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Abstract

This article introduces a measure-theoretic definition of the likelihood function via
Radon-Nikodym (RN) derivatives and establishes a new likelihood proportionality theo-
rem showing that likelihoods obtained from any pair of dominating measures differ only
by a parameter-free factor. This result validates the RN-based definition in light of the
likelihood principle, particularly in settings where a single canonical dominating measure
does not exist or multiple choices are natural—such as certain infinite-dimensional or
missing-data problems. The role of continuous versions of RN derivatives is highlighted,
demonstrating how continuity both ensures well-behaved, often unique likelihoods and
aligns with Fisher’s original intuition. The prior predictive measure is also examined
as an alternative dominating measure in Bayesian contexts, while exponential families
are shown to retain their defining exponential structure under any dominating measure.
Collectively, these findings unify and refine fundamental measure-theoretic questions
about likelihood, offering a rigorous framework for likelihood-based inference across a
variety of statistical models.
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1. Introduction

The concept of likelihood, introduced by Fisher (1921), predates the Kolmogorov (1933)
formal axiomatization of probability and the Radon-Nikodym (RN) Theorem (Nikodym,
1930). Likelihood, in statistical inference, represents a function that quantifies the plausibil-
ity of a parameter value given observed data. Specifically, for a probability model (X ,F , Pθ),
where X is the sample space, F the σ-algebra of events, and Pθ a family of probability mea-
sures indexed by a parameter θ ∈ Θ, the likelihood function is traditionally expressed as
L(θ;x) = Pθ(x). In measure-theoretic terms, this corresponds to defining the likelihood
function as the derivative of Pθ with respect to a σ-finite dominating measure, formalized in
Lindley (1953), with earlier implicit formulations appearing in Halmos and Savage (1949).
Fisher’s intuitive definition laid the groundwork for this formalization.
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The existence of multiple possible dominating measures introduces a fundamental issue:
whether the choice of dominating measure affects inferential conclusions. According to the
likelihood principle (LP), likelihood functions derived from distinct dominating measures
should be proportional, in θ, almost surely. While this idea is widely recognized, systematic
proofs and explicit discussions remain limited, particularly in infinite-dimensional settings.
As Reid (2013) noted, the likelihood function is often described as the RN derivative of a
probability measure with respect to a dominating measure. In some cases, the dominating
measure is chosen as Pθ0 for a fixed θ0 ∈ Θ. However, for infinite-dimensional parameter
or probability spaces, selecting a suitable dominating measure poses significant challenges.
Further studies on the mathematical properties of likelihood can be found in works such as
Barndorff-Nielsen et al. (1976), Fraser and Naderi (1996), Fraser et al. (1997), Fraser and
Naderi (2007), San Mart́ın and González (2010), and Ruggeri (2010).

Building on this foundation, the present article addresses the proportionality of likeli-
hood functions derived from different dominating measures and establishes a likelihood
proportionality theorem. This theorem demonstrates that any two dominating measures
yield likelihood functions differing only by a factor independent of the parameter, thereby
aligning with the LP. In this article, the continuity of RN derivatives is explored as well, as
continuous versions ensure well-behaved likelihood functions and reinforce Fisher’s original
intuition.

Beyond the proportionality theorem, this article extends to Bayesian settings, where prior
predictive measures are considered as dominating measures. The analysis also highlights
why exponential families retain their canonical form regardless of the chosen dominating
measure. While traditional approaches predominantly focus on finite-dimensional models,
we broaden the scope to include infinite-dimensional and non-parametric frameworks, which
are increasingly relevant in modern Bayesian analysis. Specific examples in this context
include missing data problems, Poisson processes (PP), mixtures of discrete and continuous
components, as well as partially infinite-dimensional models, such as diffusions.

The structure of this article is as follows. Section 2 introduces the likelihood proportional-
ity theorem, along with auxiliary results, and examines the role of continuous RN derivatives.
In Section 3, we discuss prior predictive measures as those which are dominating in Bayesian
models and the invariance of exponential families. In Section 4, some examples are provided
to illustrate the challenges posed by the choice of dominating measure. Section 5 presents
numerical experiments with simulated and real data. Conclusions are stated in Section 6,
while Appendices A and B include results and proofs of the main theorems.

2. The likelihood function and Radon-Nikodym derivatives

This section provides the key theoretical results of the article, namely the likelihood pro-
portionality theorem and a result on how continuous versions of RN derivatives help ensure
well-defined likelihood functions.

2.1. The likelihood proportionality theorem

Let (Ω,F) be a measurable space, (Ω,F , µ) a measure space and M(Ω,F) denote the
collection of all measurable functions f : Ω→ R.
Definition 2.1 A statistical model is a family of probability measures P on (Ω,F), namely
P = {Pθ: θ ∈ Θ}, where each Pθ is a probability measure and Θ is an arbitrary index set. In
the special case where Θ ⊂ Rd for some fixed d ∈ N, we say that P is a parametric model,
with θ called a parameter and Θ the parameter space. Otherwise, we call P non-parametric.
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A statistical model is called identifiable if the mapping θ 7→ Pθ is injective. For more
details, see Lehmann (1986, Sec. 1.3) and Shao (2003, Ch. 5). In a typical inference prob-
lem, we wish to estimate or characterize a measure Pθ∗ ∈ P (the true or data-generating
distribution) from observations drawn according to Pθ∗ . The likelihood function quantifies
how plausible each Pθ is, given the observed data. In measure-theoretic terms, we adopt the
following definition.

Definition 2.2 Let P = {Pθ: θ ∈ Θ} be a statistical model on (Ω,F), and let ν be any σ-
finite measure that dominates P (meaning P � ν). For an observed point ω ∈ Ω, define the
likelihood function associated with ν by lν(θ;ω) = dPθ/dν(ω), for θ ∈ Θ, where dPθ/dν is
any chosen version of the RN derivative of Pθ with respect to ν. Different versions differ only
on a set of ν-measure zero, so they yield the same likelihood values ν-almost everywhere;
see, for example, Shao (2003, Sec. 2.2) for a measure-theoretic treatment.

As discussed, Fisher’s motivation for constructing the likelihood function via RN deriva-
tives is quite natural. However, a justification of this definition comes from the LP (Berger
and Wolpert, 1988), which states that two likelihood functions containing the same infor-
mation about Pθ must differ only by a factor free of θ. The LP can be specialized in various
ways: for instance, to different data points ω1 and ω2, yielding l(θ;ω1) ∝θ l(θ;ω2), meaning
that these expressions differ by a factor independent of θ. The LP can also be applied to
different experiments, where distinct measurable functions f ∈M(Ω,F) are observed.

In this work, however, we focus on the version of the LP that deals specifically with distinct
dominating measures. Specifically, let ν1 and ν2 be two σ-finite measures dominating the
same family {Pθ: θ ∈ Θ}. Denote the corresponding likelihoods by `ν1(θ;ω) and `ν2(θ;ω), or
briefly l1(θ;ω) and l2(θ;ω). Then, under the LP, if l1(θ;ω) = h(ω)l2(θ;ω), for some function
h that does not depend on θ, l1 and l2 yield the same inferences about θ –for instance, they
have the same maximum-likelihood (ML) estimator–. Thus, we say l1 and l2 are proportional
in θ.

Definition 2.2 is therefore validated if any choice of a σ-finite dominating measure ν yields
likelihoods that are almost surely proportional in θ. Next, we introduce the notion of a
minimal dominating measure.

Definition 2.3 For a family of probability measures P = {Pθ: θ ∈ Θ}, suppose there exists
at least one σ-finite measure ν such that P � ν. Define Υ = {ν ′ is a σ-finite measure: P �
ν ′}). If there is a measure λ ∈ Υ such that λ � ν ′ for all ν ′ ∈ Υ, we call λ a minimal
dominating measure for the family P . (In general, such a λ need not be unique, but any
two minimal dominating measures are equivalent to each other.)

Proposition 2.4 Let P = {Pθ: θ ∈ Θ} be a family of probability measures on (Ω,F),
and assume that there is at least one σ-finite measure ν with P � ν. Then, there exists a
minimal dominating measure for P .

We now state a key lemma from Halmos and Savage (1949); see also Jorgensen and
Labouriau (2012, p. 53).

Lemma 2.5 Let P = {Pθ: θ ∈ Θ} be a family of probability measures on (Ω,F), and let ν be
a σ-finite measure such that P � ν. Then, there exists a probability measure Q, dominated
by ν, such that P � Q. Specifically, Q =

∑+∞
i=1 ciPθi , where the ci are nonnegative constants

with
∑+∞
i=1 ci = 1, and each Pθi ∈ P .

