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Abstract

This article investigates the statistical and asymptotic properties of first-order periodic
autoregressive conditional heteroscedasticity (P-ARCH(1)) models, emphasizing both
theoretical developments and empirical insights. The study introduces the class of P-
ARCH models, highlighting how periodicity allows for distinct volatility dynamics across
different seasons or regimes. By employing a vector autoregressive representation of the
squared process, key probabilistic properties are derived under periodic stationarity con-
ditions. A moment-based estimation approach using periodic Yule-Walker equations is
proposed, and its consistency and asymptotic normality are established. Monte Carlo
simulations assess the finite-sample performance of these estimators, particularly in com-
parison with least squares methods, and provide practical guidelines for implementation.
The methodology is further illustrated through an empirical application to monthly log-
stock returns of Intel Corporation, demonstrating that periodic ARCH models effectively
capture time-varying heteroscedasticity driven by recurring seasonal or cyclical factors,
outperforming approaches that assume constant volatility parameters. This study un-
derscores the flexibility of P-ARCH(1) models in financial and economic applications
where volatility patterns repeat over known intervals and highlights the advantages of
a moment-based estimation strategy as a computationally efficient alternative to quasi-
maximum likelihood methods. The findings provide clear directions for future research
in extending the periodic ARCH framework to accommodate more complex dynamics
and additional stylized features of real-world time series.
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1. Introduction

Financial time series often exhibit volatility clustering, wherein periods of high and low
variability alternate over time. This phenomenon has motivated the development of econo-
metric models that explicitly capture time-varying conditional heteroscedasticity, notably
the autoregressive conditional heteroscedasticity (ARCH) model introduced by Engle (1982)
and its extension to generalized ARCH (GARCH) proposed by Bollerslev (1986).
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Traditional ARCH and GARCH models assume constant parameters over time, but em-
pirical studies, such as those by Franses (1998) and Hurd and Miamee (2007), have shown
that financial time series often follow periodic or seasonal volatility patterns. Modeling such
periodicity is crucial for analyzing financial returns, macroeconomic indicators, and energy
markets, where seasonality is an intrinsic characteristic of the data (Ziel, 2015; Tsay, 2002).

To address these periodic characteristics, Bollerslev and Ghysels (1996) introduced peri-
odic ARCH (P-ARCH) models as an extension of traditional heteroscedastic frameworks,
allowing the conditional variance to vary periodically over time. Basawa and Lund (2001)
further explored their properties, demonstrating their effectiveness in capturing systematic
fluctuations in volatility due to seasonal effects, business cycles, and institutional trading
patterns. Subsequent generalizations, such as periodic GARCH (P-GARCH) models de-
veloped by Aknouche and Bibi (2009) and further analyzed by Francq and Zakoian (2019),
incorporate moving-average structures in volatility, so improving the modeling of long-range
dependence in financial data.

Despite the growing use of periodic models, statistical inference for P-ARCH processes
remains challenging. Estimating model parameters requires methods that account for pe-
riodicity while still ensuring statistical consistency and efficiency. Aknouche et al. (2018)
and Aknouche and Al-Eid (2012) explored quasi-maximum likelihood estimation (QMLE)
for periodic models, extending applicability beyond the standard GARCH setting. However,
as noted by Bibi and Lescheb (2013) and Lund and Basawa (1999), the direct applica-
tion of QMLE to periodic ARCH-type models requires additional considerations due to the
time-dependent variance structure.

In this article, we focus on first-order PARCH —P-ARCH(1)— models and investigate the
asymptotic properties of a moment-based estimation procedure using periodic Yule-Walker
(YW) equations. Such an approach provides a computationally efficient alternative to QMLE
and least squares (LS) estimation, making it appealing for large datasets. Specifically, we
establish the consistency and asymptotic normality of these estimators, demonstrating their
practical applicability. We also evaluate finite-sample performance through Monte Carlo
simulations, comparing our proposed estimators with LS methods. Then, the methodology
is applied to monthly log-stock returns of Intel Corporation (a dataset previously ana-
lyzed by Tsay (2002)), showing that periodic modeling effectively captures time-varying
heteroscedasticity.

The main contributions of this study can be summarized as follows. First, the periodic
YW estimation procedure for P-ARCH(1) models is formalized, and its consistency and
asymptotic normality are established. Additionally, sufficient conditions for periodic sta-
tionarity are derived, ensuring the validity of the proposed estimation approach. To assess
the performance of these estimators, Monte Carlo simulations are conducted to evaluate
their finite-sample properties in comparison with alternative estimation techniques. At last,
the methodology is applied to financial time series, demonstrating its advantages in captur-
ing periodic volatility patterns.

This article is structured as follows. After the introduction, Section 2 provides a detailed
presentation of the periodic ARCH model, including its vector representation, stationar-
ity conditions, and higher-order moment properties. In Section 3, we explore the moment
properties of the squared process and develop the YW estimation procedure, deriving its
asymptotic properties and introducing a Wald test for periodicity. In Section 4, the perfor-
mance of the proposed estimator is evaluated through Monte Carlo simulations and applies
the methodology to real financial data. Section 5 presents concluding remarks and outlines
directions for future research. Proofs of technical results are provided in Appendix.
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2. Periodic ARCH model

This section introduces the P-ARCH model, which extends the standard ARCH framework
by allowing time-varying volatility patterns that repeat over known periods. The math-
ematical formulation and key properties of the model are presented, including its vector
representation, stationarity conditions, and higher-order moment properties.

2.1 Definition and periodic version

The concept of periodicity applies to both ARCH and GARCH models, collectively referred
to as P-GARCH. These formulations are particularly relevant in applications where seasonal
or cyclical volatility patterns have been observed (Bollerslev and Ghysels, 1996; Franses,
1998; Hurd and Miamee, 2007; Francq and Zakoian, 2019).

This article focuses on the first-order periodic ARCH (P-ARCH(1)) model, introduced by
Bollerslev and Ghysels (1996) as an extension of the standard ARCH process proposed by
Engle (1982). Unlike the traditional ARCH framework, which assumes constant parameters,
P-ARCH incorporates periodic variation by allowing season-specific coefficients. This struc-
ture effectively captures recurring volatility fluctuations, making it particularly relevant for
financial, macroeconomic, and energy market applications.

Formally, let {Xt, t ∈ Z} be a second-order process, meaning it has well-defined first and
second moments (that is, finite mean and autocovariance function). Suppose this process has
a known integer period s ≥ 1, indicating that its statistical properties repeat every s time
steps in a deterministic pattern. The P-ARCH(1) model extends the traditionalARCH(1)
framework by allowing key parameters to vary across these s periods. Specifically, the P-
ARCH(1) specification is given by

Xt = etht, h2
t = ω(t) + α(t)X2

t−1, (2.1)

where {et} is a sequence of independent and identically distributed (IID) random variables
with zero mean, unit variance (κ1 = 1), and finite higher moments κk = E[e2k

t ] < ∞ for
k ≥ 2. The functions ω and α are periodic in t with period s, that is, ω(t+ ks) = ω(t) > 0,
α(t + ks) = α(t) ≥ 0, for all t, k ∈ Z. Thus, the conditional variance of Xt is given by
h2
t = Var[Xt|=t−1], where =t−1 denotes all relevant information up to time t − 1 (the σ-

algebra generated by past observations). In a periodic framework of period s, each integer t
can be expressed as t = s`+ν, with ν ∈ {1, . . . , s}. Each value of ν is referred to as a season
(or phase) within the period. Consequently, the functions ω(t) and α(t) remain constant for
all t belonging to the same season ν.

