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Abstract

This work introduces a novel version of the Stahel-Donoho multivariate outlier de-
tection procedure, which considers 5p + 1 specific random directions, where p is the
dimensionality of the data, that is, the number of variables in the dataset. These di-
rections are derived by maximizing the squared third sample moment of the projected
observations, which then serves as a seed to obtain 5p additional directions via a strati-
fied sampling. Compared with the standard Stahel-Donoho estimator and other outlier
detection methods, this new version exhibits competitive performance across various
high-dimensional datasets and contamination scenarios. By leveraging maximum skew-
ness projection within the Stahel-Donoho framework, the proposed estimator maintains
stable results in high dimensions, showing its advantage in efficiently handling complex
data structures.
Keywords: Outlier detection · Projection pursuit · Robust statistics · Stratified
sampling · Third sample-moment.

Mathematics Subject Classification: Primary 62F35 · Secondary 62H30.

1. Introduction

The standard Stahel-Donoho (SD) estimator, proposed by Stahel (1981) and Donoho (1982),
marks a milestone in robust statistics, introducing a projection pursuit method for multi-
variate outlier detection and robust estimation (de Paula Alves and Furtado Ferreira, 2020).
This estimator computes a fixed number of directions at random, assessing the outlyingness
measure in each direction for the projected data. Characterized by its affine equivariance,
high breakdown point (Maronna and Yohai, 1995), and asymptotic relative efficiency de-
rived from its influence function (Gervini, 2002), the SD algorithm has laid the groundwork
for numerous applications and subsequent developments in multivariate data analysis. De-
spite its advantages, the widespread use of projection-based methods has been hindered by
computational challenges. Several authors have highlighted the importance of efficient opti-
mization routines (Sun, 2006). For instance, semi-robust principal components designed for
high-dimensional data (Filzmoser et al., 2008) are an important development. Another key
advancement is the use of directions that maximize k–nearest neighbor distances, where k
represents the number of neighbors considered. Typically, k is chosen based on the number
of variables in the dataset, p say (Kandanaarachchi and Hyndman, 2021).
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The above-mentioned studies have improved projection pursuit techniques for outlier de-
tection by introducing new approaches related to optimization strategies and criteria. These
approaches also include methods that optimize the third and fourth statistical moments of
projected data, which further enhance the ability to identify outliers in multivariate datasets.

Well-known kurtosis optimization techniques have been proposed (Peña and Prieto, 2001,
2007; Peña et al., 2010), alongside methods based on projections that maximize the sam-
ple skewness coefficient (Loperfido, 2018). Additionally, Van Aelst et al. (2012) proposed a
modification of the SD estimator using random directions adapted to a Huberized outly-
ingness measure. This modification offers a more efficient and effective way to calculate SD
directions. Subsequently, Van Aelst (2016) introduced two adaptations: the first one adjusts
the calculation of outlyingness, and the second one assigns separate weights to each compo-
nent of an observation. These adaptations perform well in scenarios with component-wise
contamination.

The standard SD algorithm, as proposed by Stahel (1981), relies on a subsampling pro-
cedure for a multivariate sample X ∈ Rn×p, where, as usual, n is the sample size and p the
number of variables. Randomly, p points from the sample are selected, and an orthogonal
direction to the hyperplane defined by these p points is computed. This procedure is re-
peated a fixed number of times to generate a subset of projection directions. The number of
subsamples required is independent of n, making its computational complexity linear. How-
ever, as p increases, the computational complexity grows exponentially (Juan and Prieto,
1995).

To address this computational complexity, Peña and Prieto (2007) proposed a fast algo-
rithm for outlier detection that combines projections on a set of 2p deterministic directions,
which are extremes of kurtosis, with a set of random directions when the kurtosis direction
is not informative. These directions are then used as initial projections for calculating out-
lyingness. This algorithm not only computes the SD estimator but also provides a robust
starting point for iterative estimation.