Lemma 2.5 provides a powerful result for families of probability measures dominated by a
single σ-finite measure, showing that a single probability measure Q can be constructed so
that its support simultaneously covers all Pθ. This countable mixture device is crucial to the
proof of our main theorem below, because it ensures that Pθi-almost sure implies Pθ-almost
sure for any θ ∈ Θ.
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For any measurable function f on M(Ω,F), we denote by [f ]µ its equivalence class under
µ-almost everywhere equality, that is, the set of all g with g = f µ-almost sure.
Theorem 2.6 Let P = {Pθ: θ ∈ Θ} be a family of probability measures on (Ω,F), and
let ν1 and ν2 be two σ-finite measures such that P � ν1 and P � ν2. Then, there is
a measurable set A ⊂ Ω with Pθ(A) = 1 for all θ ∈ Θ, and there exist versions f1,θ ∈(
dPθ/dν1

)
ν

and f2,θ ∈
(
dPθ/dν2

)
ν
, for all θ ∈ Θ, together with a measurable function h,

such that

f1,θ(ω) = h(ω)f2,θ(ω), ∀θ ∈ Θ,∀ω ∈ A. (2.1)

Note that Equation (2.1) implies that f1,θ(ω) and f2,θ(ω) differ by a factor h(ω) that
does not depend on θ. Equivalently, we have that f1,θ(ω) ∝θ f2,θ(ω), for ω ∈ A. Thus,
Definition 2.2 (likelihood in terms of RN derivatives) is validated under the LP. In practical
terms, any two dominating measures lead to likelihood functions that coincide up to a
multiplicative factor free of θ so giving the same inference. Since A is a set of probability
one under every Pθ ∈ P , this covers all θ, including the true parameter θ∗.

It is important to observe that Theorem 2.6 guarantees only that some versions of the RN
derivatives (for each dominating measure) satisfy Equation (2.1). Other versions might fail
to do so. This points to the importance of establishing nice or canonical versions of these
densities—such as continuous versions—so that proportionality holds on the entire relevant
subset of Ω. We examine this issue further in Subection 2.2.

In special cases, the sets of versions
(
dPθ/dν1

)
ν

and
(
dPθ/dν2

)
ν

each contain exactly one
element (that is, they are singletons), thereby making Equation (2.1) hold automatically.
For instance, if P is a family of purely discrete distributions with a common (or at least
majorizing) counting measure ν, then the ratios dPθ/dν are unique up to sets of ν-measure
zero. Another simpler example is when the family P itself is countable (that is, Θ is countable
and each Pθ is a distinct measure). Under certain additional conditions –like sharing a
common support– any two versions of dPθ/dν1 and dPθ/dν2 must differ by a factor not
depending on θ; see Proposition 2.7 for a detailed statement.

Note that the framework of Theorem 2.6 (and the version of the LP it implies) concen-
trates on the situation in which two likelihoods arise from the same model P on the same
sample space Ω. Thus, they yield the same estimators (such as ML) and the same associated
inference procedures whenever these depend only on the relative values of the likelihood in
θ. This includes essentially all frequentist estimators that can be defined purely in terms of
the likelihood function.
Proposition 2.7 Suppose that Θ is countable and, in addition, that the measures {Pθ: θ ∈
Θ} share a common support in the sense that there exists a set S ⊂ Ω with ν(Sc) = 0 for
some dominating measure ν. Then, any pair of versions {f1,θ, f2,θ} of dPθ/dν1 and dPθ/dν2
respectively, satisfies the proportionality relation of Equation (2.1) on a set of full ν-measure.

Next, we relate Theorem 2.6 to the factorization theorem.
Proposition 2.8 Consider the setting of Theorem 2.6, so that P , ν1, ν2, and a minimal
dominating measure ν are given, and let Q be the measure from Lemma 2.5. Let T be a
sufficient statistic for P with range space (T ,B). Then, we have that:

(i) For each version g∗θ ∈
(
dPθ/dQ

)
ν

on (Ω, σ(T )) and h1 ∈ (dQ/dν1)ν on (Ω,F), there
exists a B-measurable function gθ such that g∗θ = gθ ◦ T and f1,θ = (gθ ◦ T )h1 is a
version in

(
dPθ/dν1

)
ν

for all θ ∈ Θ.
(ii) If f1,θ and f2,θ are constructed as in (i) for ν1 and ν2, respectively, from the same

g∗θ ∈
(
dPθ/dQ

)
ν
, then there is a measurable set A ⊂ Ω with ν(Ac) = 0 on which

f1,θ(ω) ∝θ f2,θ(ω), for all ω ∈ A and θ ∈ Θ.
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Part (i) of Proposition 2.8 may be viewed as a strong form of the factorization theorem,
since it asserts the density representation dPθ/dν1 is valid jointly for all θ ∈ Θ on the entire
space Ω (up to a set of measure zero). From this perspective, the usual statement of the
factorization theorem follows, because any two versions of dPθ/dν1 that differ only on a
ν1-null set also differ on a ν-null set.

Note that Theorem 2.6 does not require Ω to be a separable or even metric space; it remains
valid in general measure-theoretic contexts, as long as the family P can be dominated
by the σ-finite measures ν1, ν2. The regularity conditions needed concern σ-finiteness and
domination, rather than separability or metrizability of Ω.

2.2. Continuous versions of Radon-Nikodym derivatives

Earlier sections indicated that different versions of the RN derivative may fail to satisfy
the proportionality condition stated in Equation (2.1) unless chosen with care. In practice,
it is often desirable to obtain versions that automatically fulfill this proportionality across
different dominating measures. This subsection explains why continuous RN derivatives are
especially advantageous for ensuring such consistency, and in certain cases, they are even
unique up to sets of measure zero.

A particularly valuable class of versions arises when the RN derivatives are continuous
functions of ω ∈ Ω. As we will see, these continuous versions, when they exist, yield likelihood
functions that differ only by a factor not depending on θ. Two results (Theorem 2.12 and
Proposition 2.14) demonstrate this proportionality in various scenarios.

Historically, Piccioni (1982, 1983) proposed defining the likelihood specifically as a con-
tinuous version of the RN derivative, showing that under mild conditions it is unique. The
author linked continuity to a limiting procedure reflecting Fisher’s intuitive notion of like-
lihood. Likewise, Berger and Wolpert (1988) argued for (ν-almost everywhere) continuous
densities to replicate the simplicity of the discrete setting in developing conditionality, suf-
ficiency, and LPs. Moreover, continuity in θ of the likelihood function (which often follows
from continuity in ω) is typically assumed in the classical regularity conditions for ML
estimation.

Throughout this subsection, we assume that Ω is a separable metric space with distance
d, and let F be the Borel σ-algebra induced by the corresponding topology A. Intuitively,
continuity in ω supports a more direct notion of likelihood. In purely discrete models, the
likelihood is simply the probability assigned to the observed sample point ω0. In continuous
models, that idea can be approximated by shrinking neighborhoods around ω0. Concretely,
one fixes a sequence of nested sets A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ . . . within the collection of open
neighborhoods A(ω0) of ω0, and then considers the limit

lim
n→+∞

Pθ(An)
ν(An) . (2.2)

Piccioni (1982) showed that this limit is finite for every such chain {An} if and only if there
is a version of dPθ/dν that is continuous in ω. In that situation, the value of this continuous
version at ω0 coincides with the limit stated in Equation (2.2).