The assumption ω(t) > 0 for each t ensures strictly positive intercepts in every season,
thus guaranteeing positivity of the conditional variance. Likewise, requiring α(t) ≥ 0 rules
out negative coefficients, which would otherwise violate the ARCH structure.

To explicitly account for periodicity, we rewrite t as t = s` + υ, where ` ∈ Z and υ ∈
{1, . . . , s}. Define Xt(υ) = Xs`+υ, ht(υ) = hs`+υ, and et(υ) = es`+υ. Then, Equation (2.1)
can be equivalently rewritten as

Xt(υ) = et(υ)ht(υ), h2
t (υ) = ω(υ) + α(υ)X2

t (υ − 1), υ ∈ {1, . . . , s}, (2.2)

where ω(υ) and α(υ) remain constant within each season υ, enabling the model to capture
season-specific or recurring changes in volatility over time.
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2.2 Periodic correlation and stationarity

Under suitable conditions, a P-ARCH process belongs to the class of periodically correlated
(PC) processes, which satisfy E[Xt] = E[Xt+s], Cov[Xt, Xr] = Cov[Xt+s, Xr+s], for all t, r.
For s = 1, this notion coincides with conventional second-order stationarity. For s > 1, the
process is globally nonstationary but remains stationary within each period (Franses, 1998;
Hurd and Miamee, 2007; Francq and Zakoian, 2019).

Conditions for the existence of a strictly stationary (in the periodic sense) solution for a
P-ARCH(1) model generally involve controlling the product of the ARCH coefficients or,
equivalently, ensuring that the spectral radius of the associated companion matrix is strictly
less than one. A sufficient condition is

∏s
υ=1 α(υ) < 1, which guarantees the existence of

a unique strictly periodic stationary and ergodic solution (Aknouche and Bentarzi, 2008;
Lee and Shin, 2010; Sadoun and Bentarzi, 2022). For higher-order moments to be finite,
a stronger restriction is required, such as

∏s
υ=1 α(υ)2 < 1, which ensures the feasibility of

asymptotic normality results for moment-based estimators. These conditions are particularly
relevant in financial applications, where volatility exhibits cyclical or seasonal patterns, such
as monthly or weekly effects.

Several extensions of periodic ARCH and GARCH models have been proposed to capture
different dynamics and enhance flexibility. For instance, Bibi and Lescheb (2010a) analyzed
P-GARCH(p, q) processes, establishing consistency and asymptotic normality (CAN) under
QMLE, while Bibi and Lescheb (2013) extended these results to P-ARMA models with
P-GARCH errors. Aknouche et al. (2018) further developed a generalized QMLE approach
applicable to a broader class of P-GARCH(p, q) processes.

To accommodate higher-order moments, Aknouche and Bentarzi (2008) introduced con-
ditions for their existence in periodic GARCH models. Aliat and Hamdi (2019) explored
Markov-switching versions, which integrate regime-switching with periodic coefficients.
Transformations such as periodic log-GARCH were studied by Bibi and Hamdi (2024),
while periodic exponential GARCH (P-EGARCH) models were introduced by Sadoun and
Bentarzi (2022). Guerbyenne and Kessira (2019) proposed power periodic threshold GARCH
models, establishing CAN for QMLE. Ziel (2015) examined multivariate P-GARCH settings,
and Aknouche and Al-Eid (2012) investigated nonstationary periodic GARCH variants.

Methodologically, these contributions show the need to adapt traditional GARCH-type
techniques to account for periodic or seasonal effects, whether through direct parameteri-
zation, regime-switching mechanisms, or specialized transformations. In the following sec-
tions, a moment-based estimation approach for the P-ARCH(1) model is developed, relying
on YW equations to derive its asymptotic properties. This approach offers a computation-
ally efficient alternative to QMLE, complementing the existing literature while maintaining
well-defined asymptotics. A key aspect of the estimation procedure is the characterization of
the squared process, which exhibits autocorrelation even when the original series {Xt} itself
appears uncorrelated. To analyze this structure, it is helpful to reformulate {X2

t } in a vector
autoregressive form, allowing for a systematic derivation of moment-based estimators.

2.3 Vector representation of the squared process

Following the ideas presented in Gladyshev (1961), we start with the P-ARCH(1) equa-
tions h2

t (υ) = ω(υ) +α(υ)X2
t−1(υ− 1), Xt(υ) = et(υ)ht(υ), where υ ∈ {1, . . . , s} denotes the

season or period index. Squaring the second equation and substituting h2
t (υ) from above

yields the expression stated as

X2
t (υ) = ω(υ) + α(υ)X2

t−1(υ − 1) + ηt(υ), (2.3)

where ηt(υ) = X2
t (υ)−E[X2

t (υ)|=t−1] = h2
t (υ)

(
e2
t (υ)− 1

)
is a martingale difference sequence

relative to the information set =t−1.
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In other words, although {Xt(υ)} (the original process in levels) may be uncorrelated
over time, its squared version {X2

t (υ)} follows a weak periodic AR(1)-type recursion (in
each season υ) with time-varying noise ηt(υ). This highlights the potential autocorrelation
structure in the squared process that is central to volatility clustering in financial and
econometric applications.

Remark 1 Note that {Xt} itself is typically uncorrelated over time, but {X2
t } can exhibit

significant autocorrelation due to the conditional heteroscedasticity mechanism. Thus, fo-
cusing on the squared series is essential for understanding volatility dynamics.

To proceed, define s×1 vectors X2(t) =
(
X2
t (1), . . . , X2

t (s)
)>, η(t) = (ηt(1), dots, ηt(s))>,

and ω = (ω(1), . . . , ω(s))> . Then, Equation (2.3) may be written as

Φ0X
2(t) = ω + Φ1X

2(t− 1) + 1η(t), (2.4)

where Φ0 and Φ1 are s×smatrices determined by the periodic coefficients α(υ). In particular,
Φ0(i, j) = δi=j−α(i)1{j<i} and Φ1(i, j) = α(i)1{s+i−j=1}, where 1B is the indicator function
in the set B. Equivalently, define A(L) = Φ0 − Φ1L, where L is the backshift operator,
LkX2(t) = X2(t − k). The structure of Φ0 (often lower triangular) implies that Equation
(2.4) can be viewed as a system of recursive equations or, more briefly, a weak VAR(1) with
periodic constraints (Gladyshev, 1961; Tiao and Grupe, 1980). For s = 4, we obtain

Φ0 =


1 0 0 0

−α(2) 1 0 0
0 −α(3) 1 0
0 0 −α(4) 1

 , Φ1 =


0 0 0 α(1)
0 0 0 0
0 0 0 0
0 0 0 0

 ,

which can be interpreted as a vector AR(1) process, but specialized to capture seasonal
shifts each quarter. In many applications, one may focus only on the relevant season-specific
coefficients, as the zero blocks highlight the recursive nature of the model.

Theorem 2.1 A unique causal, strictly stationary, and ergodic solution to the system
stated in Equation (2.4) exists if and only if det (Φ0 − Φ1z) 6= 0 for all complex |z| ≤ 1,
or equivalently ρ(Φ) < 1, where Φ = Φ−1

0 Φ1. Under this condition, the solution admits the
convergent MA(∞) expansion stated as

X2(t) = Φ−1
0 ω +

∞∑
k=0

ΦkΦ−1
0 η(t− k). (2.5)

Proof See details in Appendix. �

Remark 2 Gladyshev (1961), Aknouche and Bentarzi (2008), and Lee and Shin (2010)
showed that, if the product of the seasonal coefficients α(υ) is small, higher-order mo-
ments of {X2

t } exist. For instance, it can be proven that E[‖X2
t ‖m] < +∞ if and only if∏s

υ=1 α(υ)m < 1. This underpins the asymptotic arguments for the estimators we discuss
later.

