
1
2 , T−1, T−

3
2 , and T−2 vanish as

T →∞. The parameters γ1, γ2, γ3, and γ4 capture the shape of the finite-sample adjustment,
while εt is the error term. The dependent variable cvq(T )l is the simulated critical value of
statistic l at percentage point q for sample size T .

3.3 Median regression estimation

Whereas earlier studies (MacKinnon, 2010; Lawford, 2005; Wuertz and Katzgraber, 2005;
Kiefer and Vogelsang, 2005; Munir et al., 2023) commonly adopted ordinary least squares
(OLS) or feasible generalized least squares (GLS) to estimate response surface regressions,
the present study employs median regression, a special case of quantile regression, for two
primary reasons. First, the goal is to predict the conditional median of the test statistics’
finite-sample distributions, aligning naturally with median regression. Second, median re-
gression is more robust to outliers and deviations from distributional assumptions such as
homoscedasticity and normality (Francis and Nwakuya, 2022).

All median regressions were implemented via an R package named quantreg (Koenker,
2021), using the function rq with the Barrodale and Roberts (br) algorithm (Koenker and
D’Orey, 1987; Koenker and D’Orey, 1994) for τ = 0.5. Consequently, the final estimated
response surface functions for each test statistic l ∈ {ZK , ZA, ZC} are stated as

ĈV
q
(T )ZK

= γ̂0 + γ̂1T
−1

2 + γ̂2T
−1 + γ̂3T

−3
2 + γ̂4T

−2, (3.1)

ĈV
q
(T )ZA

= γ̂0 + γ̂1T
−1

2 + γ̂2T
−1 + γ̂3T

−3
2 + γ̂4T

−2, (3.2)

ĈV
q
(T )ZC

= γ̂0 + γ̂1T
−1

2 + γ̂2T
−1 + γ̂3T

−3
2 + γ̂4T

−2, (3.3)

where γ̂0, γ̂1, γ̂2, γ̂3, and γ̂4 are robust estimates of the corresponding parameters. This
approach reduces sensitivity to outliers and heteroskedasticity, and the resulting response
functions tend to predict critical values reliably across a wide range of sample sizes. The
estimated coefficients for each statistic and quantile are displayed in Tables 1, 2, and 3.
Except for γ̂4 stated in Equation (3.3) at the 99.9% quantile, all coefficients are statistically
significant at the 0.01 level.

The model presented in Equation (3.2) was selected based on low absolute median and
mean deviations, parsimony, and a high pseudo-R2. In all cases, at least 95% of the variabil-
ity in the simulated data was explained. Introducing higher-order powers of 1/T provided
negligible improvements, reinforcing the adequacy of the chosen specification.



Chilean Journal of Statistics 197

3.4 Illustrative examples of computed critical values

The following examples demonstrate how to use the estimated response surface functions to
compute approximate finite-sample critical values.

Example 3.1 For a sample size of T = 20 at the 5% significance level, the estimated critical
value of ZK is ĈV

0.95
(20)ZK

= 5.27666−35.70992 · (20)−
1
2 + 249.29744 · (20)−1 −873.27165 ·

(20)−
3
2 + 1039.49163 · (20)−2 = 2.591806.

Example 3.2 For a sample size of T = 20 at the 5% significance level, the estimated critical
value of ZA is ĈV

0.95
(20)ZA

= 3.28877 + 0.15695 · (20)−1/2 + 9.88485 · (20)−1 −23.36337 ·
(20)−3/2 + 19.76272 · (20)−2 = 3.606304.

Example 3.3 For a sample size of T = 20 at the 5% significance level, the estimated crit-
ical value of ZC is ĈV

0.95
(20)ZC

= 37.81069 − 382.90809 · (20)−1/2 + 3273.82666 · (20)−1

−12553.87431 · (20)−3/2 + 16121.01923 · (20)−2 = 15.82714.

3.5 Regression coefficients and empirical validation

Tables 1, 2, and 3 present the estimated response surface regressions for the test statistics
ZK , ZA, and ZC , respectively, across a range of quantiles. The coefficients are reported
alongside their standard errors (in parentheses), and statistical significance is indicated by
stars. These estimates required considerable computational effort, with each table taking
approximately 378 minutes to complete. This highlights the intensive nature of the Monte
Carlo simulations necessary to generate critical values across a wide range of sample sizes.
Despite this, the final regression models exhibit excellent fit, as demonstrated by measures
such as absolute median deviation, absolute mean deviation, and pseudo-R2.

Each realization in the Monte Carlo experiments was generated independently from an
exponential distribution with parameter λ = 1. Consequently, every simulated critical value
corresponds to a distinct sample of size T , ensuring that the critical values used in the
response surface regressions are mutually independent. This independence validates the as-
sumption that the residuals in the response surface regressions are not affected by correlation
structures.

A key distinction between the present study and Munir et al. (2023) lies in the choice of
distribution and estimation methodology. While Munir et al. (2023) developed asymptotic
critical value functions for ZK , ZA, and ZC under the normal distribution, employing feasible
GLS for estimation, the present study derives these functions under the exponential distri-
bution using median regression. This methodological choice ensures robustness to outliers
and heteroskedasticity, potentially leading to more reliable finite-sample approximations of
the critical values.

Similar response surface regression tables for ZA and ZC are provided in Tables 2 and 3,
respectively. The estimates confirm that the response surface approach effectively captures
the simulated quantiles of each test statistic. Notably, the parameters governing finite-sample
corrections (γ̂1, γ̂2, γ̂3, and γ̂4) demonstrate consistent trends across the three test statistics.

Overall, the proposed regression models provide an efficient and accurate approximation
of the critical values for the likelihood ratio-based goodness-of-fit tests for exponentiality.
The response surface methodology, combined with median regression estimation, ensures
reliable and computationally efficient critical values that can be applied across a wide range
of sample sizes without requiring additional Monte Carlo simulations.
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Table 1. Estimated response surface regressions for the ZK test.
Quantiles

0.90 0.80 0.95 0.99 0.98 0.995 0.975 0.999

γ̂0 4.559∗∗∗ 3.819∗∗∗ 5.277∗∗∗ 6.890∗∗∗ 6.204∗∗∗ 7.580∗∗∗ 5.976∗∗∗ 9.125∗∗∗
(0.008) (0.007) (0.009) (0.012) (0.010) (0.027) (0.010) (0.019)

γ̂1 −33.644∗∗∗ −31.329∗∗∗ −35.710∗∗∗ −38.690∗∗∗ −37.835∗∗∗ −39.883∗∗∗ −37.139∗∗∗ −40.545∗∗∗
(0.659) (0.596) (0.731) (0.926) (0.821) (2.102) (0.787) (1.164)

γ̂2 240.807∗∗∗ 234.276∗∗∗ 249.297∗∗∗ 247.484∗∗∗ 253.494∗∗∗ 250.316∗∗∗ 248.913∗∗∗ 224.604∗∗∗
(15.005) (14.002) (15.987) (18.713) (17.474) (42.679) (16.688) (17.313)

γ̂3 −857.881∗∗∗ −865.486∗∗∗ −873.272∗∗∗ −809.500∗∗∗ −857.791∗∗∗ −815.743∗∗∗ −844.014∗∗∗ −668.524∗∗∗
(109.899) (105.566) (112.717) (121.289) (118.725) (276.303) (113.766) (76.706)

γ̂4 1,038.907∗∗∗ 1,096.235∗∗∗ 1,039.492∗∗∗ 908.635∗∗∗ 991.465∗∗∗ 914.389∗ 978.929∗∗∗ 702.599∗∗∗
(230.625) (224.458) (232.893) (229.158) (229.886) (512.404) (222.363) (100.952)

where the standard errors are in parentheses. The estimated finite-sample critical value for ZK is ĈV
q
(T )ZK

=
γ̂0 + γ̂1T

− 1
2 + γ̂2T

−1 + γ̂3T
− 3

2 + γ̂4T
−2. Significance levels: ∗p-value < 0.1; ∗ ∗ p-value < 0.05; ∗ ∗ ∗p-value < 0.01.