In high-dimensional problems, Peña and Prieto (2007) investigated kurtosis directions and
demonstrated promising results for detecting concentrated outliers. However, the method
is less effective when the contamination proportion (α) is approximately 0.3 or when the
distributions of non-outlying and outlying data share the same covariance structure. To
address this, they proposed the random and specific projections of order one —RASP(1)—
algorithm, an improved version of the kurtosis projection algorithm proposed by Peña and
Prieto (2001). Unlike the 2p directions used previously, RASP(1) focuses on two kurtosis
directions complemented with random but specific Stahel-Donoho-type directions (RS-SD).
This approach demonstrates robust performance as both p and α increase, particularly in
scenarios with concentrated contamination.

The RASP(1) algorithm highlights the importance of further research to evaluate its
performance under diverse scenarios and compare it with other methods. Following the
logic of RASP(1), RS-SD directions are calculated using a stratified sampling procedure,
which enhances the probability of obtaining helpful directions by selecting two random
observations, either from non-outlying or outlying points, with probability αp + (1− α)p.

Loperfido (2013) demonstrated that the direction maximizing the third sample cumulant
corresponds to the Fisher linear discriminant function. More recently, Ortiz (2019) proposed
an outlier detection procedure that maximizes the absolute third sample moment. Based on
this projection direction, the main objective of the present work is to introduce a novel and
computationally efficient method for the SD estimator. Instead of generating random direc-
tions, this method constructs a set of 5p specific directions, including a seed direction that
maximizes the squared third sample moment. These directions are derived through strat-
ified sampling of projection directions, enhancing performance in high-dimensional outlier
detection while improving computational efficiency.
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The article is organized as follows. Section 2 describes the proposed estimator and its
construction, based on specific random directions obtained from a skewness-based projection
direction seed. In Section 3, we present a simulation study on multivariate outlier detection
under various contamination scenarios. In Section 4, the proposed method is applied to real-
world datasets. Lastly, Section 5 provides concluding remarks and future research directions.

2. The proposed method

This section introduces the proposed method, which aims to enhance outlier detection
through a novel analysis of projections and stratified sampling. The method is anchored
by a seed direction determined by the maximum sample squared skewness. Our method of-
fers a robust mechanism for identifying outliers by evaluating univariate outlyingness across
a carefully chosen set of projection directions. The mechanism starts by determining the
direction that maximizes the sample squared skewness, generating specific basis vectors.
These vectors highlight outliers by projecting data onto dimensions where anomalies are
most pronounced. In the last step, a weighted outlyingness measure is computed for each
projection, forming the basis for outlier identification.

2.1 Stahel-Donoho estimator

The SD estimator is a robust method for estimating multivariate location and scatter.
It is defined as a weighted mean and covariance matrix, where the weights are based on
a measure of outlyingness computed through a penalization function. The outlyingness
measure considers the maximum of the one-dimensional projection in which the observation
is most outlying, across all possible projection directions. These weights are then used to
down-weight the most extreme observations.

Consider the multivariate sample X = (X1, . . . , Xn), its observed values x = (x1, . . . , xn),
and the set of all p-dimensional unitary projection directions Sd = {d ∈ Rp: d>d = 1}. The
SD outlyingness r of a data point xi onto a direction d ∈ Sd is typically computed as
the distance between the projected observations d>xi and a univariate location estimate µ,
scaled by a univariate scatter estimate σ. Therefore, for any xi, r(xi,X) = ri is defined as

r(xi,X) = sup
d∈Sd

{∣∣d>xi − µ(d>X)
∣∣

σ(d>X)

}
, i ∈ {1, . . . , n}. (2.1)

To ensure robustness, µ and σ are often the sample median and median absolute deviation,
respectively (Stahel, 1981; Donoho, 1982). Large outlyingness values indicate points that are
particularly atypical relative to the rest of the data, while values close to zero indicate that
the point is near to the median and, hence, not atypical.