When a strictly stationary and PC solution to the P-ARCH(1) model exists, the process
{Xt} is uncorrelated across time yet features time-varying conditional variance. In this
sense, {Xt} may be viewed as a weak white noise with respect to its raw values, but its
squared process {X2

t } exhibits strong autocorrelation and seasonality. This section analyzes
the second-order properties of {X2

t } by examining the lag-h covariances of the squared series
in each season.
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2.4 Seasonal means and autocovariances of the squared process

Recall that Equation (2.1) describes the dependence of the conditional variance h2
t on past

values of Xt. However, for the purpose of studying second-order properties, it is helpful to
analyze the squared process X2

t directly. In this context, we can rewrite the P-ARCH(1)
model in terms of squared values as

X2
t (υ) = ω(υ) + α(υ)X2

t−1(υ) + ηt(υ), υ ∈ {1, . . . , s}, (2.6)

where ηt(υ) = X2
t (υ) − E[X2

t (υ)|=t−1] is a martingale difference sequence satisfying
E[ηt(υ)] = 0. This formulation in Equation (2.6) highlights the structure of X2

t (υ) as a
periodic autoregressive process, which is essential for deriving second-order statistics and
moment-based estimation techniques. Define µυ = E

[
X2
t (υ)

]
. Taking expectations in Equa-

tion (2.6) yields the expression stated as

µυ = ω(υ) + α(υ)µυ−1. (2.7)

By iterating Equation (2.7) over one full period s and imposing µ0 = µs, we have µs =
(1−

∏s
υ=1 α(υ))−1∑s

j=1(
∏s
`=j+1 α(`))ω(j). Then, for 1 ≤ υ ≤ s− 1, µυ = (

∏υ
j=1 α(j))µs +∑υ

j=1(
∏υ
l=j+1 α(l))ω(j). Hence, each season υ in the squared process has its own mean µυ,

reflecting the periodic intercept and slope parameters.
To derive the autocovariances of the squared series, consider the centered process Y 2

t (υ) =
X2
t (υ)− µυ. From Equation (2.6), it follows that

Y 2
t (υ) = α(υ)Y 2

t (υ − 1) + ηt(υ), υ ∈ {1, . . . , s}. (2.8)

Multiplying both sides of Equation (2.8) by X2
t (υ − h) (for h ≥ 0) and taking expectations

yields a recursion for the seasonal autocovariances given by

γυ(h) = Cov[X2
t (υ), X2

t (υ − h)] =

σ
2
η(υ), h = 0;

α(υ)γυ−1(h− 1), h ≥ 1;

where σ2
η(υ) = E[η2

t (υ)]. By definition, ηt(υ) = h2
t (υ)(e2

t (υ)− 1), and with E[e2
t (υ)] = 1, we

obtain σ2
η(υ) = E[η2

t (υ)] = (κ2 − 1)λυ, with λυ = E[h4
t (υ)], κ2 = E[e4

t (υ)]. Hence, for h ≥ 1,
we get γυ(h) = (κ2λυ − µ2

υ)1{h=0} + (
∏h−1
j=0 α(υ − j))σ2

η(υ − h). Note that periodic indices
are understood in module s.

2.5 Fourth-order terms and properties of means and covariances

To evaluate terms like λυ = E[h4
t (υ)], it is possible to recursively solve λυ = ω2(υ) +

2α(υ)ω(υ)µυ−1 + κ2α
2(υ)λυ−1. Imposing λ0 = λs, it yields the expression given by

λs =
(

1−
s∏

υ=1
κ2α

2(υ)
)−1 s∑

j=1
κs−j2

 s∏
`=j+1

α2(`)

(ω2(j) + 2α(j)ω(j)µj−1
)
,

and for 1 ≤ υ ≤ s− 1, we have that

λυ =
υ∑
j=1

κυ−j2

 υ∏
l=j+1

α2(l)

(ω2(j) + 2α(j)ω(j)µj−1
)

+

 υ∏
j=1

κ2α
2(j)

λs.
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Although the process {X2
t (υ)} for each season υ is derived from a P-ARCH(1) structure,

its autocovariances need not be symmetric about zero in the usual sense. In fact, the au-
tocovariances satisfy the relation γυ(−h) = γυ+h(h) for integer h ≥ 0, due to the periodic
indexing. Consequently, each season υ may exhibit a distinct pattern of dependence, mean-
ing that a single stationarity assumption (in the traditional sense) does not hold globally
when s > 1. Instead, periodic stationarity ensures that the full autocovariance structure
is obtained by evaluating γυ(h) for υ ∈ {1, . . . , s}, and h ≥ 0. This framework provides
a means to analyze how season-specific effects influence persistence and mean reversion in
squared returns (or other heteroscedastic time series), reflecting the periodic evolution of
conditional variance.

Consider an observed sample {X1, . . . , Xn} of size n = sN from the unique strictly station-
ary and PC solution {Xt} of the P-ARCH(1) model stated in Equation (2.3). Equivalently,
this sample can be interpreted as {X1, . . . ,XN} as a realization of a second-order stationary
vector process {Xt, t ∈ Z}, where X2

t = (X2
t (1), . . . , X2

t (s))>.
For each season υ ∈ {1, . . . , s} and integer lag h ≥ 0, define

µ̂υ = 1
N

N−1∑
t=0

X2
t (υ), γ̂υ(h) = 1

N

N−1∑
t=0

X2
t (υ)X2

t (υ − h)− µ̂υµ̂υ−h,

where indices are interpreted in module s. Let µ̂ = (µ̂1, . . . , µ̂s)>, µ = (µ1, . . . , µs)>, and
γ̂(h) = (γ̂1(h), . . . , γ̂s(h))>,γ(h) = (γ1(h), . . . , γs(h))>. The following propositions sum-
marize key asymptotic properties of these estimators, under the assumption that the P-
ARCH(1) process possesses the necessary finite moments (up to order 2 or 4) and that the
vector sequence {X2

t } is second-order stationary and ergodic.

Proposition 2.2 Assume {X2
t } satisfies the P-ARCH(1) representation stated in Equa-

tions (2.3)–(2.5) with finite second moments. Then, for each υ ∈ {1, . . . , s}, we have that:

(i) µ̂υ
almost sure−−−−−−→ µυ.

(ii) As N → ∞, N Cov[µ̂υ, µ̂υ′ ] converges to (Vas)υ,υ′ , where Vas =∑
h∈ZCov[X2

t ,X
2
t−h].

(iii) limN→∞ E
[
(µ̂υ − µυ)2] = 0.

(iv) The vector
√
N(µ̂−µ) converges in distribution to a multivariate normal with mean

0 and covariance matrix Vas.
Proof See details in Appendix. �

Proposition 2.3 Suppose {X2
t } in Equation (2.3)–(2.5) admits moments up to order 4.

Then, for any integer h ≥ 0 and each υ ∈ {1, . . . , s}, we have that:

(i) γ̂υ(h) almost sure−−−−−−→ γυ(h).
(ii) limN→∞N Cov[γ̂υ(h), γ̂υ′(k)] = (Was(h, k))υ,υ′ , where Was(h, k) =

∑
l∈ZCov[X2

t ⊗
X2
t (h),X2

t−l ⊗X2
t−l(k)].