Table 2. Estimated response surface regressions for the ZA test.
Quantiles

0.90 0.80 0.95 0.99 0.98 0.995 0.975 0.999

γ̂0 3.289∗∗∗ 3.289∗∗∗ 3.289∗∗∗ 3.289∗∗∗ 3.289∗∗∗ 3.289∗∗∗ 3.289∗∗∗ 3.289∗∗∗
(0.00004) (0.00005) (0.00002) (0.0001) (0.0001) (0.0002) (0.0001) (0.001)

γ̂1 0.143∗∗∗ 0.124∗∗∗ 0.157∗∗∗ 0.182∗∗∗ 0.180∗∗∗ 0.175∗∗∗ 0.175∗∗∗ 0.153∗∗∗
(0.004) (0.004) (0.002) (0.010) (0.008) (0.016) (0.013) (0.055)

γ̂2 7.870∗∗∗ 5.980∗∗∗ 9.885∗∗∗ 15.041∗∗∗ 12.524∗∗∗ 17.844∗∗∗ 11.847∗∗∗ 24.920∗∗∗
(0.102) (0.120) (0.042) (0.252) (0.205) (0.418) (0.330) (1.479)

γ̂3 −20.055∗∗∗ −17.118∗∗∗ −23.363∗∗∗ −31.233∗∗∗ −25.898∗∗∗ −37.157∗∗∗ −25.132∗∗∗ −55.149∗∗∗
(0.794) (1.001) (0.207) (1.974) (1.464) (3.137) (2.566) (11.962)

γ̂4 17.892∗∗∗ 16.328∗∗∗ 19.763∗∗∗ 20.877∗∗∗ 17.333∗∗∗ 23.888∗∗∗ 17.818∗∗∗ 38.502
(1.660) (2.221) (0.310) (3.717) (2.753) (5.967) (5.171) (24.080)

where the standard errors are in parentheses. The estimated finite-sample critical value for ZA is ĈV
q
(T )ZA

=
γ̂0 + γ̂1T

− 1
2 + γ̂2T

−1 + γ̂3T
− 3

2 + γ̂4T
−2. Significance levels: ∗p-value < 0.1; ∗ ∗ p-value < 0.05; ∗ ∗ ∗p-value < 0.01.

Table 3. Estimated response surface regressions for the ZC test.
Quantiles

0.90 0.80 0.95 0.99 0.98 0.995 0.975 0.999

γ̂0 32.713∗∗∗ 27.492∗∗∗ 37.811∗∗∗ 49.906∗∗∗ 44.633∗∗∗ 55.407∗∗∗ 42.958∗∗∗ 70.460∗∗∗
(0.096) (0.092) (0.115) (0.151) (0.126) (0.161) (0.125) (0.237)

γ̂1 −354.440∗∗∗ −318.990∗∗∗ −382.908∗∗∗ −421.130∗∗∗ −411.907∗∗∗ −419.738∗∗∗ −406.623∗∗∗ −403.581∗∗∗
(8.331) (7.981) (9.760) (12.024) (10.283) (12.634) (10.352) (14.789)

γ̂2 3,111.885∗∗∗ 2,851.427∗∗∗ 3,273.827∗∗∗ 3,326.343∗∗∗ 3,397.563∗∗∗ 3,154.997∗∗∗ 3,407.779∗∗∗ 2,805.663∗∗∗
(202.502) (195.396) (229.467) (261.862) (231.671) (267.657) (236.583) (222.238)

γ̂3 −12,180.820∗∗∗ −11,247.450∗∗∗ −12,553.870∗∗∗ −12,030.550∗∗∗ −12,632.960∗∗∗ −11,036.950∗∗∗ −12,954.710∗∗∗ −9,319.434∗∗∗
(1,562.181) (1,517.802) (1,709.049) (1,815.881) (1,684.489) (1,814.391) (1,722.326) (1,004.909)

γ̂4 15,881.440∗∗∗ 14,726.180∗∗∗ 16,121.020∗∗∗ 14,499.770∗∗∗ 15,508.470∗∗∗ 12,994.700∗∗∗ 16,544.420∗∗∗ 10,737.880∗∗∗
(3,327.413) (3,314.862) (3,602.222) (3,729.739) (3,520.447) (3,589.636) (3,604.538) (1,295.723)

where the standard errors are in parentheses. The estimated finite-sample critical value for ZC is ĈV
q
(T )ZC

= γ̂0 + γ̂1T
− 1

2 + γ̂2T
−1 +

γ̂3T
− 3

2 + γ̂4T
−2. Significance levels: ∗p-value < 0.1; ∗ ∗ p-value < 0.05; ∗ ∗ ∗p-value < 0.01.
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3.6 Finite-sample performance

The finite-sample properties of the proposed response surface functions were evaluated by
examining the empirical test sizes. Specifically, one would like the probability of rejecting H0
when H0 is true (that is, the empirical size) to closely match the nominal significance level
α. To this end, 20,000 samples were generated under the exponential distribution with λ = 1
for the sample sizes: T ∈ {20, 25, 50, 75, 100, 150, 200, 350, 450, 550, 650, 750, 850, 950, 1050,
1150, 1250, 1350, 1450, 1550, 1700, 1850, 2000}. The test statistics ZK , ZA, and ZC were
computed for each sample, and the rejection frequencies were determined by comparing
the computed test statistic to the estimated critical value ĈV

q
(T )l at significance levels

α ∈ {0.001, 0.005, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2}.
Tables 4, 5, and 6 summarize the empirical sizes of ZK , ZA, and ZC , respectively. Each of

these tables took roughly 30 minutes to generate under the MonteCarlo package (Leschinski,
2019) of R. The results confirm that for T ≥ 20, the response surface estimates given in
Equations (3.1), (3.2), and (3.3) yield rejection rates very close to the nominal significance
levels for all tested quantiles. When 5 ≤ T < 20, users may directly consult the simulated
critical values presented in Tables 10, 11, 12 in Appendix B.

Overall, the difference between estimated and simulated critical values is typically mini-
mal. For instance, at T = 20 and α = 0.05, the estimated critical values of ZK , ZA, and ZC
closely match the simulated ones, differing only in the fourth or fifth decimal place. Notably,
a parsimonious median regression specification is sufficient to achieve these results, whereas
OLS or GLS approaches in analogous settings often require including higher-order terms in
1/T (Lawford, 2005; Munir et al., 2023).

All computations were performed on a laptop with an AMD Ryzen 7 2700U processor
(2.20 GHz) and 8GB RAM, running R version 3.6.2 (R Core Team, 2024) under Microsoft
Windows 10 Home (version 22H2). Data frames were exported to Microsoft Excel 2010
via the writexl package (Ooms, 2021) and imported from Excel .xls files using readxl
(Wickham and Bryan, 2019). Complete R scripts are available in Appendix A.