The robust SD estimator for multivariate location and scatter is defined as

µ̂SD =
∑n
i=1 wiXi∑n
i=1 wi

, ŜSD =
∑n
i=1 wi (Xi − µ̂SD)>(Xi − µ̂SD)∑n

i=1 wi
, i ∈ {1, . . . , n}, (2.2)

where wi(ri) : (0,+∞) → (0,+∞) penalizes observations with large outlyingness. Various
approaches for selecting wi are described in the literature. A well-known example is the
Huber family, which improves outlier detection (Maronna et al., 2006; de Menezes et al.,
2021).
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2.2 Sample skewness as a projection pursuit index

The skewness coefficient, a measure of asymmetry in a probability distribution, has emerged
as a relevant statistical index for projection pursuit in the context of multivariate outlier
detection. In statistical analysis, skewness provides insights into the distributional charac-
teristics of data and serves as a powerful tool for identifying outliers that deviate from the
core distribution. Recent methods have leveraged sample skewness as a mechanism to iso-
late such anomalies. Loperfido (2013) proposed an estimator based on the singular value
decomposition of the third standardized cumulant. This estimator demonstrates that, in
the presence of a mixture of symmetric distributions, the direction maximizing the third
cumulant aligns with the Fisher linear discriminant function. This echoes the earlier pro-
posal by Peña and Prieto (2000). More recently, Loperfido (2018) introduced a procedure for
computing directions that accentuate sample skewness. This approach is particularly advan-
tageous for exploratory data analysis and the preliminary detection of outliers, facilitating
a deeper understanding of the underlying structure of the data. Ortiz (2019) developed a
multivariate outlier detection method that maximizes the absolute third sample moment of
projected data. This technique is rooted in an eigenvector-based matrix iteration strategy
similar to that proposed by Peña and Prieto (2001).

Figure 1 provides a graphical representation of the utility of extreme skewness as a statis-
tical index for projection pursuit in outlier detection. By identifying directions that enhance
skewness, it becomes feasible to detect observations that diverge from the majority, thereby
flagging potential outliers.
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(a) 3D scatterplot of the contaminated sample and the
direction maximizing extreme skewness.
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Figure 1. Outlier detection for a 3D simulated dataset. Panel (a) shows a 3D scatterplot of the contaminated
sample and the projection direction maximizing the absolute third sample moment. Panel (b) presents the KDE and
histogram of the projected data. Adapted from Ortiz (2019).

Consider a p-dimensional contaminated sample Z = (Z1, . . . , Zn) ∈ Rp×n and its observed
values z = (z1, . . . , zn) ∈ Rp×n, drawn from the mixture model Z ∼ (1− α)F + αG, where
α denotes the contamination proportion, F is the distribution of non-outlier points, and G
the distribution of outliers. Assuming Z is centrally scaled, let m3 denote the univariate
third sample moment coefficient, computed for the projected data.

We want to find r ∈ Rp×1, an unknown unitary p-dimensional vector, by solving

d1 = argmax
r
{m3(r>Z)2}, r>r = 1, (2.3)



114 Ortiz and Becerra

which is equivalent to

d1 = argmax
r


(

n∑
i=1

(r>zi)3

n

)2
 , r>r = 1.

To increase sensitivity to asymmetrical contamination, we maximize m2
3 (instead of m3

or |m3|). This allows for the effective management of extreme skewness in any direction.
Moreover, maximizing m2

3 simplifies the optimization process, facilitating the identification
of a direction that accentuates the skewness of the projected data.

The computation of d1 can be performed numerically using the Newton-Raphson method,
for example. However, other optimization methods may also be employed; see, for instance,
Loperfido (2015a,b, 2024).

2.3 Projection direction as a seed for computing random vectors

According to Peña and Prieto (2007), a direction generated by two points —one from the
clean sample and the other from the contamination— can serve as an initial random direc-
tion; see Figure 1 for as example.

An important issue is determining how many random directions are required or sufficient
to improve outlier detection. For the RS-SD procedure, 10p random directions are suggested
for T = n/2p, where T represents the number of partitions of the projection.

Several authors have discussed the number of directions needed in other statistical meth-
ods. Hubert and Van der Veeken (2008) argued that 250p random directions are computa-
tionally effective for their skewness-adjusted outlyingness proposal. Later, Cuesta-Albertos
and Nieto-Reyes (2008) provided empirical evidence suggesting that approximately 5p ran-
dom directions are sufficient to compute a reliable approximation of the random Tukey
depth.

In line with this, we propose a modified version of the stratified sampling RS-SD method,
introduced by Peña and Prieto (2007), which incorporates the computation of 5p random
directions. This new method is referred to as the skewness-based random directions (SRD)
method. The choice of 5p is further supported by empirical simulations we conducted, which
demonstrated effective results in outlier detection. The SRD procedure is outlined in Algo-
rithm 2.3.