(iii) limN→∞ E
[
(γ̂υ(h)− γυ(h))2] = 0.

(iv) The vector
√
N(γ̂(h)−γ(h)) converges in distribution to a multivariate normal with

mean 0 and covariance Was(h, h).
Proof See details in Appendix. �

These results show that both the empirical means {µ̂υ} and the empirical covariances
{γ̂υ(h)} are consistent and asymptotically normal under regular conditions on the fourth
moments of {X2

t }. Consequently, these empirical estimates serve as fundamental building
blocks in moment-based estimation methods, including the YW-type approach analyzed
later in the article.
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3. Estimation via periodic Yule-Walker equations

This section presents the estimation P-ARCH models using the YW approach, which pro-
vides a computationally efficient alternative to traditional methods such as LS and QML.
Unlike iterative procedures that can be computationally intensive, the YW estimation
method leverages empirical means and autocovariances of the squared process, making it
particularly suitable for large datasets (Lund and Basawa, 1999). The theoretical foundation
of the estimators, their properties, and their implementation are discussed in detail.

3.1 Definition of the Yule-Walker estimators

Let {µ̂υ} be the empirical seasonal means and {γ̂υ(h)} be the empirical autocovariances of
{X2

t (υ)}. Recall that we parametrize the P-ARCH(1) model using θ(υ) = (α(υ), ω(υ))>,
for υ ∈ {1, . . . , s}. Then, the full parameter vector is given by θ = (θ>(1), . . . ,θ>(s))>.

Based on the moment relations in Equation (2.3) and the implied autocovariance structure
of the squared series, a natural set of YW-type estimators can be constructed. Specifically,
for each season υ ∈ {1, . . . , s}, define

α̂(υ) = γ̂υ(2)
γ̂υ−1(1) , ω̂(υ) = µ̂υ − α̂(υ)µ̂υ−1, (3.9)

where indices are interpreted in module s; γ̂υ(h) is the sample autocovariance of the squared
process at lag h for season υ, and µ̂υ is the sample mean. Note that we require γ̂υ−1(1) 6= 0
to avoid degeneracy in the ratio for α̂(υ). These estimators provide closed-form expressions
for the intercept ω(υ) and the ARCH coefficient α(υ) in each season.

Remark 1 Although the YW estimators are straightforward to compute and serve as initial
guesses, they may be less efficient than QML or LS estimators, which typically exploit the
data via iterative procedures. Nonetheless, the YW approach offers a practical alternative
for large datasets or as a starting point in an iterative estimation algorithm.

3.2 Consistency and asymptotic normality

The following lemma establishes the strong consistency and asymptotic distribution of the
season-specific YW estimates α̂(υ) and ω̂(υ). Let θ̂(υ) denote the vector (α̂(υ), ω̂(υ))>.

Lemma 3.1 Consider the squared P-ARCH(1) process and let {X2
t } satisfy the vector

representation in Equation (2.5). Assume the process admits finite moments up to order 4.
Then, for each υ ∈ {1, . . . , s}, we have that:

(i) θ̂(υ) converges almost surely to θ(υ).
(ii)
√
N(θ̂(υ) − θ(υ)) converges in distribution to a normally distributed vector
N (0,Σas(υ)), where Σas(υ) = D(υ)Σ̃as(υ)D(υ)>,

D(υ) =


1

γυ−1(1) 0

− µυ−1

γυ−1(1) 1

 ,
Σ̃as(υ) = E

[
η2
t (υ)Zt(υ)Zt(υ)>

]
, and Zt(υ) =

(
X2
t (υ − 2)− µυ−2, 1

)>. More-
over, for υ 6= υ′, the sequence

√
N(θ̂(υ) − θ(υ)) is asymptotically independent of√

N(θ̂(υ′)− θ(υ′)).
Proof See details in Appendix. �
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Since each season is handled separately, it follows that the full parameter vector θ can be
estimated by stacking all season-specific estimators. The next theorem collects these results
to deliver a joint asymptotic distribution.

Theorem 3.2 Suppose {X2
t } admits finite moments up to order 4. Let θ̂ =

(θ̂>(1), . . . , θ̂>(s))>. Then
√
N(θ̂ − θ) D−→ N (0,Σas(θ)), where D−→ denotes convergence

in distribution to, Σas(θ) = D (θ) Σ̃as (θ)D (θ)> , and both D(θ) and Σ̃as(θ) are 2s× 2s
block matrices whose υ-th diagonal block corresponds to D(υ)Σas(υ)D>(υ) from Lemma
3.1.

Proof See details in Appendix. �

In practice, the YW estimators stated in Equation (3.9) can be applied directly or used
as initial values in more complex estimation algorithms such as QML or LS. Additionally,
bootstrap techniques can be incorporated to refine inference about the distribution of these
estimators, often by resampling the residuals of the P-ARCH(1) model. However, for purely
theoretical analysis or initial exploration, the YW approach stands out due to its analytic
simplicity and the explicit form of its asymptotic variance.

It is important to note that, unlike in P-AR processes where YW estimators can achieve
optimal asymptotic efficiency under Gaussian assumptions (Pagano, 1978), the heteroscedas-
tic nature of P-ARCH(1) weakens that property. Nevertheless, the YW method remains a
straightforward and computationally inexpensive option in the periodic ARCH setting.

3.3 Wald test for periodic parameters
To apply Theorem 3.2, consider testing a linear hypothesis on the parameter vector θ. Let

H0: R θ = θ0 versus H1: R θ 6= θ0, (3.10)

where R is a known r × 2s matrix of full row rank r ≤ 2s, and θ0 is a given r × 1 vector.
The corresponding Wald-type statistic is given by

WN (θ̂) = N(Rθ̂ − θ0)>(RΣas(θ)R>)−1(Rθ̂ − θ0), (3.11)

where Σas(θ) is the asymptotic covariance matrix from Theorem 3.2 (assumed nonsingular).
Under H0 in Equation (3.10) and the regularity conditions of Theorem 3.2,

√
N(Rθ̂ −

θ0) D−→ N (0, RΣas(θ)R>), implying (RΣas(θ)R>) is nonsingular. Consequently, by the
Slutsky theorem, WN (θ̂) D−→ χ2

r , and under H1, the statistic diverges with N , ensuring
consistency, where χ2

r is the chi-square distribution with r degrees of freedom.
To show that using θ̂ or θ in Equation (3.11) yields the same limiting distribution, a

one-term Taylor expansion is applied as

WN (θ̂)−WN (θ) =
√
N(θ̂ − θ)> 1√

N

∂

∂θ
WN (θ∗),

where θ∗ lies between θ̂ and θ. Since
√
N(θ̂−θ) D−→ N (0,Σas) and the derivative term goes

to zero in probability under H0, both statistics share the same limit law.
For a given significance level α ∈ (0, 1), the critical value χ2

r,α is obtained from the χ2
r

distribution with upper-tail probability α. Thus, H0 is rejected if WN (θ̂) > χ2
r,α, and is

accepted otherwise. In the scalar case where r = 1, this reduces to a t-type statistic, allowing
for one- or two-sided tests.
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Example 3.3 (Testing periodicity) An important application involves testing for the
presence or absence of periodicity in a given P-ARCH(1) model. For instance, if it
is hypothesized that certain α(υ) are equal across seasons (or equal to a particu-
lar constant α0), a simple linear hypothesis can be set up as H0: α(υ) = α0, υ ∈
{1, . . . , s}, versusH1: not all α(υ) equal to α0. To test this hypothesis, the matrix R and the
vector θ0 are constructed to reflect these equalities. If, for each υ, the data strongly suggest
that α(υ) 6= α0, the Wald statistic will tend to exceed its critical value, leading to rejection
of the null hypothesis and indicating a genuine periodic effect in the model parameters.