Table 4. Empirical size of the ZK test using ĈV
q
(T )ZK .

α
T 0.001 0.005 0.01 0.02 0.025 0.05 0.1 0.2
20 0.00105 0.00405 0.00855 0.01905 0.02445 0.04575 0.09435 0.19435
25 0.00135 0.00485 0.00945 0.01900 0.02520 0.04725 0.09955 0.20025
50 0.00130 0.00460 0.00995 0.02070 0.02385 0.04950 0.10310 0.20265
75 0.00090 0.00455 0.00940 0.02005 0.02540 0.04945 0.09780 0.20680
100 0.00065 0.00500 0.00935 0.02080 0.02215 0.05080 0.10015 0.19770
150 0.00135 0.00485 0.00870 0.02105 0.02690 0.05255 0.10090 0.19655
200 0.00095 0.00485 0.01090 0.02045 0.02340 0.04850 0.10105 0.20245
350 0.00095 0.00465 0.01050 0.02240 0.02615 0.05065 0.10045 0.20210
450 0.00135 0.00515 0.01065 0.02170 0.02695 0.04935 0.09980 0.20105
550 0.00110 0.00500 0.00995 0.02150 0.02475 0.05085 0.09990 0.20490
650 0.00120 0.00545 0.01070 0.02000 0.02465 0.04920 0.09840 0.20135
750 0.00110 0.00620 0.01015 0.01980 0.02565 0.05125 0.10340 0.19970
850 0.00120 0.00555 0.01085 0.01895 0.02720 0.05105 0.10410 0.20180
950 0.00085 0.00480 0.01035 0.01945 0.02470 0.05060 0.09940 0.19515
1050 0.00095 0.00435 0.00980 0.02140 0.02540 0.05055 0.09400 0.19050
1150 0.00105 0.00565 0.00980 0.01935 0.02475 0.05010 0.10215 0.19620
1250 0.00110 0.00590 0.01030 0.01940 0.02600 0.04790 0.10000 0.20030
1350 0.00075 0.00570 0.01070 0.02095 0.02830 0.05060 0.10065 0.19490
1450 0.00070 0.00500 0.01025 0.02080 0.02410 0.05250 0.10010 0.20335
1550 0.00110 0.00470 0.01030 0.01990 0.02415 0.04870 0.09535 0.20000
1700 0.00065 0.00510 0.01090 0.01875 0.02410 0.05410 0.09880 0.19515
1850 0.00090 0.00525 0.00995 0.02015 0.02515 0.05030 0.10350 0.19975
2000 0.00070 0.00490 0.01010 0.02110 0.02425 0.05215 0.09895 0.20670
where α is the significance level and T is the sample size.
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Table 5. Empirical size of the ZA test using ĈV
q
(T )ZA .

α
T 0.001 0.005 0.01 0.02 0.025 0.05 0.1 0.2
20 0.00090 0.00475 0.00975 0.01920 0.02380 0.05150 0.10205 0.19910
25 0.00090 0.00440 0.00930 0.01835 0.02605 0.05140 0.09790 0.20365
50 0.00125 0.00485 0.00945 0.01795 0.02415 0.04895 0.09915 0.19800
75 0.00105 0.00515 0.01015 0.01975 0.02480 0.04950 0.09430 0.19685
100 0.00095 0.00495 0.01035 0.01920 0.02550 0.05015 0.10360 0.19490
150 0.00105 0.00530 0.00970 0.02040 0.02615 0.05140 0.10325 0.20115
200 0.00165 0.00385 0.00960 0.01885 0.02525 0.04975 0.10220 0.20225
350 0.00135 0.00480 0.00985 0.02160 0.02525 0.05345 0.10265 0.20275
450 0.00135 0.00485 0.00975 0.02095 0.02515 0.05220 0.10390 0.20705
550 0.00090 0.00475 0.00925 0.02120 0.02460 0.05245 0.10265 0.20290
650 0.00160 0.00515 0.01045 0.02140 0.02390 0.05045 0.10205 0.20675
750 0.00105 0.00480 0.01090 0.01945 0.02560 0.04870 0.10305 0.19905
850 0.00140 0.00500 0.00995 0.02115 0.02505 0.05085 0.09980 0.20380
950 0.00075 0.00480 0.00895 0.01825 0.02670 0.04965 0.09910 0.20710
1050 0.00100 0.00480 0.01120 0.02045 0.02525 0.05160 0.10205 0.20000
1150 0.00105 0.00515 0.01015 0.02080 0.02545 0.05150 0.09940 0.19885
1250 0.00100 0.00560 0.00995 0.02150 0.02335 0.05060 0.09555 0.19920
1350 0.00130 0.00440 0.01105 0.01825 0.02225 0.05205 0.09750 0.19840
1450 0.00100 0.00495 0.00910 0.01965 0.02420 0.05055 0.09840 0.20225
1550 0.00170 0.00465 0.00885 0.01800 0.02475 0.04875 0.09820 0.19580
1700 0.00120 0.00400 0.01005 0.02030 0.02460 0.05025 0.09750 0.19590
1850 0.00080 0.00425 0.01085 0.02130 0.02410 0.04495 0.09585 0.19230
2000 0.00145 0.00510 0.00995 0.01980 0.02280 0.05245 0.10180 0.19430
where α is the significance level, and T is the sample size.

Table 6. Empirical size of the ZC test using ĈV
q
(T )ZC .

α
T 0.001 0.005 0.01 0.02 0.025 0.05 0.1 0.2
20 0.00060 0.00450 0.00805 0.01955 0.02345 0.04825 0.10815 0.21635
25 0.00095 0.00430 0.00800 0.01455 0.01985 0.03840 0.08250 0.17210
50 0.00070 0.00455 0.00735 0.01680 0.02145 0.03855 0.07490 0.15725
75 0.00070 0.00445 0.01005 0.01920 0.02190 0.04505 0.08500 0.17730
100 0.00045 0.00520 0.01145 0.02090 0.02585 0.04825 0.09645 0.18835
150 0.00095 0.00510 0.01060 0.02170 0.02785 0.05265 0.10225 0.20120
200 0.00090 0.00525 0.01110 0.02080 0.02845 0.05195 0.10525 0.21410
350 0.00100 0.00455 0.01080 0.02025 0.02590 0.05425 0.10485 0.20915
450 0.00120 0.00465 0.01040 0.02160 0.02640 0.05065 0.10775 0.20350
550 0.00120 0.00490 0.01015 0.01960 0.02550 0.05405 0.10460 0.20480
650 0.00080 0.00520 0.01000 0.01935 0.02465 0.05050 0.10580 0.20320
750 0.00110 0.00515 0.00965 0.01910 0.02585 0.04970 0.10100 0.20030
850 0.00095 0.00425 0.01000 0.01930 0.02370 0.04855 0.10135 0.20120
950 0.00075 0.00480 0.00950 0.02080 0.02405 0.04885 0.09860 0.20100
1050 0.00075 0.00525 0.00970 0.02020 0.02520 0.04825 0.09745 0.19985
1150 0.00070 0.00445 0.00860 0.01845 0.02455 0.04920 0.09970 0.19360
1250 0.00105 0.00540 0.00980 0.02115 0.02465 0.05220 0.09680 0.19665
1350 0.00105 0.00445 0.00880 0.02045 0.02525 0.05065 0.09920 0.19380
1450 0.00095 0.00485 0.00850 0.01920 0.02295 0.04820 0.09555 0.19700
1550 0.00085 0.00575 0.01005 0.01890 0.02365 0.05070 0.09705 0.19625
1700 0.00110 0.00515 0.00930 0.01975 0.02370 0.05055 0.09750 0.19610
1850 0.00115 0.00465 0.01070 0.01860 0.02445 0.04775 0.09890 0.20010
2000 0.00085 0.00505 0.00925 0.01900 0.02545 0.04970 0.09845 0.19645
where α is the significance level, and T is the sample size.
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4. Empirical illustration

This section applies the proposed critical value functions to real-world data, using three
datasets obtained from Sreelakshmi et al. (2018). The first dataset, denoted as Y1, consists
of the intervals between successive failures of air conditioning systems in 7913 jet airplanes,
measured in hours, with a total of 27 observations. The second dataset, Y2, includes 23
observations representing the number of revolutions, measured in millions, until the failure
of ball bearings in a controlled life test. The third dataset, Y3, comprises 40 observations
corresponding to the ordered lifespans, measured in days, of patients diagnosed with blood
cancer. These datasets provide practical examples to evaluate the performance of the like-
lihood ratio-based goodness-of-fit tests under real-world conditions.