Algorithm 2.3: SRD —Generation of the set Sp.
1: Compute the initial direction d1 as the solution to the problem stated in Equation (2.3).
2: Define the set Sp = {d1}.
3: Project Z onto the direction d1.
4: for l = 1 to 5p do
5: Choose za ∈ {zi ∈ Z: d>1 zi ≤ d>1 Z[n/4]} randomly, where d>1 Z[n/4] is an order statistic

of d>1 Z.
6: Select zb ∈ {zi ∈ Z: d>1 zi ≥ d>1 Z[3n/4]} randomly, where d>1 Z[3n/4] is an order statistic

of d>1 Z.
7: Calculate the unit direction d̂(l,za,zb) = (za − zb)/||za − zb||2 defined by points za and

zb.
8: Store the direction d̂(l,za,zb) in the set Sp.
9: end for

10: Return the set Sp = {d1, d̂(1,za,zb), . . . , d̂(5p,za,zb)}.
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2.4 Modified SD based on skewness and random specific directions

Once the SRD procedure is executed and the set Sp is defined, these directions are subse-
quently used to compute the SD outlyingness measure, incorporating the initial projection
seed d1. The SRD algorithm provides the necessary projection directions, which are then
utilized by the SD estimator with skewness-based specific directions (SDE-SSD). The SDE-
SSD method allow us to estimate location and scatter parameters robustly.

Consider Equation (2.1) and the estimator of location and scale stated in Equation (2.2),
where wi = w(ri): R+ → R+ is a weight function that penalizes or down-weights observa-
tions with large outlyingness.

Several approaches to selecting w exist in the literature, such as Hard-rejection and Tukey
biweight. Following Maronna and Yohai (1995) and Van Aelst et al. (2012), we implement
the Huber-type weight function, defined as

w(ri) = 1(ri≤η) + (η/ri)21(ri>η), i ∈ {1, . . . , n},

where η = min{(χ2
(0.5,p))1/2, 4} and 1A is the indicator function for the set A. The value of η

represents a trade-off between robustness and efficiency. Maronna and Zamar (2002) noted
that η should be small to achieve robust estimates in higher dimensions.

For µ and σ stated in Equation (2.1), we use the sample median and Qn statistic
(Rousseeuw and Croux, 1993). The Qn statistic for a univariate random sample Y =
(Y1, . . . , Yn) is defined as

Qn(Y ) = b {abs(Yi − Yj): i < j}` ,

where b is a scalar depending on the distribution H of the random sample Y , and {·}`
denotes the `-th order statistic.

The median and Qn statistics were chosen for their robustness against outlier observations.
Thus, the modified SDE-SSD outlyingness version r∗(zi,Z) = r∗i is expressed as

r∗(zi,Z) = max
d∈Sp

{∣∣d>zi −med(d>Z)
∣∣

Qn(d>Z)

}
, i ∈ {1, . . . , n}.

Using these outlyingness measures, the SDE-SSD estimators µ̂SDE-SSD and ŜSDE-SSD are
computed as in Equation (2.2), substituting r∗i for ri.

Multivariate outlier identification is based on the robust squared Mahalanobis distance
given by

MD2
SDE-SSD(zi) = (zi − µ̂SDE-SSD)>Ŝ−1

SDE-SSD(zi − µ̂SDE-SSD), i ∈ {1, . . . , n},

and the β quantile (0.975) of a chi-squared distribution with p degrees of freedom. Thus, if
MD2

SDE-SSD(zi) ≥ χ2
(β,p), then zi is labeled as a multivariate outlier.

3. Numerical experiments

This section evaluates the proposed SDE-SSD method through numerical experiments de-
signed to assess its effectiveness in outlier detection. By simulating data under various con-
ditions, we rigorously evaluate the performance of SDE-SSD in identifying outliers within
multivariate datasets. These experiments also demonstrate the practical applicability of our
approach and compare its performance against established methods in the literature.
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3.1 Multivariate outlier detection

To rigorously assess the robustness of our proposed method, we conducted a comprehensive
suite of simulation experiments. We consider a p-dimensional random sample X drawn
from a fully dependent contamination model (Alqallaf et al., 2009). This model is defined
as a mixture of normal distributions, X ∼ (1 − α)Np(0, I) + αNp(δe, I), where δ 6= 0 is a
scalar controlling the distance between the centers of the contaminated and uncontaminated
samples, and α ∈ (0, 0.5) denotes the contamination proportion.