4. Numerical illustrations

This section presents a numerical study of the finite-sample properties of the proposed
YW estimators for P-ARCH(1) models, comparing them to LS estimates and illustrating a
bootstrap-based inference procedure.

4.1 Monte Carlo simulation and comparison with least squares

We begin by simulating a P-ARCH(1) process with period s = 2, following the structural
setting of Equation (2.2). Specifically, let {et} be an IID Gaussian sequence with mean zero
and variance σ2 = 1. Then κ2 = E[e4

t ] = 3 and κ4 = E[e8
t ] = 105. We assume {X2

t } has
finite second-order moments, which suffices for deriving the asymptotic distribution of the
YW estimators. To that end, each season υ ∈ {1, 2} is associated with {ω(υ), α(υ)}.

Under periodic stationarity, one can compute:

• µυ, the seasonal mean of X2
t (υ);

• σ2(υ) = Var[X2
t (υ)];

• γυ(1) and γυ(2), the seasonal autocovariances at lags 1 and 2.
For instance, we have

µυ = ω(υ) + α(υ)ω(υ − 1)
1− α(1)α(2)

and

σ2(υ) = 3 βυ + 3α(υ)βυ−1

1− 9α2(1)α2(2) − µ
2
υ,

where βυ = ω2(υ) + 2α(υ)ω(υ − 1)µυ−1. By defining γυ(1) = α(υ)σ2(υ − 1) and γυ(2) =
α(υ)α(υ − 1)σ2(υ), one obtains closed-form expressions for the theoretical autocovariances
of each season.

We generateN ∈ {1000, 2000, 5000} observations for each of 1000 independent replications
and estimate the unknown parameter vector θ using two methods: the YW approach, as
defined in Equation (3.9), and LS estimation. To assess the accuracy of these estimators, we
substitute the estimates into the asymptotic covariance formulas, such as Σas(υ), to obtain
Σ̂as(υ), given by

Σas(υ) = 2
3

(
1 + µ2(υ)

σ2(υ)

)
1

α2(υ − 1) − µυ−1

α2(υ − 1)

− µυ−1

α2(υ − 1)
α2(υ − 1)σ2(υ) + µ2

υ−1
α2(υ − 1)

 .
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The accuracy of each estimator is measured using the root mean square error (RMSE).
Let (θ(υ))i denote the i-th component of θ(υ). The RMSE of the YW estimator is given by

RMSE(YW ) =

√√√√ 1
1000

1000∑
m=1

(
(θ(υ))i − (θ̂(YW )(υ))(m)

i

)2
versus RMSE∗(YW ),

where RMSE∗(YW ) is the mean of (Varas[(θ̂(YW )(υ))i])1/2 computed from the empirical
asymptotic variance estimates over 1000 replications. In short, this assesses how well the
asymptotic variance formulas predict the actual finite-sample variability.

As an illustration of the Wald test, consider a hypothesis of the form H(i)
0 (υ, υ′): (θ(υ))i =

(θ(υ′))i, for 1 ≤ υ, υ′ ≤ s and i ∈ {1, 2}. We form the Wald statistic N((θ̂(YW )(υ))i −
(θ̂(YW )(υ′))i)2(RΣas(θ̂(YW ))R>)−1, and reject H(i)

0 (υ, υ′) if it exceeds the 95-th quantile of
the χ2

1-distribution. An analogous procedure applies to the LS estimates.
To summarize the estimation procedure, we present Algorithm 4.1 which details the steps

for computing residual-based bootstrap replications in the periodic ARCH(1) model under
the YW approach.

Algorithm 4.1: Residual bootstrap for a P-ARCH(1) sample.
Require: Original series {Xt(υ)} of length N = sM ; estimates (ω̂(υ), α̂(υ)) for υ ∈
{1, . . . , s}

Ensure: A bootstrap replicate {X∗t (υ)} of the same size
. Step 1: Compute residuals

1: for υ = 1 to s do
2: for t = 1 to N do
3: h̃2

t (υ)← ω̂(υ) + α̂(υ)X2
t−1(υ)

4: ẽt(υ)← Xt(υ)/h̃t(υ)
5: end for
6: Standardize ẽt(υ) to have mean zero and variance 1, obtaining êt(υ)
7: end for

. Step 2: Resample residuals to form a bootstrap series
8: for υ = 1 to s do
9: for t = 1 to N do

10: Draw e∗t (υ) with replacement from {ê1(υ), . . . , êN (υ)}
11: h∗2t (υ)← ω̂(υ) + α̂(υ)(X∗t−1(υ))2

12: X∗t (υ)← h∗t (υ) · e∗t (υ)
13: end for
14: end for
15: return {X∗t (υ)}, t ∈ {1, . . . , N}, υ ∈ {1, . . . , s}

We compare the bootstrap distributions with asymptotic results, as shown in tables and
figures. Columns labeled YW refer to direct asymptotic inference for the YW estimator,
while bootstrap-YW corresponds to the residual-based bootstrap estimates. Similarly, LS
and bootstrap-LS represent LS estimates and their bootstrap counterparts.

The numerical experiments indicate that the RMSE of the YW estimators generally align
closely with the asymptotic standard deviations when N ≥ 2000, supporting the validity of
the theoretical variance formulas. The bootstrap approach provides interval estimates and
p-values that match the asymptotic theory well, particularly for larger samples.
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While LS estimation often results in slightly lower variance and, consequently, greater
efficiency, the YW method remains an attractive alternative due to its straightforward im-
plementation and sufficiently good performance at moderate sample sizes. Overall, the YW
estimators balance simplicity and accuracy, and the residual-based bootstrap serves as a
valuable tool for improving inference when the sample size is limited.

Table 1 summarizes the simulation results for both YW and LS estimators, along with
their respective bootstrap versions. Each cell reports the mean parameter estimate over
1000 replications and the corresponding RMSE values. The columns under bootstrap-YW
(θ̂(YW )
B ) and bootstrap-LS’ (θ̂(LS)

B ) confirm that the bootstrap-based estimates closely match
the direct YW and LS estimates. Also the empirical RMSE values are very close to those
predicted by the asymptotic covariance. Notably, in this setting, the LS estimators exhibit
smaller RMSEs than their YW counterparts, reflecting slightly higher efficiency.

Table 1. Comparison of YW and LS estimators, including their bootstrap-based versions, with correspond-
ing RMSE values.