4.1 Datasets

The datasets include the following variables:

• Y1 —Intervals between successive failures (measured in hours) of air conditioning systems
in 7913 jet airplanes.

• Y2 —Number of revolutions (measured in millions) until the failure of ball bearings in a
controlled life test study.

• Y3 —Ordered lifespans (measured in days) of patients diagnosed with blood cancer, col-
lected from one of the Health Ministry hospitals in Saudi Arabia.
All datasets were obtained from Sreelakshmi et al. (2018) and serve as practical examples

to evaluate the performance of the proposed goodness-of-fit tests under real-world condi-
tions. Table 7 details the datasets.

Table 7. Real-world datasets: air conditioning system failures, ball bearing failures, and patient lifespans.

Variable Data
Y1 1 4 11 16 18 18 18 24 31

39 46 51 54 63 68 77 80 82
97 106 111 141 142 163 191 206 216

Y2 17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84 51.96
54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Y3 115 181 255 418 441 461 516 739 743
789 807 865 924 983 1024 1062 1063 1165
1191 1222 1222 1251 1277 1290 1357 1369 1408
1455 1478 1549 1578 1578 1599 1603 1605 1696
1735 1799 1815 1852

where Y1 represents the failure intervals of air conditioning systems in jet airplanes, Y2 corresponds to
the number of revolutions until failure in a ball bearing test, and Y3 denotes the ordered lifespans of
patients diagnosed with blood cancer.

4.2 Method of analysis

The goodness-of-fit tests applied in this study include both the likelihood ratio-based statis-
tics ZK , ZA, and ZC , as well as classical exponentiality tests proposed by Kochar (1985)
(Ko), Gnedenko et al. (1969) (G), and Harris (1976) (Ha). A comprehensive discussion of
these classical tests, along with their mathematical formulations, is available in Ossai et al.
(2022). All tests are conducted at a significance level of 5% (α = 0.05).
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To implement these tests, the likelihood ratio-based statistics ZK , ZA, and ZC are com-
puted using an R package named DistributionTest (Ning Cui, 2020), specifically employing
the functions zk.test(· · · ), za.test(· · · ), and zc.test(· · · ). The classical tests Ko, G,
and Ha are executed using an R package named exptest (Pusev et al., 2013), through the
functions kochar.exp.test(· · · ), gnedenko.exp.test(· · · ), and harris.exp.test(· · · ),
respectively. To obtain simulated p-values, the parameters simulate.p.value = TRUE and
nrepl = 20000 are specified. The critical values for ZK , ZA, and ZC at α = 0.05 are deter-
mined from the estimated response surface functions given in Equations (3.1)-(3.3), using
sample sizes T = 27 for Y1, T = 23 for Y2, and T = 40 for Y3.

4.3 Results for likelihood ratio-based tests

Table 8 shows the computed values of ZK , ZA, and ZC for each dataset, along with their
respective 5% critical values from the fitted response surfaces. The null hypothesis of expo-
nentiality is rejected if the observed statistic exceeds the corresponding critical value.
Table 8. Application of ZK , ZA, and ZC to the three datasets.

Dataset Observed statistic 5% critical value
ZK ZA ZC ĈV

0.95
(T )ZK

ĈV
0.95

(T )ZA
ĈV

0.95
(T )ZC

Y1 0.558 3.330 5.026 2.839 3.546 18.005
Y2 4.728 4.146 32.102 2.718 3.577 16.972
Y3 7.358 4.291 57.249 3.061 3.481 19.565

where the critical values come from ĈV
q

(T )l = γ̂0 + γ̂1T
− 1

2 + γ̂2T
−1 + γ̂3T

− 3
2 + γ̂4T

−2, using T = 27, T = 23,
and T = 40 for Y1, Y2, and Y3, respectively, and q = 0.95.

From Table 8, we see that for Y1, none of ZK , ZA, or ZC exceed their respective critical
values. By contrast, Y2 and Y3 both yield test statistics larger than the corresponding critical
values, leading to a rejection of the exponentiality hypothesis at the 5% level.

4.4 Results for classical exponentiality tests

Table 9 reports the values of Ko, G, and Ha for the same datasets, as well as the associated
simulated p-values (p-value1, p-value2, pvalue3, respectively). A test rejects exponentiality
if its computed statistic is large relative to simulated null distributions, yielding a small
p-value.
Table 9. Application of Ko, G, and Ha to the three datasets.

Dataset Ko G Ha p–value1 p–value2 p–value3

Y1 1.627 1.308 0.676 0.230 0.247 0.846
Y2 3.393 3.127 2.150 0.001 0.004 0.035
Y3 5.291 6.485 1.882 0.000 0.000 0.025

where p-value1, p-value2, and p-value3 are the simulated p-values for Ko, G, and Ha,
respectively.

4.5 Interpretation of findings

The results indicate that for the air conditioning systems dataset (Y1), all six tests fail
to reject the null hypothesis of exponentiality. This suggests that the failure times of the
jet-airplane air conditioning units follow a constant failure rate, meaning that the risk of
failure does not change over time. This finding supports the assumption that preventive
maintenance can be scheduled at fixed intervals without the need for additional adjustments
based on increasing or decreasing hazard rates.
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In contrast, for the ball bearings dataset (Y2) and the blood cancer patients dataset (Y3),
both the likelihood ratio-based tests (ZK , ZA, ZC) and the classical exponentiality tests
(Ko, G, Ha) reject the exponentiality assumption. This indicates that the failure rates in
these cases are not constant but vary over time, suggesting that more advanced reliability
or survival models should be considered to account for time-dependent failure dynamics.
These findings align with the results reported in Sreelakshmi et al. (2018), confirming the
reliability of the response surface functions. This approach can be applied to other datasets
where testing the exponential distribution hypothesis is of interest, providing a practical
alternative to pre-tabulated critical values that are limited to specific sample sizes.

5. Conclusions, limitations, and future research

Goodness-of-fit tests based on the likelihood ratio, such as those proposed by Zhang (2001,
2002), are widely used to assess whether observed data follow a specific probability distri-
bution. A key limitation of these tests is the absence of known asymptotic distributions for
their test statistics, requiring practitioners to rely on precomputed critical values obtained
via Monte Carlo simulations. However, existing tables of critical values cover only a limited
range of sample sizes, necessitating additional simulations for cases not explicitly tabulated.