Continuity of the densities in ω almost guarantees that they satisfy the proportionality
relation presented in Equation (2.1) when two different dominating measures ν1 and ν2 are
used. In Theorem 2.12 and Proposition 2.14 below, we formalize this statement under certain
assumptions. To do so, we need a few definitions that apply in general measure-theoretic
contexts (not necessarily metric).
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Definition 2.9 Let (Ω,F , µ) be a measure space, and let A ∈ F be a measurable set with
µ(A) ≥ 0. We denote by µ

∣∣
A

the restriction of µ to the measurable space (A,F(A)), that
is, for every B ∈ F(A), µ

∣∣
A

(B) = µ(B).
We now present a lemma guaranteeing that, if two σ-finite measures both dominate P , it

is possible to find a subset of Ω on which these measures become equivalent.
Lemma 2.10 Let P = {Pθ: θ ∈ Θ} be a family of probability measures on (Ω,F), and let
ν1 and ν2 be two σ-finite measures such that P � ν1 and P � ν2. Suppose Θ is nonempty.
Then, there exists a measurable set A ⊆ Ω such that

(i) Pθ(A) = 1 for all θ ∈ Θ,
(ii) ν1

∣∣
A

and ν2
∣∣
A

are equivalent measures, that is ν1
∣∣
A
� ν2

∣∣
A

and ν2
∣∣
A
� ν1

∣∣
A

.
The construction of such a set A typically uses a countable mixture argument similar to

Lemma 2.5, ensuring that all Pθ place full probability on A, and that within A, the measures
ν1 and ν2 do not vanish in disjoint ways. In the following subsections, we restrict our focus
to this set A —thereby making ν1|A and ν2|A equivalent– and then prove that continuous
densities with respect to each measure remain proportional.
Definition 2.11 Consider a family of probability measures P = {Pθ: θ ∈ Θ} on (Ω,F),
where Θ is nonempty, and let ν1 and ν2 be two σ-finite measures with P � ν1 and P � ν2.
We call a pair (A, ν) a dominating pair for the triple (P , ν1, ν2) if the following conditions
hold:

(i) A ∈ F satisfies ν(A) = 1, where ν =
∑+∞
i=1 ciPθi is a minimal dominating measure

of P (see Proposition 2.4),
(ii) On the restricted measurable space (A,F(A)), the three measures ν1

∣∣
A
, ν2
∣∣
A
, and ν

∣∣
A

are all mutually equivalent (that is, each one is absolutely continuous with respect
to each of the others).

By Proposition 2.4 and Lemma 2.10, such a dominating pair (A, ν) always exists whenever
P � ν1 and P � ν2. Its importance lies in forcing a common footing on the set A, where
ν1, ν2, and ν share the same support and are mutually absolutely continuous. This is crucial
in establishing the proportionality of continuous versions of RN densities.
Theorem 2.12 Let (A, ν) be a dominating pair for (P , ν1, ν2). Suppose there exist con-
tinuous (in ω) RN derivatives f1,θ ∈

(
dPθ|A/dν1|A

)
ν|A

and f2,θ ∈
(
dPθ|A/dν2|A

)
ν|A

for all
θ ∈ Θ. Then, for any h ∈

(
d(ν2|A)/d(ν1|A)

)
ν|A
, there is a measurable set Bh ⊆ A such that

Pθ(Bh) = 1 for all θ ∈ Θ, the function h is continuous on Bh, and f1,θ(ω) = h(ω)f2,θ(ω) for
all θ ∈ Θ and ω ∈ Bh.

Theorem 2.12 shows that once we restrict to the common support A (where the three mea-
sures ν1, ν2, and ν agree up to sets of measure zero), continuous RN derivatives {f1,θ} and
{f2,θ} for any two dominating measures necessarily differ by a multiplicative factor h(ω) not
depending on θ. In short, continuous versions automatically satisfy the main proportionality
requirement from Theorem 2.6.

Furthermore, if the measures ν1 and ν2 are locally finite in the sense of Appendix A
(which also implies they are σ-finite), then such continuous versions, if they exist, are often
unique (see Theorem 6.8 in Appendix A). In many classical models, it is straightforward
to produce these continuous versions –for example, when Ω ⊂ Rd and the densities are
continuous functions of ω ∈ Ω.

Let Sν be the support of a measure ν on (Ω,F); see Definition 6.3 in Appendix A.
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Corollary 2.13 Suppose that ν1 and ν2 are LF measures on (Ω,F) and that Sν1 = Ω.
Assume further that there exist continuous versions of the RN derivatives f1,θ ∈

(
dPθ/dν1

)
ν

and f2,θ ∈
(
dPθ/dν2

)
ν

for all θ ∈ Θ, where ν is a minimal dominating measure for P .
Suppose also that f1,θ(ω) > 0 and f2,θ(ω) > 0 for all ω ∈ Ω and θ ∈ Θ. Then, we get
f1,θ(ω) ∝θ f2,θ(ω), ∀ω ∈ Ω,∀θ ∈ Θ.

Proposition 2.14 Let P = {Pθ: θ ∈ Θ} be a family of probability measures and ν1 and ν2
be LF measures on (Ω,F) such that P � ν1 and P � ν2. Suppose (A, ν3) is a dominating
pair for (P , ν1, ν2), and let Sθ, S1, S2, S3 be the supports of Pθ, ν1, ν2, and ν3, respectively.
Suppose there exists a continuous version (on Sθ) of f2,θ ∈ (dPθ|Sθ/dν2|Sθ)ν1|Sθ , for all
θ ∈ Θ, and a continuous version (on S3) of h ∈ (d(ν2|S3)/d(ν1|S3))ν1|S3

, then both f2,θ and
h are unique (on Sθ and S3, respectively), and there exists a unique continuous version of
f1,θ ∈ (dPθ|Sθ/dν1|Sθ)ν1|Sθ for each θ ∈ Θ. Moreover, defining Φω = {θ ∈ Θ: ω ∈ Sθ}, we
have f1,θ(ω) ∝θ f2,θ(ω) for every θ ∈ Φω.

Proposition 2.14 further refines the uniqueness concern: once a continuous version of
dPθ/dν2 is obtained, together with a continuous version of dν2/dν1, a corresponding unique
continuous version of dPθ/dν1 is thereby determined. In other words, continuity and the
previous choice of the density with respect to ν2 jointly force the density with respect to ν1.
This ensures that all these densities are consistent and satisfy the proportionality relation
on their common supports.

3. Special cases

In this section, we consider two particular scenarios that highlight how a dominating mea-
sure can be naturally chosen or shown to be irrelevant to the final form of the likelihood
function. First, we discuss the prior predictive measure in a Bayesian framework and identify
conditions under which it serves as a valid dominating measure for the model. Then, we
show that exponential families (traditionally defined by densities relative to a fixed measure)
are, in fact, a property of the model itself and hence remain exponential families regardless
of which dominating measure is chosen.

3.1. The predictive measure as a dominating measure

Izbicki et al. (2014) proposed a nonparametric methodology for density-ratio estimation,
illustrating how to employ the prior predictive measure in the denominator of such a ratio.
This yields an approximation to the likelihood function when the latter is not otherwise
tractable. Below, we investigate conditions ensuring that this predictive measure can dom-
inate the entire model P .

Let X be a sample drawn from a parametric family P = {Pθ: θ ∈ Θ} ⊂ M(X ), where
Θ ⊂ Rk and X is the sample space. Assume we have a nonzero prior R on Θ. Let BX ,BΘ
be the respective σ-fields on X and Θ. Suppose that for each fixed B ∈ BX , the function
θ 7→ Pθ(B) is Borel measurable. Then, there is a unique probability measure P on X × Θ
such that P (B × C) =

∫
C Pθ(B)dR(θ), B ∈ BX , C ∈ BΘ (Shao, 2003, Ch. 4). The posterior

distribution Pθ|x of θ given X = x arises from Bayes’ theorem whenever densities exist.

3.2. Predictive measure and domination

Assume P is dominated by a σ-finite measure ν, so that fθ(x) = dPθ/dν(x) is a Borel
function on X . Define m(x) =

∫
Θ fθ(x)dR(θ) and refer to m as the marginal density of

X with respect to ν. If m(x) > 0 on a set of ν-full measure in X , then dPθ|x/dR(θ) =
fθ(x)

/
m(x) is well defined with the set N = {x ∈ X : m(x) = 0} playing a key role. On N ,

the likelihood (with respect to ν) is zero R-almost everywhere.
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Next, define the predictive measure λ on (X ,BX ) by λ(A) =
∫
Am(x)ν(dx), A ∈ BX .

The set N , where m vanishes, determines whether or not λ dominates each Pθ. The following
results make this precise.
Proposition 3.1 The predictive measure λ does not depend on which σ-finite measure ν
was used to dominate P , aside from sets of measure zero.

Proposition 3.2 Let m(x) > 0 for all x ∈ X . Then, the predictive measure λ dominates P .
Note that, in many cases, it suffices to have ν(N) = 0. However, if we only know that

Pθ(N) = 0 for R-almost every θ, we cannot guarantee that λ dominates P .
Proposition 3.3 The predictive measure λ dominates Pθ if and only if Pθ(N) = 0. Con-
sequently, λ dominates the entire model P if and only if Pθ(N) = 0 for all θ ∈ Θ.

The following result is often a practical criterion.
Proposition 3.4 If Mθ = {x ∈ X : fθ(x) > 0} is the same set for all θ ∈ Θ, then P � λ;
that is, the predictive measure λ dominates P .

These propositions confirm that if the marginal density m is positive on a set of full ν-
measure, then λ can serve as a dominating measure for the model. This viewpoint justifies
the practice in some Bayesian settings of using the prior predictive (or marginal) measure as
the baseline for constructing likelihood functions, even if a dominating measure was given.