N θ θ̂(YW) θ̂
(YW)
B

θ̂(LS) θ̂
(LS)
B

RMSE(YW) RMSE(YW)
B

RMSE(LS) RMSE(LS)
B

1000

0.2280
1.0417
0.6886
1.0923

0.2310
1.0686
0.6999
1.1208

0.2332
1.0272
0.7264
1.0297

0.2358
1.0351
0.7347
1.0350

0.1173
0.2310
0.4013
0.5773

0.1188
0.2385
0.4105
0.6056

0.1088
0.2040
0.2999
0.4076

0.1078
0.2055
0.3033
0.4182

2000 θ=

(
0.25
1.00
0.75
1.00

)
0.2350
1.0286
0.6963
1.0838

0.2380
1.0507
0.7063
1.1073

0.2395
1.0174
0.7250
1.0368

0.2416
1.0262
0.7326
1.0432

0.0990
0.1981
0.3232
0.4635

0.1004
0.2051
0.3309
0.4852

0.0971
0.1859
0.2597
0.3563

0.0970
0.1905
0.2656
0.3730

5000

0.2391
1.0220
0.7120
1.0587

0.2415
1.0367
0.7192
1.0760

0.2443
1.0101
0.7291
1.0315

0.2459
1.0163
0.7334
1.0390

0.0840
0.1702
0.2529
0.3676

0.0859
0.1762
0.2566
0.3804

0.0915
0.1827
0.2098
0.2977

0.0923
0.1863
0.2112
0.3034

1000

0.1390
0.5228
0.9350
1.5528

0.1398
0.5314
0.9431
1.5743

0.1431
0.5116
0.9715
1.5181

0.1441
0.5134
0.9806
1.5215

0.0789
0.1736
0.5233
0.4211

0.0792
0.1760
0.5323
0.4291

0.0556
0.1134
0.4037
0.3046

0.0545
0.1129
0.4029
0.3063

2000 θ=

(
0.15
0.50
1.00
1.50

)
0.1428
0.5151
0.9442
1.5485

0.1436
0.5215
0.9511
1.5649

0.1463
0.5062
0.9717
1.5226

0.1470
0.5080
0.9785
1.5259

0.0640
0.1421
0.4036
0.3230

0.0642
0.1438
0.4100
0.3278

0.0497
0.1038
0.3344
0.2529

0.0493
0.1049
0.3376
0.2596

5000

0.1445
0.5123
0.9624
1.5325

0.1452
0.5163
0.9673
1.5447

0.1479
0.5038
0.9790
1.5178

0.1484
0.5049
0.9818
1.5215

0.0486
0.1087
0.3079
0.2470

0.0489
0.1097
0.3095
0.2503

0.0400
0.0861
0.2621
0.2046

0.0400
0.0866
0.2601
0.2048

1000

0.4414
1.1095
0.4481
1.0999

0.4511
1.1632
0.4593
1.1497

0.4564
1.0736
0.4714
1.0481

0.4647
1.0972
0.4812
1.0678

0.2394
0.4353
0.2489
0.4533

0.2469
0.4718
0.2583
0.4940

0.2189
0.3827
0.2284
0.4008

0.2222
0.4015
0.2356
0.4277

2000 θ=

(
0.50
1.00
0.50
1.00

)
0.4562
1.0824
0.4540
1.0916

0.4651
1.1261
0.4639
1.1325

0.4699
1.0518
0.4715
1.0536

0.4769
1.0740
0.4798
1.0724

0.2063
0.3836
0.2071
0.3782

0.2125
0.4139
0.2159
0.4129

0.2033
0.3669
0.2032
0.3626

0.2077
0.3896
0.2102
0.3898

5000

0.4655
1.0668
0.4655
1.0683

0.4733
1.0987
0.4735
1.1001

0.4818
1.0322
0.4759
1.0464

0.4872
1.0479
0.4811
1.0627

0.2027
0.3830
0.1749
0.3276

0.2119
0.4155
0.1808
0.3531

0.2340
0.4405
0.1770
0.3289

0.2402
0.4626
0.1813
0.3452

Figure 1 displays smoothed histograms of the empirical distribution of
√
N(θ̂n(i)− θ(i))

for the YW estimator (solid line) and its bootstrap version (dashed line) at N = 1000.
A χ2 goodness-of-fit test confirms that both histograms are compatible with normality,
numerically demonstrating the asymptotic validity of the bootstrap for the YW estimator in
this periodic ARCH context. Overall, these results illustrate how the periodic YW approach,
paired with a residual-based bootstrap, can yield reliable inference in finite samples for
simple P-ARCH(1) processes.
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Figure 1. Smoothed histograms of
√
N(θ̂n(i)−θ(i)) for the YW estimator (solid) and its bootstrap version (dashed)

at N = 1000.

4.2 Empirical application

We illustrate the periodic ARCH methodology with an empirical study of monthly log-
returns of Intel Corporation, covering 25 years from January 1973 to December 1997. These
data, originally analyzed by Tsay (2002), consist of 12× 25 = 300 observations. For conve-
nience, we label each month by υ = 1 (January) through υ = 12 (December). Figures 2 and 3
display the time series and monthly boxplots, respectively, revealing apparent differences in
volatility across months and moderate outliers.

From Figure 3, it is evident that the distribution of returns varies across months, sug-
gesting the presence of seasonal (or periodic) volatility. Previous analyses by Tsay (2002)
showed that the series is weakly uncorrelated in levels but exhibits strong dependence in
absolute and squared returns, motivating the use of heteroscedastic models. Our prelimi-
nary checks of periodic sample autocorrelations ρ̂υ(h) confirmed that a single, non-periodic
ARCH(1) process does not adequately capture the apparent month-to-month changes in the
correlation structure. Hence, a periodic ARCH(1) model with a distinct intercept for each
month is warranted.

Let rt(υ) be the log-return in month υ of year t. We consider the P-ARCH(1) specification

rt(υ) = mυ + at(υ),

at(υ) = ht(υ)et(υ), h2
t (υ) = α0(υ) + α1(υ)a2

t−1(υ),
(4.12)

where {et(υ)} are IID random shocks with zero mean and unit variance. For convenience,
we center the data by letting Xt(υ) = rt(υ)− r(υ), where r(υ) = (1/25)

∑24
t=0 rt(υ).
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Figure 2. Monthly log-stock returns of Intel Corporation, January 1973–December 1997.

Figure 3. Boxplots of monthly log-returns of Intel Corporation, by month.

Then, we rewrite Equation (4.12) in the form

Xt(υ) = εt(υ)
√

1 + β(υ)X2
t−1(υ), where β(υ) = α1(υ)

α0(υ) , σ2(υ) = α0(υ). (4.13)

Although the parameters in Equations (4.12) and (4.13) differ slightly (due to the intercept
and centering), they are straightforwardly related: β(υ) = α1(υ)/α0(υ) and σ2(υ) = α0(υ).

Applying the YW procedure to each month yields estimates β̂(υ) and corresponding
standard errors (SEs). Table 2 reports the results for the 12 months (υ ∈ {1, . . . , 12}).
Observe that some estimated coefficients are quite large (for example, β̂(9) ≈ 4.475 and
β̂(10) ≈ 15.555), suggesting stronger ARCH effects in certain months. This pattern high-
lights the importance of modeling the data with distinct month-specific parameters rather
than imposing a single global intercept and slope for all months.
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Table 2. YW estimates of β(υ) for Intel monthly log-returns, with SEs in parentheses.
υ 1 2 3 4 5 6 7 8 9 10 11 12

β̂(υ) 0.520 0.006 0.149 0.419 0.499 2.029 1.403 0.458 4.475 15.555 0.101 0.697
SE[β̂(υ)] 0.001 0.001 0.003 0.003 0.002 0.008 0.006 0.001 0.011 0.291 0.005 0.002

Although the P-ARCH(1) model stated in Equation (4.12) (or its reparametrization in
Equation (4.13)) entails multiple parameters, it yields promising out-of-sample forecasting
results for the Intel returns. Figure 4 contrasts the observed log-returns (solid line) with the
fitted values (dotted line), demonstrating the model’s ability to track the month-to-month
volatility changes. Additionally, multi-step-ahead forecasts confirm that the model captures
the evolving seasonal volatility pattern.