This study addresses this limitation by developing asymptotic critical value functions for
the likelihood ratio-based goodness-of-fit tests under the null hypothesis of an exponen-
tial distribution. Monte Carlo simulations were used to generate critical values for a wide
range of sample sizes, which were then modeled as functions of T using response surface
regressions estimated via median regression. This approach allows practitioners to compute
finite-sample critical values efficiently, without requiring new simulations, even for sample
sizes not previously tabulated. The Monte Carlo results confirm that the estimated critical
value functions provide accurate test sizes across different sample sizes, ensuring reliable
application in practice.

The proposed functions have potential applications in various fields where testing for ex-
ponentiality is relevant, including reliability engineering, survival analysis, manufacturing,
hydrology, and finance. In reliability engineering, these functions enable the assessment of
whether a component’s failure times follow an exponential distribution, which is a fun-
damental assumption in many system reliability models. In medical research, likelihood
ratio-based goodness-of-fit tests can be applied to study survival times, and in manufactur-
ing, they provide a means of verifying the consistency of product lifetimes with exponential
failure models.

Despite the advantages of this approach, some limitations should be acknowledged. First,
the response surface models developed here are specific to the test statistics ZK , ZA, and
ZC under the assumption of an exponential null hypothesis. Extending this methodology to
other distributions or goodness-of-fit tests would require additional Monte Carlo simulations
and model fitting. Second, while median regression was chosen for its robustness to outliers
and heteroskedasticity, alternative regression techniques, such as generalized least squares
(GLS), could be explored to assess whether further improvements in accuracy are possible.
Additionally, the accuracy of the estimated response surface functions for very small sample
sizes (T < 20) remains a potential limitation, as the variability in simulated critical values
increases for small T .

Future research could focus on extending this methodology to other distributions, partic-
ularly in contexts where alternative parametric models are commonly used. Another avenue
for further study involves evaluating the comparative performance of median regression,
OLS, and GLS in estimating response surface models for critical values. Additionally, inves-
tigating the impact of different sample size ranges on the stability and predictive accuracy
of the response surface functions could further refine their applicability.
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Overall, this study provides a practical and computationally efficient solution to the prob-
lem of determining critical values for likelihood ratio-based goodness-of-fit tests under ex-
ponentiality. By enabling the direct computation of finite-sample critical values for a broad
range of sample sizes, the proposed approach enhances the accessibility and applicability of
these tests across multiple disciplines.

Appendix A: R codes for simulations and numerical analysis

This appendix contains the R scripts used to generate the simulated critical values, estimate
the finite-sample sizes of the tests, and perform the numerical illustration. All simulations
and computations were conducted on a laptop equipped with an AMD Ryzen 7 2700U
2.20 GHz processor and 8GB of RAM, running R version 3.6.2 (R Core Team, 2024) under
Microsoft Windows 10 Home (version 22H2). The writexl package (Ooms, 2021) was used
to export results to Excel, whereas readxl (Wickham and Bryan, 2019) was used to import
Excel .xls files.

A.1. Codes for generating simulated critical values

Code for the test statistic ZA

l ibrary ( MonteCarlo )
l ibrary ( w r i t e x l )
l ibrary (PoweR)
l ibrary ( robustbase )
l ibrary ( D i s t r i bu t i onTes t )
#############################################

shahzad <− function (n , l o c ){
x <− rexp (n , l o c )
n1 <− length ( x )
Data <− sort ( x )
MU <− mean( Data )
F <− pexp( Data , 1/MU)
i <− 1 : n1
part1 <− ( log (F) ) / ( n1 − i + 0 . 5 )
part2 <− ( log (1 − F) ) / ( i − 0 . 5 )
Z A Stat <− −sum( part1 + part2 )
return ( l i s t ( ”Z A Stat ” = Z A Stat ) )

}
ns <− seq (5 , 4500 , 1)
l o c grid <− 1
param l i s t <− l i s t ( ”n” = ns , ” l o c ” = l o c grid )

s <− MonteCarlo ( func = shahzad ,
nrep = 20000 ,
param l i s t = param l i s t ,
ncpus = 1 ,
time n t e s t = FALSE)

f <− MakeFrame( s )
qaunt <− function ( x ){
quantile (x , probs = c ( 0 . 8 0 , 0 . 90 , 0 . 95 , 0 . 98 , 0 . 99 , 0 . 995 , 0 . 975 , 0 . 999 ) )}
qaunt . 1 <− function ( x ){
quantile (x , probs = c (1 − 0 . 80 , 1 − 0 . 90 , 1 − 0 . 95 , 1 − 0 . 98 ,
1 − 0 . 99 , 1 − 0 .995 , 1 − 0 .975 , 1 − 0 . 999 ) )}
u p e r l i m i t <− aggregate ( abs ( f $Z A Stat ) , l i s t ( f $n ) , qaunt )
l o w e r l i m i t <− aggregate ( abs ( f $Z A Stat ) , l i s t ( f $n ) , qaunt . 1 )
uper <− data . frame (n = u p e r l i m i t $Group . 1 , u p e r l i m i t $x )
lower <− data . frame (n = l o w e r l i m i t $Group . 1 , l o w e r l i m i t $x )
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Code for the test statistic ZC

l ibrary ( MonteCarlo )
l ibrary ( w r i t e x l )
l ibrary (PoweR)
l ibrary ( robustbase )
l ibrary ( D i s t r i bu t i onTes t )
#############################################
shahzad <− function (n , l o c ){

x <− rexp (n , l o c )
n1 <− length ( x )
Data <− sort ( x )
MU <− mean( Data )
F <− pexp( Data , 1/MU)
i <− 1 : n1
F Inv <− 1 / F
Uper <− F Inv − 1
Lower <− ( ( n1 − 0 . 5 ) / ( i − 0 . 7 5 ) ) − 1
l g <− ( log ( Uper / Lower ) )ˆ2
Z C Stat <− sum( l g )
return ( l i s t ( ”Z C Stat ” = Z C Stat ) )

}
ns <− seq (5 , 100 , 1)
l o c grid <− 1
param l i s t <− l i s t ( ”n” = ns , ” l o c ” = l o c grid )

s <− MonteCarlo ( func = shahzad ,
nrep = 20000 ,
param l i s t = param l i s t ,
ncpus = 1 ,
time n t e s t = FALSE)
f <− MakeFrame( s )
qaunt <− function ( x ){
quantile (x , probs = c ( 0 . 8 0 , 0 . 90 , 0 . 95 , 0 . 98 , 0 . 99 , 0 . 995 , 0 . 975 , 0 . 999 ) )}
qaunt . 1 <− function ( x ){

quantile (x , probs = c (1 − 0 . 80 , 1 − 0 . 90 , 1 − 0 . 95 , 1 − 0 . 98 ,
1 − 0 . 99 , 1 − 0 .995 , 1 − 0 .975 , 1 − 0 . 999 ) )}

u p e r l i m i t <− aggregate ( abs ( f $Z C Stat ) , l i s t ( f $n ) , qaunt )
l o w e r l i m i t <− aggregate ( abs ( f $Z C Stat ) , l i s t ( f $n ) , qaunt . 1 )
uper <− data . frame (n = u p e r l i m i t $Group . 1 , u p e r l i m i t $x )
lower <− data . frame (n = l o w e r l i m i t $Group . 1 , l o w e r l i m i t $x )