3.3. Exponential families

A parametric family P = {Pθ: θ ∈ Θ}, dominated by a σ-finite measure ν on (Ω,F), is
called an exponential family if and only if there exist measurable functions η: Θ→ Rp and
T : Ω → Rp (for some fixed p ∈ N), a nonnegative measurable function h, and a function
ξ: Θ→ R such that

dPθ/dν(ω) = exp((η(θ))τT (ω)− ξ(θ))h(ω), ω ∈ Ω, (3.3)

where ξ(θ) = log(
∫

Ω exp((η(θ))τT (ω))h(ω)dν(ω)). A thorough treatment of exponential fam-
ilies may be found in Jorgensen and Labouriau (2012).

In view of Equation (3.3), which explicitly depends on a particular dominating measure
ν, it is relevant to investigate whether the notion of an exponential family is an intrinsic
property of P , or if it can vary with the choice of dominating measure ν. In particular,
if ν is replaced by another σ-finite measure µ dominating P , the form of dPθ/dµ may
look distinct. Nonetheless, the following proposition confirms that the exponential-family
structure remains invariant, regardless of which σ-finite measure is chosen to dominate P .
Proposition 3.5 A parametric family P is an exponential family if and only if it admits
a representation of the form stated in Equation (3.3) with respect to some dominating mea-
sure. Equivalently, if P is an exponential family, then for any σ-finite measure µ dominating
P , there exist measurable functions η, T , ξ, and a nonnegative function hµ(ω) such that
dPθ/dµ(ω) = exp((η(θ))τT (ω)−ξ(θ))hµ(ω), for ω ∈ Ω, ∀θ ∈ Θ. Hence, being an exponential
family is a property of the model P itself, independent of the choice of dominating measure.

4. Examples

In this section, we provide several examples in which the choice of dominating measure is
nontrivial or at least merits careful consideration. We illustrate how Theorem 2.6 (likelihood
proportionality) guarantees a valid likelihood function once a suitable dominating measure
is chosen, leading to the same inference in θ. We also highlight the relevance of continuous
versions of RN derivatives, as discussed in Section 2.2, whenever such continuous densities
are available.
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4.1. Finite-dimensional random variables

A common setting for statistical models is a family P of probability measures on Rd (or a
product of discrete and continuous components). Typical examples include the following:

• Independent and identically distributed univariate random variables,
• Multivariate distributions with both discrete and continuous coordinates,
• Hierarchical Bayesian models with mixture components.
Often, the default or natural dominating measure is the product of counting measures
for discrete coordinates and Lebesgue measures for continuous coordinates. However, any
probability measure with common support can also serve as a valid dominating measure,
and Theorem 2.6 ensures that all such choices yield likelihoods proportional in θ almost
surely.

A particularly instructive example is a point-mass mixture. Consider a random variable Y
that, with probability p < 1, takes values {a1, . . . , am} ⊂ R at point masses, and otherwise
assumes values in (subsets of) R continuously. More precisely, let P

(
Y = ai

)
= pi > 0, for

i ∈ {1, . . . ,m}, and
∑m
i=1 pi = p < 1, that is, the total point-mass probability is p, and the

remaining probability 1− p is allocated to a continuous component on R.
On the complementary event (probability 1 − p), let Y have density fj on Bj ⊂ R with

weight qj , j ∈ {1, . . . , n}, so that
∑n
j=1 qj = 1 − p. Gottardo and Raftery (2009) showed

that the distribution P of Y is dominated by ν1 + ν2, where ν1 is the counting measure and
ν2 is the Lebesgue measure, leading to

dP

d(ν1 + ν2)(y) =
m∑
i=1

pi1{ai}(y) +
n∑
j=1

qjfj(y)1Bj\A(y), (4.4)

where A = {a1, . . . , am} and 1B(y) is the indicator function of y ∈ B. Ignoring the indicator
terms in Equation (4.4) (that is, using an improper version of the RN derivative) can cause
serious mis-specifications of the likelihood. By contrast, including those indicators correctly
ensures that each point-mass and continuous portion is treated in its correct domain.

It is often desirable to have continuous versions of fj on Bj . Whenever such continuity
holds, it further ensures that likelihoods obtained from different dominating measures remain
not only proportional in θ, but also coincide with the intuitive limit notion stated in Equation
(2.2) around each observed point in the continuous region.

The result given in Gottardo and Raftery (2009) is more general, covering countable
mixtures of mutually singular measures. For examples of point-mass mixture modeling in
real-world data analysis, see Schmidt et al. (2017), Gonçalves et al. (2022), and Bhattachar-
jee and Chakraborty (2023).

4.2. Missing data problems

Consider a model P = {Pθ: θ ∈ Θ} on (Ω,F), where Ω factors as Ω1 × Ω2 and F =
σ(F1×F2). In a typical missing data scenario, ω1 ∈ Ω1 is observed, whereas ω2 ∈ Ω2 is not.
Often, the marginal density with respect to some measure on Ω1 may be intractable, whereas
the joint density on Ω is known or more manageable; see Gonçalves and Gamerman (2018)
for an example. In such situations, a pseudo-likelihood is derived from the joint density
of Pθ relative to a dominating measure on Ω, integrating out the unobserved portion ω2.
Under frequentism, this is often handled by the expectation-maximization (EM) or Monte
Carlo EM algorithms, which require either integration or sampling with respect to the
conditional distribution of ω2 | ω1. In a Bayesian framework (such as Markov chain Monte
Carlo —MCMC—), it is also necessary to sample ω2 from that conditional distribution.
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Now suppose two distinct dominating measures, ν1 = ν1,1 × ν1,2 and ν2 = ν2,1 × ν2,2,
are available for the same family P . Denote the corresponding pseudo-likelihood func-
tions by πθ,i(ω1, ω2), where πθ,i is the RN derivative with respect to νi. Then, we have
πθ,i(ω2 | ω1) ∝ω2 πθ,i(ω1, ω2), for i ∈ {1, 2}. By Theorem 2.6, these two likelihood expres-
sions are proportional in θ (almost surely under each Pθ). However, that proportionality
does not imply they are equal as functions of ω2. Indeed, each measure νi induces a differ-
ent conditional density πθ,i(ω2 | ω1), potentially affecting the complexity of any integration
or sampling procedure. In EM or MCMC contexts, a given dominating measure may be
substantially simpler than another for sampling from the conditional distribution or for
computing the relevant integrals.

Therefore, although Theorem 2.6 confirms that inference about θ is unaffected by which
dominating measure is chosen, the practical implications for algorithmic complexity can be
substantial. In particular, even though the resulting inference does not change, the compu-
tational cost may vary considerably if one dominating measure is notably more convenient
for generating conditional samples than another.

4.3. Poisson processes

PPs are among the most widely used models for point patterns on a region S ⊂ Rd, al-
though they can be defined in more general measurable spaces (Kingman, 1993, Ch. 2). Let
Pλ denote the law of a PP on S with intensity function λ. We now discuss two natural
constructions for dominating Pλ.

A first construction is the following. Represent each realization ω of the PP as(
N, s1, . . . , sN

)
, where N is the random number of points and sj ∈ S are their loca-

tions. Factor its joint density as π(N)π(s1, . . . , sN | N) and use as dominating measure
ν3 =

∑+∞
k=0 ν3,k, where ν3,k = ν1 ⊗ (ν2)k, with ν1 the counting measure on {0, 1, . . . } for N ,

and νk2 the k-dimensional Lebesgue measure for the locations. Hence, we obtain

dPλ
dν3

(ω) = 1
N ! exp

(
−
∫
S
λ(s)ds

)(∫
S
λ(s)ds

)N N∏
j=1

λ(sj)∫
S λ(s)ds. (4.5)

A second construction is the following. Alternatively, let ν be the law of another PP on S
whose intensity function γ is strictly positive everywhere on S. In particular, it is possible
to choose γ ≡ 1.

By the Jacod formula (Andersen et al., 1993, Corollary II.7.3), we obtain

dPλ
dν

(ω) = exp
(
−
∫
S
(λ(s)− γ(s))ds

) N∏
j=1

λ(sj)
γ(sj)

, (4.6)

where N is again the number of points in the realization ω, and sj its points.
It is straightforward to verify that Equations (4.5) and (4.6) are proportional in λ. Thus,

for standard inference where an observed realization ω is available and the goal is to estimate
λ, both formulations yield the same inferences. However, in more complex scenarios (such
as partial observation of the process), the choice of dominating measure can be crucial, as
it may drastically affect the computation of likelihoods or marginalizations (see Section 5.2
for details).