Table 3 illustrates representative root mean square forecast errors (RMSEυ(h)) at various
horizons h, showing how the P-ARCH(1) model accommodates the heteroscedastic behavior
from month to month. The relatively small forecast errors and their variation across months
highlight the importance of modeling season-specific parameters in capturing the cyclical
nature of volatility.

Figure 4. Comparison of observed (solid line) and fitted (dotted line) monthly returns by month for the Intel
dataset.

It is noteworthy in Figure 4 that the fitted series tracks the main fluctuations in the data
reasonably well, indicating a good model fit. Accordingly, the multi-step forecast errors in
Table 3 show no major deterioration across horizons, underscoring the model capability to
adapt monthly parameters for evolving volatility patterns.
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Table 3. Root mean square forecast errors, RMSEυ(h), for the h-step-ahead predictions from the fitted
P-ARCH(1) model. Each row corresponds to a month υ ∈ {1, . . . , 12} and columns index the forecasting
horizon h.

υ\h 1 2 3 4 5 6 7 8 9 10

1 0.1220 0.1274 0.1244 0.1152 0.0616 0.1248 0.1368 0.1313 0.0899 0.1498
2 0.1346 0.1309 0.1218 0.1330 0.1330 0.1132 0.0889 0.0912 0.0563 0.0565
3 0.0845 0.1103 0.1088 0.0824 0.0903 0.0911 0.1330 0.0872 0.1504 0.0940
4 0.2259 0.2170 0.2212 0.2542 0.2284 0.2485 0.1747 0.1471 0.2318 0.2067
5 0.1217 0.1207 0.1258 0.1180 0.1128 0.1378 0.1365 0.1574 0.1284 0.1513
6 0.1279 0.1154 0.2033 0.1380 0.1525 0.1619 0.1740 0.1632 0.1934 0.2229
7 0.1034 0.0993 0.0915 0.0907 0.0879 0.1084 0.1030 0.0943 0.0976 0.0940
8 0.1036 0.0992 0.0978 0.1205 0.1259 0.0835 0.1181 0.0655 0.1010 0.1677
9 0.1382 0.1349 0.1296 0.1322 0.0981 0.1082 0.1327 0.1416 0.2286 0.1259
10 0.1133 0.1157 0.1154 0.1152 0.1171 0.0736 0.1142 0.1463 0.1322 0.2933
11 0.2202 0.2078 0.2064 0.1933 0.1887 0.2021 0.1911 0.2186 0.2046 0.2545
12 0.1445 0.1401 0.2498 0.2275 0.1985 0.2080 0.1021 0.1161 0.1154 0.4007

5. Conclusions

This article has focused on the theoretical and asymptotic properties of first- and second-
order moments for a P-ARCH(1) model, as well as the asymptotic behavior of its parameter
estimators. Specifically, we established conditions for periodic stationarity, derived moment-
based Yule-Walker estimators, and examined their consistency and asymptotic normality.
In addition, the theoretical developments allowed us to construct a Wald-type test for eval-
uating linear restrictions and periodic hypotheses on the model coefficients.

Through Monte Carlo simulations and an empirical illustration, we highlighted the bene-
fits of explicitly modeling season-specific volatility in financial data, emphasizing how strong
seasonal or cyclical patterns motivate a periodic framework. The results reinforce the prac-
tical utility of P-ARCH(1) models, demonstrating their ability to capture recurring shifts
in volatility that may be overlooked by models with time-invariant parameters.

Despite its usefulness, the P-ARCH(1) model (and more generally the P-ARCH frame-
work) has certain limitations as follows:

• In real-world applications, identifying the appropriate period s or higher orders (p, q)
can be non-trivial, especially if the seasonal cycle is not clear or if there are multiple
overlapping periodicities.

• As s increases or the order p, q becomes larger, the number of parameters can grow,
potentially causing estimation challenges (for example, higher variance of estimators, risk
of overfitting).

• Our derivations assume that {et} has finite moments of sufficient order. Financial returns
often exhibit heavy tails and potential outliers, so robust or heavy-tailed extensions could
be necessary in practice.

• We assumed that the periodic structure and period length are exogenously known or
well-defined (for example, monthly patterns). In some datasets, the seasonal or cyclical
component may shift or evolve over time, requiring adaptations (such as time-varying
periodicity).
Our Yule-Walker approach for P-ARCH(1) models can be extended to address several

interesting directions: While we concentrated on the simplest specification with one ARCH
term per season, the same moment-based estimation can be adapted to more general P-
ARCH(p, q) models or to mixed ARMA–P-ARCH frameworks. These generalizations allow
for more complex volatility dynamics and autocorrelation structures in the returns; Many
financial and economic time series exhibit long-memory and structural changes that may
not be fully captured by purely periodic models. Incorporating long-range dependence, or
including break tests within the periodic GARCH-type structure, could enhance model
flexibility; Leverage effects are common in equity markets, where negative shocks increase
volatility more than positive shocks.
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Extending P-ARCH to include such asymmetry (for example, using periodic threshold
GARCH or EGARCH) could improve accuracy. Given that financial returns often deviate
from normality, exploring robust estimation or heavy-tailed error distributions (such as
Student-t) within a periodic framework is a promising direction of investigation. Also, in
many applications, it is observed that multiple correlated assets subject to simultaneous
seasonal patterns (such as, day-of-week or month-of-year effects). Generalizing the current
univariate approach to a vector-valued P-ARCH (or P-CCC-GARCH) model would open a
range of possibilities for portfolio risk assessment and co-movements analysis.

Overall, our results underscore the importance of explicitly addressing seasonality or peri-
odicity in volatility modeling. The P-ARCH(1) approach, supplemented by a moment-based
Yule-Walker estimation strategy, offers a flexible and computationally accessible way to in-
corporate cyclical behaviors. Future research extending and refining these models —espe-
cially in the presence of structural breaks, asymmetric effects, or long-memory— will further
enhance the ability to capture realistic patterns in time-varying volatility.

Additionally, an area for further research is to explore the PARCH models for describing
some reliability patterns; see Leiva et al. (2024) for an exhaustive bibliography related to
cumulative damage models for reliability analysis.

Appendix: Proofs of technical results

Proof [Theorem 2.1] It is established by induction, relying on the recursive formulation of
X2
t in Equation (2.4). The argument proceeds by analyzing the structure of the squared

process at order m and demonstrating that the desired properties hold under the given
assumptions. In particular, the recursion follows the form stated as

X2⊗m
t = Φ(m)X2⊗m

t−1 +
m−1∑
i=0

Φ(m)
i (ηt)X2⊗i

t−1 , m ≥ 1,

where each Φ(m)
i (ηt) is defined recursively by

Φ(m)
i (ηt) =


ω̃ + η̃t, m = 1, i = 0;

Φ, m = 1, i = 1;

(ω̃ + η̃t)⊗ Φ(m−1)
i (ηt) + Φ⊗ Φ(m−1)

i−1 (ηt), m > 1;

with the convention Φ(m)
i (ηt) = 0 whenever i > m or i = 0, and X2⊗0

t = 1(s). A careful
analysis of these expansions shows that all required moments and spectral radius conditions
align exactly as stated in Theorem 3.2, completing the induction argument. �

Proof [Proposition 2.2]
The proof follows from the vector representation (θ̂(υ) − θ(υ)), for 1 ≤ υ ≤ s and the

results in Lemma 3.1, which establish season-specific strong consistency and asymptotic
normality for each υ. By stacking these seasonal estimates into a single vector and applying
standard block-diagonal covariance arguments, the desired result is obtained. �

Proof [Proposition 2.3]
Let {eυ, υ ∈ {1, . . . , s}} be the canonical basis of Rs. Then, item (i) follows upon the

observation that, for each υ ∈ {1, . . . , s}, we have X2
t (υ) = e>υX

2
t . Since {X2

t , t ∈ Z} is a
strictly stationary and ergodic process in Rs, the almost sure convergence of the empirical
mean follows directly.
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For item (ii), we observe that

lim
N→+∞

N Cov[µ̂υ, µ̂υ′ ] = lim
N→+∞

∑
|h|<N

(
1− |h|N

)
e>υ Cov[X2

t ,X
2
t−h]eυ′ .