Code for the test statistic ZK

l ibrary ( MonteCarlo )
l ibrary ( w r i t e x l )
l ibrary (PoweR)
l ibrary ( robustbase )
l ibrary ( D i s t r i bu t i onTes t )
#############################################

shahzad <− function (n , l o c ){
x <− rexp (n , l o c )
n1 <− length ( x )
Data <− sort ( x )
MU <− mean( Data )
F <− pexp( Data , 1/MU)
i <− 1 : n1
part <− ( i − 0 . 5 ) ∗log ( ( i − 0 . 5 ) / ( n1 ∗ F) ) +
( n1 − i + 0 . 5 ) ∗log ( ( n1 − i + 0 . 5 ) / ( n1 ∗ (1 − F) ) )

Z K Stat <− max( part )
# Jin Zhang (2005) L ike l i hood −r a t i o t e s t f o r normal i ty
return ( l i s t ( ”Z K Stat ” = Z K Stat ) )}
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ns <− seq (2901 , 3000 , 1)
l o c grid <− 1
param l i s t <− l i s t ( ”n” = ns , ” l o c ” = l o c grid )
s <− MonteCarlo ( func = shahzad ,
nrep = 20000 ,
param l i s t = param l i s t ,
ncpus = 1 ,
time n t e s t = FALSE)
f <− MakeFrame( s )

qaunt <− function ( x ){
quantile (x , probs = c ( 0 . 8 0 , 0 . 90 , 0 . 95 , 0 . 98 , 0 . 99 , 0 . 995 , 0 . 975 , 0 . 999 ) )}
qaunt . 1 <− function ( x ){

quantile (x , probs = c (1 − 0 . 80 , 1 − 0 . 90 , 1 − 0 . 95 , 1 − 0 . 98 ,
1 − 0 . 99 , 1 − 0 .995 , 1 − 0 .975 , 1 − 0 . 999 ) )}
u p e r l i m i t <− aggregate ( abs ( f $Z K Stat ) , l i s t ( f $n ) , qaunt )
l o w e r l i m i t <− aggregate ( abs ( f $Z K Stat ) , l i s t ( f $n ) , qaunt . 1 )
uper <− data . frame (n = u p e r l i m i t $Group . 1 , u p e r l i m i t $x )
lower <− data . frame (n = l o w e r l i m i t $Group . 1 , l o w e r l i m i t $x )

A.2. Codes for evaluating the size of the tests

Below are sample scripts demonstrating how we compute empirical sizes (rejection frequen-
cies) for each test statistic at given significance levels and selected sample sizes.

Code for the test statistic ZA

l ibrary ( MonteCarlo )
l ibrary ( w r i t e x l )
###############################################################
ZA Cr i t <− function ( n1 , alpha ){
i f ( alpha == 0.005){

3.28869 + 0.17536∗(1/sqrt ( n1 ) ) + 17.84430∗(1/n1 ) −
37.15707∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 23.88810∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .01 ){
3.28859 + 0.18186∗(1/sqrt ( n1 ) ) + 15.04102∗(1/n1 ) −
31.23320∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 20.87658∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .02 ){
3.28859 + 0.17980∗(1/sqrt ( n1 ) ) + 12.52359∗(1/n1 ) −
25.89824∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 17.33339∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .05 ){
3.28877 + 0.15695∗(1/sqrt ( n1 ) ) + 9.88485∗(1/n1 ) −
23.36337∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 19.76272∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 . 1 ){
3.28887 + 0.14294∗(1/sqrt ( n1 ) ) + 7.87019∗(1/n1 ) −
20.05474∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 17.89241∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 . 2 ){
3.28901 + 0.12433∗(1/sqrt ( n1 ) ) + 5.97990∗(1/n1 ) −
17.11768∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 16.32787∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0.025){
3.28863 + 0.17490∗(1/sqrt ( n1 ) ) + 11.84741∗(1/n1 ) −
25.13250∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 17.81844∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0.001){
3.28893 + 0.15318∗(1/sqrt ( n1 ) ) + 24.91970∗(1/n1 ) −
55.14853∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 38.50166∗(1/ ( n1 ˆ2) )

}}
shahzad <− function (n , alpha , l o c ){

x <− rexp (n , l o c )
n1 <− length ( x )
Data <− sort ( x )
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MU <− mean( Data )
F <− pexp( Data , 1/MU)
i <− 1 : n1
part1 <− log (F) / ( n1 − i + 0 . 5 )
part2 <− log (1 − F) / ( i − 0 . 5 )
Z A Stat <− −sum( part1 + part2 )
c r i t va l <− ZA Cr i t ( n1 , alpha )
r e j e c t <− (Z A Stat > c r i t va l )
return ( l i s t ( ”Z A Stat ” = r e j e c t ) )

}
ns <− c (20 ,25 ,50 ,75 ,100 ,150 ,200 ,350 ,450 ,550 ,650 ,750 ,850 ,950 ,1050 ,

1150 ,1250 ,1350 ,1450 ,1550 ,1700 ,1850 ,2000)
l o c grid <− 1
alpha <− c ( 0 . 0 0 5 , 0 . 01 , 0 . 02 , 0 . 05 , 0 . 1 , 0 . 2 , 0 . 025 , 0 . 001 )
param l i s t <− l i s t ( ”n” = ns , ” alpha ” = alpha , ” l o c ” = l o c grid )

s <− MonteCarlo ( func = shahzad ,
nrep = 20000 ,
param l i s t = param l i s t ,
ncpus = 1 ,
time n t e s t = FALSE)

f <− MakeFrame( s )
S i z e ZA <− aggregate ( f $Z A Stat , l i s t ( f $n , f $alpha ) , mean)
S i z e ZA

Code for the test statistic ZK

l ibrary ( w r i t e x l )
l ibrary ( MonteCarlo )
###############################################################
ZK Cri t <− function ( n1 , alpha ){

i f ( alpha == 0.005){
7.57973 − 39.88321∗(1/sqrt ( n1 ) ) + 250.31620∗(1/n1 ) −
815.74271∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 914.38920∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .01 ){
6.88999 − 38.69027∗(1/sqrt ( n1 ) ) + 247.48406∗(1/n1 ) −
809.49970∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 908.63459∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .02 ){
6.20409 − 37.83516∗(1/sqrt ( n1 ) ) + 253.49402∗(1/n1 ) −
857.79140∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 991.46473∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .05 ){
5.27666 − 35.70992∗(1/sqrt ( n1 ) ) + 249.29744∗(1/n1 ) −
873.27165∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 1039.49163∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 . 1 ){
4.55945 − 33.64369∗(1/sqrt ( n1 ) ) + 240.80677∗(1/n1 ) −
857.88121∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 1038.90708∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 . 2 ){
3.81926 − 31.32889∗(1/sqrt ( n1 ) ) + 234.27607∗(1/n1 ) −
865.48629∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 1096.23525∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0.025){
5.97595 − 37.13854∗(1/sqrt ( n1 ) ) + 248.91309∗(1/n1 ) −
844.01383∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 978.92859∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0.001){
9.12521 − 40.54450∗(1/sqrt ( n1 ) ) + 224.60446∗(1/n1 ) −
668.52370∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 702.59870∗(1/ ( n1 ˆ2))}}
shahzad <− function (n , alpha , l o c ){

x <− rexp (n , l o c )
n1 <− length ( x )
Data <− sort ( x )
MU <− mean( Data )
F <− pexp( Data , 1/MU)
i <− 1 : n1
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part <− ( i − 0 . 5 ) ∗log ( ( i − 0 . 5 ) / ( n1∗F) ) +
( n1 − i + 0 . 5 ) ∗log ( ( n1 − i + 0 . 5 ) / ( n1∗(1 − F) ) )
Z K Stat <− max( part )
c r i t va l <− ZK Cri t ( n1 , alpha )
r e j e c t <− (Z K Stat > c r i t va l )
return ( l i s t ( ”Z K Stat ” = r e j e c t ) )}