Continuity in the Skorokhod topology is as follows. If S ⊂ R and we view the realizations
ω as càdlàg functions in the Skorokhod space D, then the density stated in Equation (4.6)
can be shown to be continuous as a map from ω ∈ D to R. Since D is separable under
the Skorokhod topology, standard results about continuous versions of likelihoods apply
naturally in this framework.
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4.4. Diffusion processes

Stochastic differential equations driven by Brownian motion, often called diffusions, are
widely used in statistics to model continuous-time phenomena. Formally, a diffusion process
Y = {Ys: s ∈ [0, t]} is the unique solution to an stochastic differential equation of the form
dYs = a

(
Ys, θ

)
ds + σ

(
Ys, θ

)
dWs, s ∈ [0, t], Y0 = y0, where Ws is a standard Brownian

motion, and a, σ satisfy mild regularity conditions ensuring existence and uniqueness (Kloe-
den and Platen, 1995). Typical trajectories of a diffusion are almost surely continuous but
nowhere differentiable.

Despite their flexibility, diffusions pose major challenges for statistical inference: they
evolve in infinite-dimensional spaces, often lack tractable transition densities. Then, under
discrete observation, the exact likelihood is unavailable in closed form. Several exact or
pseudo-likelihood methods (Beskos et al., 2006) aim to avoid discretization biases by working
directly with the continuous-time likelihood of the entire path. However, these approaches
demand a valid dominating measure. In fact, if the diffusion coefficient σ varies with θ over
an uncountable set, distinct values of θ typically yield mutually singular measures on the
path space. Hence, there may be no single σ-finite measure dominating all such laws (see
also Gottardo and Raftery, 2009). (If Θ is countable, the family can be dominated by a
countable sum of measures.)

A classical solution to this problem involves transforming the original diffusion paths
so that they become dominated by a parameter-free measure. In a discrete-approximation
context, Roberts and Stramer (2001) propose a pair of transformations; in continuous time,
Beskos et al. (2006) develop exact algorithms based on a similar idea. Concretely, let Y =
{Ys: s ∈ [0, t]} be a univariate diffusion observed at times 0 = t0 < t1 < · · · < tn = t,
with observations y0, . . . , yn. We map (Ys) into (Yobs, Ẋ), where Yobs = (y0, . . . , yn) are the
observed points, and Ẋ encapsulates the bridge segments between yi−1 and yi.

First, we describe the Lamperti transform. Define Xs = η
(
Ys, θ

)
=
∫ Ys

0
(
1/σ

(
u, θ

))
du, so

thatXs solves an stochastic differential equation with unit diffusion coefficient and some drift
α(Xs, θ) derived from a and σ. Mapping each observation yi to xi(θ) = η

(
yi, θ

)
aligns the

process into a standard scale. Now, we consider bridges with zero endpoints. For s ∈ (ti−1, ti),
define Ẋs = Xs−

(
1−(s−ti−1)/(ti−ti−1)

)
xi−1(θ)−

(
(s−ti−1)/(ti−ti−1)

)
xi(θ), with inverse

ϕθ. Hence, each Ẋs starts and ends at 0 over the interval (ti−1, ti), which makes it dominated
by a standard Brownian bridge measure.

Collecting
(
Yobs, Ẋ

)
yields a density with respect to the product measure νn⊗Wn, where

νn is the n-dimensional Lebesgue measure and Wn is a product of n standard Brownian-
bridge laws over the subintervals.

Beskos et al. (2006, see Lemma 2) derived an explicit expression given by

π
(
Yobs, Ẋ

)
=

n∏
i=1

η′
(
yi; θ

)
φ
(
xi(θ)−xi−1(θ)√

ti−ti−1

)

× exp
(

∆A
(
x0(θ), xn(θ); θ

)
−
∫ t

0

(
α2+α′

2
)(
ϕθ(Ẋs); θ

)
ds

)
,

(4.7)

where φ is the standard normal density, ∆A(x0(θ), xn(θ); θ) = A(xn(θ); θ)−A(x0(θ); θ), and
A(u; θ) =

∫ u
0 α

(
z, θ
)
dz.

Some continuity considerations are the following. If σ is continuously differentiable, it is
typically possible to establish that Equation (4.7) is continuous in the sup norm on C[0, t],
the space of continuous paths on [0, t], which is a separable metric space. In essence, the
transformations described above provide a parameter-free dominating measure (the product
of Brownian-bridge laws) for the augmented process (Yobs, Ẋ). This permits a valid likelihood
in spite of the original family being mutually singular for distinct θ.



158 Gonçalves and Franklin

5. Numerical experiments

In this section, we present two sets of numerical experiments to illustrate the validity and
practical impact of likelihood constructions under different dominating measures. The first
set concerns point-mass mixtures, where we compare Monte Carlo estimates of the ML esti-
mator using both simulated data and a real rainfall dataset from Porto Alegre, Brazil. The
second set involves inhomogeneous PPs with artificial missing data, for which we implement
a Monte Carlo EM algorithm to estimate the underlying intensity function. All experiments
were carried out in R (R Core Team, 2024) on a MacBook Air (Apple M2 chip, 16 GB mem-
ory), and the datasets and scripts are publicly available online (Gonçalves and Franklin,
2023).

5.1. Point-mass mixtures

We first consider a point-mass mixture model with two components: a degenerate component
at zero and a gamma distribution. Let p be the point-mass probability at zero and (α, β)
the shape and rate parameters of the gamma distribution. The overall mixture likelihood is
given by Equation (4.4), which we use to form the ML estimator.

We simulated 200, 000 replications of a sample of size n = 1500 from the mixture with
p = 0.6, α = 0.5, and β = 0.05. Each replication yielded an ML estimate of (p, α, β), with p
simply the empirical proportion of zeros, and (α, β) estimated via numerical optimization.
The runs were parallelized on 7 cores. Each replication took about 3.85 × 10−4 seconds
on average. Figure 1 displays the empirical distribution of the ML estimators over these
replications, with vertical lines at the true values.
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Figure 1. Empirical distribution of the ML estimator for (p, α, β) in the two-component point-mass mixture simu-
lation. The vertical lines indicate the true parameter values.

Next, we fit the same point-mass-gamma mixture to daily rainfall data (in mm) from a
station in Porto Alegre, Brazil, recorded from January 1, 2004 through 31 December 2023
(6585 daily measurements, 3880 of which are zero; a few days are missing). The ML estimates
are p̂ = 0.589, α̂ = 0.5197, β̂ = 0.0534. Figure 2 shows a histogram of the positive rainfall
values, overlaid with the fitted gamma density.
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Figure 2. Histogram of positive daily rainfall and fitted gamma density. The ML estimates are α̂ = 0.5197, β̂ =
0.0534.

5.2. Poisson process with artificial missing data

We next consider inhomogeneous PPs on [0, 100] with intensity functions lacking closed-
form integrals, making the usual likelihood intractable. We employ the representation in
Equation (4.6) but introduce a missing-data formulation, effectively augmenting the latent
structure of the process for easier computation.

We simulate 50 datasets from a PP Y on [0, 100] with intensity function λY (s; θ) = 4g(s; θ),
where

g(s; θ) =
1.1 + sin

(
a1 sin(a2s+ b2)s+ b1

)
2.11 ,

so that 0.047 ≤ g(s; θ) ≤ 0.995, and θ = (a1, b1, a2, b2) = (0.045, 1.5707, 0.09, 0). To
circumvent the intractable integral, we define a latent PP X on [0, 100] with intensity
λX(s; θ) = 4

(
1− g(s; θ)

)
. Given θ, X is independent of Y .

Then, the augmented likelihood function for (Y,X) can be written as

L(θ; y, x) ∝θ exp
(
−
∫ 100

0
λY (s; θ) + λX(s; θ)ds

) n∏
j=1

λY (yj ; θ)
m∏
j=1

λX(xj ; θ)

∝θ
n∏
j=1

g
(
yj ; θ

) m∏
j=1

(
1− g

(
xj ; θ

))
, (5.8)

where (y1, . . . , yn) and (x1, . . . , xm) are the observed points of Y and X, respectively.
Then, we apply a Monte Carlo EM algorithm. In each E-step, we sample X conditional

on the current θ′, using Poisson thinning (Gonçalves and Gamerman, 2018), and compute
the expected log-likelihood; in the M-step, we numerically maximize this expectation over θ.
Each iteration (5,000 Monte Carlo samples, 7-core parallelization) takes about 40 seconds,
mostly spent in the M-step. Figure 3 shows the true intensity function and the ML estimates
across 50 replications. The mean and standard deviation of the estimated θ across the 50
runs are (0.0453, 1.5727, 0.0886, 0.1003) and (0.0019, 0.0852, 0.0019, 0.1431), respectively.