Item (iii) follows by dominated convergence and Theorem 2.1, whereas the covariance
limit follows as stated in the proposition.

For item (iv), we show that
√
N (µ̂− µ) converges to a normal distribution with mean

zero and covariance Vas. Define, for any integer m > 1,

Ut =
m∑
k=0

Φk (η̃t−k + ω̃) , Wt =
+∞∑

k=m+1
Φk (η̃t−k + ω̃) .

From the above decomposition, we get X2
t = Ut +Wt. Let

Q̂ = 1√
N

N−1∑
t=0

(Ut − E[Ut]) , V̂ = 1√
N

N−1∑
t=0

(Wt − E[Wt]) .

Then, we have
√
N (µ̂− µ) = Q̂ + V̂ . Because Ut is an (m + 1)-dependent stationary

sequence, Q̂ admits a traditional central limit theorem; see Theorem 6.4.2 in Brockwell and
Davis (1996). Meanwhile, by the Chebyshev inequality, it can be shown that V̂ converges
to 0 in probability uniformly in N as m→ +∞. Consequently, Q̂ and

√
N(µ̂−µ) share the

same limiting distribution. Letting m → +∞, it follows that Q̂ converges in distribution
to N (0,Vas), where Vas =

∑
h∈ZCov[X2

t ,X
2
t−h], and ‖Vas‖ < +∞. Analogous arguments

apply for the empirical covariance function {γ̂υ(h)}, using essentially the same (m + 1)-
dependent approximation and ergodicity. �

Proof [Lemma 3.1] Consider the vector γ̂(h), defined for each integer h ≥ 0, as

γ̂(h) = 1
N

N−1∑
t=0

X2
t ⊗X2

t (h)− µ̂⊗ µ̂(h), (5.14)

where µ̂(h) = (1/N)
∑N−1
t=0 X

2
t (h) andX2

t (h) is the lag-h shift
(
X2
t (1− h), . . . , X2

t (s− h)
)>.

By ergodicity, the first term in Equation (5.14) converges almost surely to E[X2
t ⊗X2

t (h)],
while the second term converges almost surely to µ⊗µ(h). This verifies parts (i), (ii), and
(iii) of Lemma 3.1. Notice that µ⊗µ(h) = −γ(h)+E

[
X2
t ⊗X2

t (h)
]
. Hence, the asymptotic

distribution of
√
N (γ̂(h)− γ(h)) coincides with that of

1√
N

N−1∑
t=0

(
X2
t ⊗X2

t (h)− E
[
X2
t ⊗X2

t (h)
])
. (5.15)

One can rewrite X2
t via the decomposition given above distinguishing between the finite-

sum part {Ut} and the tail part {Wt}. A straightforward computation shows that the
asymptotic distribution of Equation (5.15) is the same as that of

1√
N

N−1∑
t=0

(Ut ⊗Ut(h)− E [Ut ⊗Ut(h)]) ,

as m→ +∞, where Ut(h) denotes the h-lag shift applied to Ut.
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To see the limiting behavior, fix any s× 1 vector λ and define

Yt(h) = λ> (Ut ⊗Ut(h)− E[Ut ⊗Ut(h)]) .

Then, {Yt(h)} is a stationary (m+ 1)-dependent process with finite variance. Thus, we get

1√
N

N−1∑
t=0

Yt(h) D−→ N
(
0,λ>W (h)λ

)
,

where W (h) =
∑m
k=−mWh(k) and Wh(k) = Cov[Ut⊗Ut(h),Ut−k⊗Ut−k(h)]. As m→ +∞,

W (h) converges to

Was(h, h) =
∑
k∈Z

Cov[X2
t ⊗X2

t (h),X2
t−k ⊗X2

t−k(h)],

so establishing a limiting Gaussian distribution for every linear functional of
√
N(γ̂(h) −

γ(h)). By the Cramér–Wold device, this vector converges in distribution to N (0,Was(h, h)).
�

Proof [Theorem 3.2]
The proof begins by noting that {X2

t } is an ergodic and strictly stationary process in the
periodic sense. As a result, the strong consistency of the YW estimators follows directly from
standard arguments on ergodic averages. Specifically, µ̂υ → µυ almost surely, and γ̂υ → γυ
almost surely, ensuring the consistency of both α̂(υ) and ω̂(υ).

To derive the asymptotic normality, first define θ̃(υ) = (α̂(υ), ω̃(υ))>, where ω̃(υ) =
µ̂υ − α(υ)µ̂υ−1. From Equation (2.8), we see that

√
N (ω̃(υ)− ω(υ)) =

√
N (µ̂υ − µυ − α(υ) (µ̂υ−1 − µυ−1)) .

Meanwhile, using

µ̂υ − µυ = 1
N

N−1∑
t=0

(
X2
t (υ)− µυ

)
= α(υ) (µ̂υ−1 − µυ−1) + 1

N

N−1∑
t=0

ηt(υ),

it follows that

√
N (ω̃(υ)− ω(υ)) = 1√

N

N−1∑
t=0

ηt(υ).

Similarly,

√
N (α̂(υ)− α(υ)) =

γ̂−1
υ−1(1)√
N

N−1∑
t=0

X2
t (υ − 2)

(
ηt(υ)− 1

N

N−1∑
t=0

ηt(υ)
)

=
γ̂−1
υ−1(1)√
N

N−1∑
t=0

ηt(υ)
(
X2
t (υ − 2)− µ̂υ−2

)
.

Defining Zt(υ) =
(
X2
t (υ − 2)− µυ−2, 1

)> and applying the Cramér–Wold device, we reduce
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the problem to showing that

1√
N

N−1∑
t=0

ηt(υ)λ>Zt(υ) D−→ N
(
0, λ>Σ̃as(υ)λ

)
,

where Σ̃as(υ) = E
[
η2
t (υ)Zt(υ)Zt(υ)>

]
. Note that {ηt(υ)λ>Zt(υ)} is a martingale difference

sequence with constant variance λ>Σ̃as(υ)λ. A standard martingale central limit theorem
(Davidson, 1994) completes this part of the argument.

We observe that ω̂(υ) − ω̃(υ) = −µ̂υ−1 (α̂(υ)− α(υ)) . Thus, by the Slutsky theorem,
multiplying out block terms shows that

√
N
(
θ̂(υ)− θ(υ)

)
= D̂(υ)

√
N
(
θ̃(υ)− θ(υ)

)
D−→ N

(
0,D(υ)Σ̃as(υ)D(υ)>

)
,

where

D̂(υ) =

 1
γ̂υ−1(1)

µυ−2−µ̂υ−2
γ̂υ−1(1)

− µ̂υ−1
γ̂υ−1(1) 1 + (µυ−2−µ̂υ−2)µ̂υ−1

γ̂υ−1(1)

 .

In the limit as N → +∞, D̂(υ) P−→D(υ), where P−→ denotes convergence in probability to.
�
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