Note that 0 and e represent the p-dimensional vectors of zeros and ones, respectively,
and I denotes the p-dimensional identity matrix. The experimental framework was set with
α ∈ {0.1, 0.2, 0.3, 0.4}, dimensions p ∈ {5, 10, 30, 50, 100}, and displacement magnitudes
δ ∈ {5, 7, 9}. For each simulation setting, n = 10p observations were generated, and m = 100
random repetitions were conducted.

These experiments compare the performance of the proposed SDE-SSD method with other
well-known outlier detection techniques using two metrics: the true positive rate (c) and the
false positive rate (f). The six methods selected for comparison are: (i) the SD estimator
(Stahel, 1981); (ii) the Huberized SD estimator —SDEH— (Van Aelst et al., 2012); (iii)
the skewness-adjusted outlyingness method —SDE-AdjOut— (Hubert and Van der Veeken,
2008); (iv) the minimum covariance determinant —MCD— (Rousseeuw and Van Driessen,
1999); (v) the orthogonalized Gnanadesikan-Kettenring estimator —OGK— (Maronna and
Zamar, 2002); and (vi) M-estimators –—Mest (Rocke and Woodruff, 1996).

The M-estimator uses the translated biweight function (t-biweight) with a high breakdown
point initial estimate, as defined by Rocke and Woodruff (1996). All experiments were
performed in the R programming language using the rrcov package (Todorov, 2021) for the
competing methods. For SDE-AdjOut, we use the mrfDepth package (Segaert et al., 2020).

3.2 Simulation results

Table 1 presents results of our simulations. The SD and SDE-SSD methods exhibit simi-
lar performance in classifying clean data. However, as contamination increases, the SDEH
method performance reduces its efficacy. The SDE-AdjOut algorithm shows high perfor-
mance at low contamination, but its detection performance decreases after 0.2 contamina-
tion. Also, this method has a higher computational cost compared to the SD method.

For real data and outlier classification, both the SD and SDEH algorithms experience in-
creased runtime as the multivariate dimension p increases. Higher-dimensional experiments
were not conducted for these methods due to numerical instability and computational de-
mands, as noted in their documentation. In contrast, the SDE-SSD algorithm outperforms
these methods in terms of both efficiency and classification performance. This makes it a
preferable choice for scenarios requiring robust outlier detection and classification.

The results in Table 2 show that SDE-SSD outperforms Mest, OGK, and MCD in classify-
ing outlier data in dimensions 5, 10, and 30. Although the computational time for SDE-SSD
is longer than for other methods, it remains relatively short, averaging around one sec-
ond. The Mest and MCD estimators experience sharp performance declines when faced
with contamination levels of 0.2, reducing their classification efficacy. The OGK method
begins losing performance at contamination levels exceeding 0.3. Despite longer computa-
tion times, SDE-SSD maintains high classification performance, showcasing its robustness
in diverse data environments.

For dimensions 50 and 100 presented in Table 3, SDE-SSD does not increase computation
times. In comparison, Mest and MCD have longer computation times, while OGK maintains
the lowest execution times. Regarding classification performance, Mest and MCD show
reduced efficacy in differentiating between real data and outliers. Although OGK performs
well in certain scenarios, it suffers performance drops in others. SDE-SSD demonstrates
stable performance, maintaining a high level of accuracy compared to other methods.
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Table 1. Comparison of outlier detection performances in terms of c and f metrics for SDE-SSD, SD,
SDEH, and SDE-AdjOut methods.

p α δ SDE-SSD SD SDEH SDE-AdjOut
c f c f c f c f

5

0.1
5 1.00 0.02 1.00 0.09 1.00 0.05 1.00 0.01
7 1.00 0.02 1.00 0.09 1.00 0.05 1.00 0.01
9 1.00 0.02 1.00 0.09 1.00 0.05 1.00 0.01