We also fit a similar PP model to the coal mining disaster data obtained from Jarrett
(1979), which record 191 fatal explosions (killing 10 or more men) in Britain between 15
March 1851 and 22 March 1962. Rescale time to [0, 111] years.
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Figure 3. True intensity (black) and ML estimates (gray) across 50 simulated PPs under the augmented approach.

Specifically, we use

λ(s; θ) = 0.3 + 3.2
(
1− Φ

(s− µ1

σ1

))
+1.2φ((s− µ2)/(σ2))

φ(0) ,

where Φ and φ are the standard normal distribution function and density, respectively,
and λ(s; θ)/4.7 plays the role of g(s; θ) in Equation (5.8). We run the same Monte Carlo
EM scheme as before (5,000 samples in each E-step, 7-core parallelization), taking about
18 seconds per iteration. Figure 4 shows the resulting ML estimate of λ(s; θ). The fitted
parameter values are µ̂1 = 41.82, σ̂1 = 16.54, µ̂2 = 86.30, and σ̂2 = 7.00.
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Figure 4. ML fit of the intensity function to the coal mining disaster data (points indicate observed events).
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6. Conclusions

In this article, we have investigated the measure-theoretic foundations of likelihood theory,
emphasizing a general definition of the likelihood function via Radon-Nikodym derivatives
in both parametric and nonparametric settings. We introduced a likelihood proportionality
theorem, establishing that any two dominating measures for a given statistical model yield
likelihood functions that are almost surely proportional with respect to the parameter. This
result validates the Radon-Nikodym-based definition of likelihood in accordance with the
likelihood principle.

Beyond establishing proportionality in general, we offered a practical approach to identi-
fying those versions of the Radon-Nikodym derivatives that guarantee the simplest form of
proportionality. Specifically, we highlighted continuous versions of densities, showing that,
under certain mild conditions, they are almost surely proportional and often unique. This
underscores the consistency between continuous densities and the likelihood principle, and
it can help practitioners obtain well-behaved likelihoods.

Despite clarifying how to select and handle dominating measures in many scenarios, our
work leaves open some interesting questions about complex or infinite-dimensional models,
in which no single σ-finite measure may dominate the entire family. Developing new methods
to construct or approximate likelihoods in these challenging settings stands out as a fruitful
direction for future research. Likewise, a deeper understanding of measure equivalences
in high- or infinite-dimensional spaces would have broad implications for likelihood-based
inference.

In conclusion, the results presented in this article establish a rigorous measure-theoretic
foundation for likelihood. By employing Radon-Nikodym derivatives across a broad range of
models, the proposed framework preserves the core principles of likelihood-based inference
and provides a unified perspective that practitioners can reliably adopt in diverse statistical
contexts.

Appendix A: Results and definitions

Most of the following definitions and results are adapted from Piccioni (1982). Propositions 6.6
and 6.9 are original to this article. Throughout, we assume Ω is a separable metric (or Lindelöf)
space with Borel σ-algebra F , so that references to neighborhoods and open sets are measure-
theoretically meaningful.

Definition 6.1 A measure ν on (Ω,F) is called LF if, for every point ω ∈ Ω, there exists an open
set (neighborhood) Uω ⊂ Ω containing ω such that ν(Uω) < +∞. Note that under our assumption
that Ω is a Lindelöf space, every open cover admits a countable subcover. Hence, local finiteness
implies σ-finiteness. In more general topological spaces, LF alone may not suffice to guarantee
σ-finiteness.

Theorem 6.2 Let ν be an LF measure on (Ω,F) and Ω is Lindelof. Then, ν is σ-finite.

Definition 6.3 Let ν be a measure on (Ω,F). A point ω ∈ Ω is called impossible for ν if there is
a measurable neighborhood U ⊂ Ω of ω such that ν(U) = 0. The support of ν, denoted Sν , is the
set of all points in Ω that are not impossible. Equivalently, Sν =

⋂
U⊂Ω

U open,ν(U)>0
U c, that is, the

smallest closed set on which ν is concentrated.

Remark 1 Consider the following points in Definition 6.3:

• If ν ≡ 0 is the zero measure, then Sν is empty by definition.
• If ν(Ω) > 0, then typically Sν is nonempty and closed, and ν(Scν) = 0.
Proposition 6.4 Let ν be an LF measure with ν(Ω) > 0. Then, Sν 6= ∅, that is, a nontrivial LF
measure cannot be supported on the empty set.
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Theorem 6.5 (Properties of support) If ν is an LF measure on (Ω,F) with ν(Ω) ∈ (0,+∞], then
Sν is a closed set and ν(Scν) = 0. In particular, if ν(Ω) < +∞, then ν(Sν) = ν(Ω).

Proposition 6.6 Let ν and µ be any two measures on (Ω,F), and let Sν and Sµ denote their
respective supports. If ν � µ, then Sν ⊆ Sµ.

Remark 2 In Proposition 6.6, if ν is absolutely continuous with respect to µ, then a set of positive
ν-measure must also have positive µ-measure, so ν cannot place mass outside the support of µ.

Theorem 6.7 (Piccioni, 1982) Let µ and ν be LF measures on (Ω,F) such that µ � ν and
Sµ = Sν = Ω. If there exists a continuous version of dµ/dν on Ω, then it is unique (up to a set of
ν-measure zero).

Theorem 6.8 (A variant of uniqueness) Let µ and ν be LF measures on (Ω,F) with µ � ν.
Suppose there is a continuous version of dµ/dν on the support Sµ. Then that continuous version
is unique on Sµ (up to ν-null sets).

Remark 3 The property stated in Theorem 6.8 is particularly advantageous in settings where Ω is
not compact, but continuity is only required on the region where µ concentrates its mass.

Auxiliary lemma for Lemma 2.10. Let (Ω,F , ν) be a measure space and f : Ω → R be a
nonnegative measurable function. If A ∈ F satisfies ν(A) > 0 and f(ω) > 0 for all ω ∈ A, then∫
A
fdν > 0. This is a direct consequence of Fubini-type arguments: since f never vanishes on A,

the integral must be strictly positive.

Proposition 6.9 Let P = {Pθ: θ ∈ Θ} be an exponential family as in the expression given
in Equation (3.3) of the main text. For any A ∈ F , define a measure λ on (Ω,F) by λ(A) =∫
A
h(ω)dν(ω), where h is the base measure factor appearing in dPθ/dν. Then, we have that: (i) λ

is σ-finite on (Ω,F); (ii) P � λ, that is each Pθ is absolutely continuous with respect to λ; and
(iii) dPθ/dλ(ω) = exp((η(θ))τT (ω)− ξ(θ)) for all ω ∈ Ω.

Proposition 6.9 shows how to construct a new measure λ from the exponential-family base
function h(ω). Because h is nonnegative, λ typically is σ-finite. The RN-derivative under this
new measure then becomes a simpler exponential function of η(θ)T (ω), illustrating the measure
invariance of exponential family structure; see Proposition 3.5 in the main text.

Appendix B: Proofs

Proof [Proposition 2.4] Since Υ 6= ∅, there is at least one ν ∈ Υ such that P � ν. By
Lemma 2.5 (Halmos-Savage), there exists a measure λ =

∑+∞
i=1 ciPθi (for some probabilities

ci summing to 1) such that P � λ. It is claimed that λ is a minimal dominating measure,
that is λ � ν ′ for every ν ′ ∈ Υ. To see this, fix any ν ′ ∈ Υ. If A ∈ F satisfies ν ′(A) = 0,
then Pθ(A) = 0 for all θ ∈ Θ. In particular, we get Pθi(A) = 0 for every i. Hence, we have
λ(A) =

∑+∞
i=1 ciPθi(A) = 0, so λ� ν ′. Thus, we have λ is indeed minimal in Υ. �

Proof [Theorem 2.6] By Proposition 2.4, there exists a minimal dominating measure ν for P .
Choose any versions h1 ∈ (dν/dν1)ν , h2 ∈ (dν/dν2)ν , gθ ∈ (dPθ/dν)ν for all θ ∈ Θ. Define,
for each θ ∈ Θ, f1,θ(ω) = gθ(ω)h1(ω) and f2,θ(ω) = gθ(ω)h2(ω). Clearly, f1,θ ∈ (dPθ/dν1)ν
and f2,θ ∈ (dPθ/dν2)ν . Let A = {ω ∈ Ω: h2(ω) > 0}.