ns <− c (20 ,25 ,50 ,75 ,100 ,150 ,200 ,350 ,450 ,550 ,650 ,750 ,850 ,950 ,1050 ,
1150 ,1250 ,1350 ,1450 ,1550 ,1700 ,1850 ,2000)

l o c grid <− 1
alpha <− c ( 0 . 0 0 5 , 0 . 01 , 0 . 02 , 0 . 05 , 0 . 1 , 0 . 2 , 0 . 025 , 0 . 001 )
param l i s t <− l i s t ( ”n” = ns , ” alpha ” = alpha , ” l o c ” = l o c grid )

s <− MonteCarlo ( func = shahzad ,
nrep = 20000 ,
param l i s t = param l i s t ,
ncpus = 1 ,
time n t e s t = FALSE)
f <− MakeFrame( s )
S i z e Z K <− aggregate ( f $Z K Stat , l i s t ( f $n , f $alpha ) , mean)
S i z e Z K

Code for the test statistic ZC

l ibrary ( w r i t e x l )
l ibrary ( MonteCarlo )
###############################################################
ZC Cr i t <− function ( n1 , alpha ){

i f ( alpha == 0.005){
55.40744 − 419.73794∗(1/sqrt ( n1 ) ) + 3154.99716∗(1/n1 ) −
11036.95244∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 12994.69580∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0 .01 ){
49.90601 − 421.12995∗(1/sqrt ( n1 ) ) + 3326.34263∗(1/n1 ) −
12030.54622∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 14499.77077∗(1/ ( n1 ˆ2) )
} else i f ( alpha == 0 .02 ){
44.63341 − 411.90735∗(1/sqrt ( n1 ) ) + 3397.56252∗(1/n1 ) −
12632.95936∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 15508.46723∗(1/ ( n1 ˆ2) )
} else i f ( alpha == 0 .05 ){
37.81069 − 382.90809∗(1/sqrt ( n1 ) ) + 3273.82666∗(1/n1 ) −
12553.87431∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 16121.01923∗(1/ ( n1 ˆ2) )
} else i f ( alpha == 0 . 1 ){
32.71291 − 354.43965∗(1/sqrt ( n1 ) ) + 3111.88548∗(1/n1 ) −
12180.81877∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 15881.44210∗(1/ ( n1 ˆ2) )
} else i f ( alpha == 0 . 2 ){
27.49222 − 318.98957∗(1/sqrt ( n1 ) ) + 2851.42741∗(1/n1 ) −
11247.45314∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 14726.17652∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0.025){
42.95781 − 406.62265∗(1/sqrt ( n1 ) ) + 3407.77939∗(1/n1 ) −
12954.71437∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 16544.41711∗(1/ ( n1 ˆ2) )

} else i f ( alpha == 0.001){
70.46000 − 403.58115∗(1/sqrt ( n1 ) ) + 2805.66309∗(1/n1 ) −
9319.43436∗(1/ ( n1 ˆ ( 1 . 5 ) ) ) + 10737.88076∗(1/ ( n1 ˆ2))}}
shahzad <− function (n , alpha , l o c ){

x <− rexp (n , l o c )
n1 <− length ( x )
Data <− sort ( x )
MU <− mean( Data )
F <− pexp( Data , 1/MU)
i <− 1 : n1
F Inv <− 1 / F
Uper <− F Inv − 1
Lower <− ( ( n1 − 0 . 5 ) / ( i − 0 . 7 5 ) ) − 1
l g <− ( log ( Uper/Lower ) )ˆ2
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Z C Stat <− sum( l g )
c r i t va l <− ZC Cr i t ( n1 , alpha )
r e j e c t <− (Z C Stat > c r i t va l )
return ( l i s t ( ”Z C Stat ” = r e j e c t ) )}

ns <− c (20 ,25 ,50 ,75 ,100 ,150 ,200 ,350 ,450 ,550 ,650 ,750 ,850 ,950 ,1050 ,
1150 ,1250 ,1350 ,1450 ,1550 ,1700 ,1850 ,2000)
l o c grid <− 1
alpha <− c ( 0 . 0 0 5 , 0 . 01 , 0 . 02 , 0 . 05 , 0 . 1 , 0 . 2 , 0 . 025 , 0 . 001 )
param l i s t <− l i s t ( ”n” = ns , ” alpha ” = alpha , ” l o c ” = l o c grid )
s <− MonteCarlo ( func = shahzad ,
nrep = 20000 ,
param l i s t = param l i s t ,
ncpus = 1 ,
time n t e s t = FALSE)
f <− MakeFrame( s )
S i z e ZC <− aggregate ( f $Z C Stat , l i s t ( f $n , f $alpha ) , mean)
S i z e ZC

A.3. Code for numerical illustration

The following code snippet illustrates how to conduct the empirical analysis discussed in the
paper. It imports three datasets (Y1, Y2, and Y3) from an Excel file and then computes the
test statistics {ZK , ZA, ZC} using the DistributionTest package, as well as the classical
exponentiality tests {Ko, G,Ha} from exptest.
rm( l i s t=l s ( ) )
l ibrary ( r eadx l )
l ibrary ( D i s t r i bu t i onTes t ) # Jin Zhang (2005) L ike l i hood −r a t i o t e s t s
l ibrary ( expte s t ) # Kochar (1985) e x p o n e n t i a l i t y t e s t s

#######################################
# Load data from Exce l f i l e s
#######################################
AirPlane <− read e x c e l ( ”C: /Users/hp/Desktop/AirPlane . x l sx ” )
attach ( AirPlane )
Y 1 <− c (na . omit ( AirPlane$ ‘ Ar r i va l Time ‘ ) )
Y 2 <− c (na . omit ( AirPlane$ ‘ Ba l l Bearing ‘ ) )
Y 3 <− c (na . omit ( AirPlane$ ‘ Blood Cancer ‘ ) )
#######################################
# Compute Z K, Z A, Z C s t a t i s t i c s
#######################################
Z K t e s t Y1 <− zk . t e s t (Y 1 , ”exp” , N=0)
Z K t e s t Y2 <− zk . t e s t (Y 2 , ”exp” , N=0)
Z K t e s t Y3 <− zk . t e s t (Y 3 , ”exp” , N=0)
Z A t e s t Y1 <− za . t e s t (Y 1 , ”exp” , N=0)
Z A t e s t Y2 <− za . t e s t (Y 2 , ”exp” , N=0)
Z A t e s t Y3 <− za . t e s t (Y 3 , ”exp” , N=0)
Z C t e s t Y1 <− zc . t e s t (Y 1 , ”exp” , N=0)
Z C t e s t Y2 <− zc . t e s t (Y 2 , ”exp” , N=0)
Z C t e s t Y3 <− zc . t e s t (Y 3 , ”exp” , N=0)
#######################################
# Compute K o , G, H a
#######################################
K o t e s t Y1 <− kochar . exp . t e s t (Y 1)
K o t e s t Y2 <− kochar . exp . t e s t (Y 2)
K o t e s t Y3 <− kochar . exp . t e s t (Y 3)
gnedenko . exp . t e s t (Y 1 , s imulate . p . va lue=TRUE, nrep l =20000)
gnedenko . exp . t e s t (Y 2 , s imulate . p . va lue=TRUE, nrep l =20000)
gnedenko . exp . t e s t (Y 3 , s imulate . p . va lue=TRUE, nrep l =20000)
h a r r i s . exp . t e s t (Y 1 , s imulate . p . va lue=TRUE, nrep l =20000)
h a r r i s . exp . t e s t (Y 2 , s imulate . p . va lue=TRUE, nrep l =20000)
h a r r i s . exp . t e s t (Y 3 , s imulate . p . va lue=TRUE, nrep l =20000)
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#######################################
# View r e s u l t s
#######################################
Z K t e s t Y1$ s t a t i s t i c
Z K t e s t Y2$ s t a t i s t i c
Z K t e s t Y3$ s t a t i s t i c
Z A t e s t Y1$ s t a t i s t i c
Z A t e s t Y2$ s t a t i s t i c
Z A t e s t Y3$ s t a t i s t i c
Z C t e s t Y1$ s t a t i s t i c
Z C t e s t Y2$ s t a t i s t i c
Z C t e s t Y3$ s t a t i s t i c
K o t e s t Y1$ s t a t i s t i c
K o t e s t Y2$ s t a t i s t i c
K o t e s t Y3$ s t a t i s t i c