Since h2 is a version of dν/dν2, we have ν(Ac) = 0. Consequently, Pθ(Ac) = 0 for all
θ ∈ Θ. Then, define

h(ω) =

h1(ω)/h2(ω), ω ∈ A;

0, ω ∈ Ac.

Hence, for ω ∈ A, f1,θ(ω) = h(ω)f2,θ(ω), for all θ ∈ Θ. On the set Ac, both sides vanish
under Pθ. Thus, Equation (2.1) holds ∀θ ∈ Θ on a set of probability one under each Pθ. �
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Proof [Proposition 2.7] Using the notation of Theorem 2.6, let f1,θ ∈ (dPθ/dν1)ν and
f2,θ ∈ (dPθ/dν2)ν . Then we can write f1,θ(ω) = (dPθ/dν)(1)(ω)(dν/dν1)(1)(ω) and f2,θ(ω) =
(dPθ/dν)(2)(ω)(dν/dν2)(2)(ω), where (·)(1) and (·)(2) denote particular chosen versions. For
each θ ∈ Θ, define Aθ = {ω ∈ Ω: (dν/dν1)(1)(ω) > 0, (dν/dν2)(2)(ω) > 0, (dPθ/dν)(1)(ω) =
(dPθ/dν)(2)(ω)}. By the RN Theorem, each version is defined ν-almost everywhere, so
ν(Acθ) = 0. Define Bc =

⋃
θ∈Θ A

c
θ and B =

⋂
θ∈Θ Aθ. Then ν(Bc) = 0, so Pθ(Bc) = 0 for each

θ. On B, we have (dPθ/dν)(1)(ω) = (dPθ/dν)(2)(ω), (dν/dν1)(1)(ω) > 0, (dν/dν2)(2)(ω) > 0.
Hence, we get f1,θ(ω) = (dPθ/dν)(1)(dν/dν1)(1) = (dPθ/dν)(2)(dν/dν2)(2) = f2,θ(ω) up to a
ν-null set. Therefore, we have that f1,θ ∝θ f2,θ on B. �

Proof [Proposition 2.8] Let P , ν1, ν2, ν be as in Theorem 2.6, and let Q be the measure from
Lemma 2.5. Suppose T is a sufficient statistic for P with range (T ,B). Then,

(i) Fixing θ ∈ Θ, choose any version g∗θ ∈ (dPθ/dQ)ν that is measurable with respect
to σ(T ), and pick h1 ∈ (dQ/dν1)ν . By Shao (2003, Sec. 1.4, Lemma 1.2), there
exists a B-measurable gθ such that g∗θ = gθ ◦ T. Since T is sufficient, we have gθ ◦
T ∈ (dPθ/dQ)ν on (Ω,F) (Lehmann, 1986, Sec. 2.6, Theorem 8). Define f1,θ(ω) =
gθ(T (ω))h1(ω). By the chain rule, we have f1,θ ∈ (dPθ/dν1)ν .

(ii) Similarly, if f2,θ is obtained from the same g∗θ but with h2 ∈ (dQ/dν2)ν , then
f2,θ(ω) = gθ(T (ω))h2(ω). Let A = {ω ∈ Ω: h1(ω) > 0}. Then ν(Ac) = 0, so on
A, f1,θ and f2,θ differ by the factor h1(ω)/h2(ω). In particular, we get f1,θ ∝θ f2,θ
on A.

�

Proof [Lemma 2.10]
(i) Let ν be a minimal dominating measure for P , and Q =

∑
i ciPθi the measure from

Lemma 2.5. Define Ai = {ω: dPθi/dν(ω) > 0}, where A = ∪iAi. Then, we have
Pθi(Ai) = 1 for all i, so Pθi(A) = 1 for all i. Consequently, Q(A) = 1, but Q(Ac) = 0
implies Pθ(Ac) = 0 for all θ ∈ Θ. Hence, Pθ(A) = 1 for all θ.

(ii) Let B ⊂ A be such that ν2(B) = 0. Suppose ν1(B) > 0. Since B = ∪i(Ai ∩ B),
there is some i0 with ν1(Ai0 ∩ B) > 0. By the auxiliary result from Appendix
A (the nonvanishing integral argument), and the fact dPθi0/dν > 0 on Ai0 ,
we have

∫
Ai0∩B

dPθi0/dνdν1 > 0. Define C = {ω: dν/dν1(ω) > 0}. Then, we
get ν1(Ai0 ∩ B ∩ C) > 0, and another application of the same lemma shows
Pθi0 (Ai0 ∩ B) =

∫
Ai0∩B

dPθi0/dνdν/dν1dν1 =
∫
Ai0∩B∩C

dPθi0/dνdν/dν1dν1 > 0,
a contradiction since ν2(B) = 0 should imply Pθi0 (B) = 0. Therefore, ν1(B) = 0.

�

Proof [Theorem 2.12] Recall that (A, ν) is a dominating pair for (P , ν1, ν2). By definition,
ν1|A, ν2|A, ν|A are all equivalent, and ν(A) = 1. Write Ṗθ, ν̇1, ν̇2, ν̇ for the restrictions of
Pθ, ν1, ν2, ν to (A,F(A)), respectively. In particular, for each θi used in constructing ν,
suppose we have continuous versions f1,θi ∈ (dṖθi/dν̇1)ν̇ and f2,θi ∈ (dṖθi/dν̇2)ν̇ . Let h ∈
(dν̇2/dν̇1)ν̇ . We wish to prove that such continuous versions imply a proportion relation
(f1,θ, f2,θ) differs by a factor h(ω) not depending on θ.

The proof has three main steps. First, we define a set Sh ⊂ A where proportionality holds
for all θi that state the measure ν, ensuring that ν̇(Sh) = 1. Then, we establish the continuity
of h on Sh. Third, we demonstrate that the proportionality of the likelihood functions holds,
for all θ, in a subset Bh ⊂ Sh, where Pθ(Bh) = 1 for all θ. The detailed steps are as follows:
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Step 1 —Constructing a set where the ratio is fixed for basis measures. For each index
i ∈ N, define Ai = {ω ∈ A: f1,θi(ω) = h(ω)f2,θi(ω)). By the RN chain rule and the fact
that f1,θi and f2,θi are each versions of dṖθi/dν̇1 and dṖθi/dν̇2, respectively, it follows that
ν̇(Aci ) = 0 for every i. Next, let Bi = {ω ∈ A: f2,θi(ω) > 0}, B = ∪+∞

i=1Bi, Dh = ∩+∞
i=1Ai,

Sh = Dh ∩ B. Since ν̇(Aci ) = 0 for all i, we have ν̇(Dc
h) = 0. Also, ν̇(B) = 1 because for

each θi, the set where f2,θi = 0 is negligible with respect to ν̇. Hence, we have ν̇(Sh) = 1.
By absolute continuity, Pθ(Sh) = 1 for all θ ∈ Θ.

Step 2 —Showing h is continuous on Sh. Let ω0 ∈ Sh and take any sequence {ωn} ⊂ Sh such
that ωn → ω0 in A. We must show h(ωn)→ h(ω0). By construction, ω0 ∈ Dh so belonging
to every Ai. Further, there is some i0 such that ω0 ∈ Bi0 , meaning f2,θi0 (ω0) > 0. On Bi0 ,
h(ω) = f1,θi0 (ω)/f2,θi0 (ω). Since f2,θi0 is continuous and positive on Bi0 ⊂ A, it follows
that Bi0 ∩ Sh is open in the subspace Sh. Thus, for sufficiently large n, ωn ∈ Bi0 ∩ Sh, and
so h(ωn) = f1,θi0 (ωn)/f2,θi0 (ωn). But both f1,θi0 and f2,θi0 are continuous (by hypothesis).
Hence, the ratio converges to the ratio at ω0. Therefore h is continuous at ω0. Since ω0 ∈ Sh
was arbitrary, h is continuous on all of Sh.

Step 3 —Proving the proportionality for all θ. For each θ ∈ Θ, define Bθ = {ω ∈
Sh: f1,θ(ω) = h(ω)f2,θ(ω)}. Again by the RN chain rule, we get ν̇(Sh ∩ Bc

θ) = 0. The
function ω 7→ (f1,θ − hf2,θ)(ω) is continuous on Sh. Thus, we obtain Bθ is closed in the
subspace Sh. Hence, we reach Bh = ∩θ∈ΘBθ is also closed in Sh. Since Sh is a subspace of
a separable metric space, there is a countable subset {θj} ⊂ Θ such that Bh = ∩+∞

j=1Bθj .
Moreover, ν̇(Bc

θ ∩ Sh) = 0 for every θ, so ν̇(Bc
h ∩ Sh) = 0, which implies ν1(Bc

h ∩ Sh) = 0
and so Pθ(Bh) = 1 for each θ. On Bh ⊆ Sh, we get f1,θ(ω) = h(ω)f2,θ(ω), ∀θ ∈ Θ, ω ∈ Bh.
Hence, the proportionality relation holds ν̇-almost everywhere (and so Pθ-almost surely) for
all θ. �

Proof [Corollary 2.13] Since f1,θ and f2,θ are strictly positive on Ω for each θ ∈ Θ, it
follows that all Pθ, ν1, ν2 are pairwise equivalent. By Proposition 6.6, the supports satisfy
Sθ = Sν1 = Sν2 = Ω, ∀θ ∈ Θ. For each θ, define hθ(ω) = f1,θ(ω)/f2,θ(ω), ω ∈ Ω. Note that
hθ ∈ (dν2/dν1)ν , and is continuous on Ω. Since ν1, ν2 are locally finite (LF), Theorem 6.8
guarantees that all the hθ coincide on Ω. Denote this common continuous function by h(ω).
Hence, we attain at f1,θ(ω) = h(ω)f2,θ(ω), ∀ω ∈ Ω,∀θ ∈ Θ, which establishes the claimed
proportionality. �

Proof [Proposition 2.14] Since Sθ ⊂ S3 by Proposition 6.6, simply define f1,θ(ω) =
h(ω)f2,θ(ω), ∀ω ∈ Sθ,∀θ ∈ Θ, where h is as in the statement of the proposition. The-
orem 6.8 then ensures uniqueness of the versions f1,θ, f2,θ, and h. �

Proof [Proposition 3.1] Let µ be any σ-finite measure such that P � µ. Write gθ(x) =
dPθ/dµ(x) and define m∗(x) =

∫
Θ gθ(x)dR(θ). Then construct a measure ξ on (X ,BX ) via

ξ(A) =
∫
Am

∗(x)µ(dx), A ∈ BX . We claim λ = ξ. Indeed, for each A ∈ BX , we have that

λ(A) =
∫
A
m(x)ν(dx) =

∫
A

∫
Θ
fθ(x)dR(θ)dν(x) (definition of λ)

(i)=
∫

Θ

∫
A
fθ(x)dν(x)dR(θ) =

∫
Θ
Pθ(A)dR(θ) (Fubini theorem)

=
∫

Θ

∫
A
gθ(x)µ(dx)dR(θ) (ii)=

∫
A

∫
Θ
gθ(x)dR(θ)µ(dx) =

∫
A
m∗(x)µ(dx) = ξ(A),

where steps (i) and (ii) each follow by the Fubini theorem. Hence, λ ≡ ξ except possibly on
a set of measure zero, showing λ is independent of which ν or µ we started with (up to null
sets). �
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Proof [Proposition 3.2] If m(x) > 0 for all x ∈ X , then {x: m(x) = 0} = ∅, so λ places
full mass on all of X . Since m was the pointwise sum of fθ, each Pθ must also be absolutely
continuous with respect to λ. In other words, λ dominates P . �

Proof [Proposition 3.3] First, if λ dominates Pθ, then λ(N) = 0 is immediate. Conversely,
suppose Pθ(N) = 0. Take any A ∈ BX with λ(A) = 0. We must show Pθ(A) = 0. Note that

0 = λ(A) = λ(A ∩N c) =
∫
A∩Nc

m(x)ν(dx), (6.9)

where m is the integrand defining λ. Since m is strictly positive on A ∩N c, Equation (6.9)
forces ν(A∩N c) = 0. Hence, we get Pθ(A∩N c) = 0, but Pθ(A) = Pθ(A∩N c) by hypothesis
(Pθ(N) = 0). Thus, we get Pθ(A) = 0. �

Proof [Proposition 3.4] Define M = {x ∈ X : fθ(x) > 0} and take any A ∈ BX such that
λ(A) = 0. We need to show that Pθ(A) = 0 for all θ ∈ Θ. Since P � ν and Pθ(A) =
Pθ(A∩M) for all θ ∈ Θ, it suffices to prove that ν(A∩M) = 0. Suppose, for contradiction,
that ν(A ∩M) > 0. Since fθ is strictly positive on A ∩M , we obtain

Pθ(A) = Pθ(A ∩M) =
∫
A∩M

fθ(x)ν(dx) > 0, ∀θ ∈ Θ. (6.10)

On the other hand, applying Fubini’s theorem, we get

λ(A) =
∫
A
m(x)ν(dx) =

∫
A

∫
Θ
fθ(x)dR(θ)ν(dx) =

∫
Θ
Pθ(A)dR(θ) =

∫
Θ
Pθ(A ∩M)dR(θ).

(6.11)
Since R(Θ) > 0, it follows from Equations (6.10) and (6.11) that λ(A) > 0, contradicting
our assumption that λ(A) = 0. Thus, we conclude that ν(A∩M) = 0, completing the proof.
�

Proof [Proposition 3.5] Suppose dPθ/dν(ω) is given by the exponential-family representa-
tion given in Equation (3.3) in the main text: dPθ/dν(ω) = exp((η(θ))τT (ω)− ξ(θ))hν(ω).
Consider the measure Q from Lemma 2.5, and let q ∈ (dQ/dν). Since Q is minimal, Q� ν.
Without loss of generality, assume q(ω) > 0 ν-almost everywhere. Define, for each θ ∈ Θ,

bθ(ω) = exp((η(θ))τT (ω)− ξ(θ))m(ω), ω ∈ Ω, (6.12)

where m(ω) = hν(ω)/q(ω). By the RN chain rule, we have

exp((η(θ))τT (ω)− ξ(θ))hν(ω) = dPθ/dQ(ω)q(ω), ν-almost everywhere. (6.13)

Combining Equations (6.12) and (6.13) shows bθ(ω) ≡ dPθ/dQ(ω)ν-almost everywhere
Hence, we have that bθ ∈ (dPθ/dQ). Next, let µ be another σ-finite measure such that
P � µ, and suppose µ 6= ν. By the minimality of Q, we have Q � µ. Choose any version
s ∈ (dQ/dµ). Define, for each θ, pθ(ω) = exp((η(θ))τT (ω) − ξ(θ))hµ(ω), for ω ∈ Ω, where
hµ(ω) = m(ω)s(ω). By the RN chain rule again, it follows pθ ∈ (dPθ/dµ). This shows that
any other dominating measure µ yields an exponential-family form with the same sufficient
statistic T and natural parameter η (up to an adjusted normalizing function ξ(θ) and a
modified base function hµ). Thus, the exponential-family representation does not depend
on the specific measure ν. �

Proof [Theorem 6.8] By Proposition 6.6, we have Sµ ⊆ Sν . Restrict µ and ν to Sµ. Applying
the uniqueness theorem for the space (since now Sµ is the new universe and µ|Sµ � ν|Sµ),
we conclude any continuous version of dµ/dν on Sµ is unique, up to measure-zero sets. �
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Gonçalves, F.B. and Franklin, P., 2023. Code and data repository for ”Measure-theoretic
definition of likelihood and related results”. Available at https://github.com/fbambirra/
likelihood paper.

Gottardo, R. and Raftery, A.E., 2009. Markov chain Monte Carlo with mixtures of mutually
singular distributions. Journal of Computational and Graphical Statistics, 17, 949–975.

Halmos, P.R. and Savage, L.J., 1949. Application of the Radon-Nikodym theorem to the
theory of sufficient statistics. The Annals of Mathematical Statistics, 20, 225–241.

Izbicki, R., Lee, A.B., and Schafer, C.M., 2014. High-dimensional density ratio estimation
with extensions to approximate likelihood computation. Proceedings of the 17th Interna-
tional Conference on Artificial Intelligence and Statistics, Reykjavic, Iceland, p. 33.

Jorgensen, B. and Labouriau, R., 2012. Exponential Families and Theoretical Inference.
Lecture Notes, Department of Statistics, University of British Columbia, Vancouver, BC,
Canada.

Jarrett, R.G., 1979. A note on the intervals between coal-mining disasters. Biometrika, 66,
191–193.

Kingman, J.F.C., 1993. Poisson Processes. Oxford University Press, New York, NY, US.
Kloeden, P. and Platen, E., 1995. Numerical Solution of Stochastic Differential Equations.

Springer, New York, NY, US.
Kolmogorov, A., 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung (in German).

Springer, Berlin, Germany.
Lehmann, E.L., 1986. Testing Statistical Hypotheses. Springer, New York, NY, US.
Lindley, D.V., 1953. Statistical Inference. Journal of the Royal Statistical Society B, 15,

131–179.
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