In the above scripts, certain paths (for example, at the link:
"C:/Users/hp/Desktop/AirPlane.xlsx")

are user-specific and may need to be changed based on the local machine setup.

Appendix B: Simulated critical values for small sample sizes

This appendix presents precomputed simulated critical values (quantiles) for the test statis-
tics ZK , ZA, and ZC under the null hypothesis of exponentiality for small sample sizes
(5 ≤ T < 20). These values allow practitioners to apply the goodness-of-fit tests without
requiring additional Monte Carlo simulations when working with limited data.

Table 10. Simulated critical values or quantiles of ZK for testing Exponentiality when the sample size is
5 ≤ T < 20.

T 0.8 0.9 0.95 0.98 0.99 0.995 0.975 0.999

5 0.9029 1.2104 1.5375 1.9585 2.2979 2.6712 1.8646 3.7251
6 0.9950 1.3516 1.7039 2.1823 2.5025 2.9123 2.0643 4.0364
7 1.0863 1.4705 1.8488 2.3402 2.7444 3.2338 2.2100 4.5562
8 1.1491 1.5345 1.9306 2.4655 2.8917 3.3319 2.3284 4.4273
9 1.2132 1.6252 2.0486 2.6252 3.0279 3.4260 2.4632 4.5451
10 1.2493 1.6697 2.0940 2.6215 3.0647 3.5243 2.4961 4.5733
11 1.3007 1.7286 2.1931 2.8128 3.3146 3.8701 2.6679 5.1067
12 1.3704 1.8053 2.2333 2.8573 3.3211 3.7815 2.7211 4.9350
13 1.3739 1.8324 2.2809 2.8911 3.3871 3.8850 2.7334 5.1229
14 1.4208 1.8715 2.3043 2.9473 3.3721 3.7662 2.7704 5.0558
15 1.4619 1.9225 2.3975 3.0520 3.5675 4.0274 2.8998 5.2683
16 1.4993 1.9733 2.4487 3.0768 3.5861 4.0272 2.9405 5.0882
17 1.5285 1.9954 2.4660 3.1319 3.7105 4.2464 2.9564 5.5252
18 1.5358 2.0091 2.5168 3.2142 3.7307 4.2260 3.0392 5.2007
19 1.5804 2.0660 2.5403 3.1348 3.6465 4.1310 2.9998 5.4378

where these simulated critical values or quantiles provide very accurate empirical rates for ZK when
5 ≤ T < 20.
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Table 11. Simulated critical values or quantiles of ZA for testing Exponentiality whem the sample size is
5 ≤ T < 20.

T 0.80 0.90 0.95 0.98 0.99 0.995 0.975 0.999

5 3.6440 3.8253 3.9968 4.2139 4.3638 4.5681 4.1586 4.9488
6 3.6253 3.7914 3.9596 4.1686 4.3244 4.4827 4.1195 4.8682
7 3.6079 3.7541 3.9155 4.1162 4.2525 4.4030 4.0687 4.7448
8 3.5827 3.7194 3.8621 4.0488 4.1875 4.2884 4.0062 4.5785
9 3.5699 3.6956 3.8245 3.9963 4.1253 4.2486 3.9577 4.4886
10 3.5497 3.6672 3.7922 3.9510 4.0640 4.1743 3.9148 4.4503
11 3.5401 3.6489 3.7598 3.9147 4.0245 4.1519 3.8778 4.4060
12 3.5303 3.6294 3.7373 3.8859 4.0059 4.1189 3.8480 4.3701
13 3.5119 3.6077 3.7060 3.8433 3.9494 4.0554 3.8114 4.3195
14 3.5065 3.5984 3.6916 3.8118 3.9077 4.0208 3.7854 4.2183
15 3.4981 3.5842 3.6728 3.8012 3.8907 4.0023 3.7691 4.2476
16 3.4922 3.5731 3.6586 3.7853 3.8873 3.9714 3.7561 4.1892
17 3.4847 3.5657 3.6484 3.7626 3.8554 3.9300 3.7332 4.1929
18 3.4748 3.5522 3.6296 3.7440 3.8319 3.9143 3.7152 4.1014
19 3.4720 3.5452 3.6223 3.7236 3.8096 3.8980 3.6957 4.0467

where these simulated critical values or quantiles provide very accurate empirical rates for ZA when
5 ≤ T < 20.

Table 12. Simulated critical values or quantiles of ZC for testing exponentiality when the sample size is
5 ≤ T < 20.

T 0.80 0.90 0.95 0.98 0.99 0.995 0.975 0.999

5 6.5218 8.5145 10.3657 12.5005 14.7411 19.1350 12.0323 36.7313
6 6.9961 9.2152 11.2679 13.9601 16.5673 19.8773 13.2911 37.4765
7 7.5011 9.7111 11.9295 14.9112 18.0452 21.4916 14.2469 39.1280
8 7.7144 9.9935 12.3550 15.4851 18.2275 22.3413 14.6886 35.0512
9 8.0488 10.4532 12.7903 16.0254 18.4639 22.7810 15.2208 38.0523
10 8.1994 10.6612 13.1388 16.3769 19.0623 22.9626 15.6111 36.6808
11 8.5523 11.0301 13.5609 17.2958 20.7229 26.0848 16.2964 43.1090
12 8.7918 11.2908 13.8383 17.6049 20.8465 24.6428 16.7874 38.1393
13 8.8113 11.2947 13.9319 17.7608 20.9615 24.7130 16.7009 38.3636
14 9.1279 11.7106 14.3238 17.9471 21.1990 25.4752 16.9936 42.1110
15 9.2917 11.9598 14.5510 18.5562 21.4525 25.2264 17.5529 40.0107
16 9.5328 12.2342 14.9822 19.2337 22.4595 26.3605 18.0600 39.7224
17 9.6434 12.4683 15.2288 18.9524 22.4190 26.6964 18.1316 46.0979
18 9.6782 12.4891 15.4052 19.1593 22.6591 26.5489 18.2411 39.3925
19 9.9216 12.8402 15.6584 19.8835 23.2966 27.1591 18.5562 42.6114

where these simulated critical values or quantiles provide very accurate empirical rates for ZC when
5 ≤ T < 20.
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