0.2
5 1.00 0.02 1.00 0.06 0.97 0.07 1.00 0.02
7 1.00 0.02 1.00 0.06 0.97 0.06 1.00 0.02
9 1.00 0.02 1.00 0.06 0.98 0.06 1.00 0.02

0.3
5 1.00 0.03 1.00 0.02 0.10 0.05 0.00 0.01
7 1.00 0.02 1.00 0.02 0.16 0.05 0.00 0.01
9 1.00 0.02 1.00 0.02 0.17 0.05 0.00 0.02

0.4
5 0.99 0.02 1.00 0.00 0.02 0.06 0.00 0.02
7 1.00 0.02 1.00 0.09 0.01 0.07 0.00 0.02
9 1.00 0.02 1.00 0.09 0.00 0.08 0.00 0.02

10

0.1
5 1.00 0.01 1.00 0.08 1.00 0.03 1.00 0.02
7 1.00 0.01 1.00 0.08 1.00 0.03 1.00 0.02
9 1.00 0.01 1.00 0.09 1.00 0.03 1.00 0.02

0.2
5 1.00 0.02 1.00 0.05 0.95 0.05 1.00 0.02
7 1.00 0.01 1.00 0.05 0.91 0.04 1.00 0.02
9 1.00 0.01 1.00 0.05 0.92 0.04 1.00 0.02

0.3
5 1.00 0.02 1.00 0.05 0.02 0.06 0.00 0.03
7 1.00 0.02 1.00 0.02 0.02 0.05 0.00 0.03
9 1.00 0.01 1.00 0.02 0.03 0.05 0.00 0.03

0.4
5 0.96 0.02 1.00 0.01 0.00 0.09 0.00 0.04
7 1.00 0.01 1.00 0.09 0.00 0.09 0.00 0.04
9 1.00 0.02 1.00 0.01 0.00 0.09 0.00 0.04

Table 2. Comparison of outlier detection performances in terms of c and f metrics for SDE-SSD, Mest,
MCD, and OGK methods.

p α δ SDE-SSD Mest MCD OGK
c f c f c f c f

5

0.1
5 1.00 0.02 1.00 0.08 1.00 0.10 1.00 0.09
7 1.00 0.02 1.00 0.07 1.00 0.11 1.00 0.08
9 1.00 0.02 1.00 0.08 1.00 0.09 1.00 0.08

0.2
5 1.00 0.02 1.00 0.05 1.00 0.07 1.00 0.07
7 1.00 0.02 1.00 0.06 1.00 0.07 1.00 0.06
9 1.00 0.02 1.00 0.04 1.00 0.07 1.00 0.07

0.3
5 1.00 0.03 1.00 0.02 1.00 0.03 0.96 0.05
7 1.00 0.02 1.00 0.03 1.00 0.04 1.00 0.05
9 1.00 0.02 1.00 0.03 1.00 0.03 1.00 0.04

0.4
5 0.99 0.02 0.66 0.13 0.77 0.11 0.03 0.10
7 1.00 0.02 0.84 0.06 0.98 0.02 0.24 0.07
9 1.00 0.02 0.94 0.03 0.99 0.01 0.69 0.03

10

0.1
5 1.00 0.01 1.00 0.06 1.00 0.08 1.00 0.08
7 1.00 0.01 1.00 0.07 1.00 0.08 1.00 0.07
9 1.00 0.01 1.00 0.07 1.00 0.09 1.00 0.09

0.2
5 1.00 0.02 1.00 0.04 1.00 0.06 1.00 0.06
7 1.00 0.01 1.00 0.04 1.00 0.06 1.00 0.06
9 1.00 0.01 1.00 0.04 1.00 0.07 1.00 0.06

0.3
5 1.00 0.02 0.92 0.04 0.97 0.06 1.00 0.05
7 1.00 0.02 1.00 0.02 1.00 0.04 1.00 0.05
9 1.00 0.01 1.00 0.02 1.00 0.04 1.00 0.04

0.4
5 0.96 0.02 0.04 0.29 0.03 0.48 0.02 0.11
7 1.00 0.01 0.15 0.27 0.06 0.47 0.38 0.05
9 1.00 0.02 0.28 0.22 0.18 0.43 0.91 0.03

30

0.1
5 1.00 0.01 1.00 0.06 1.00 0.09 1.00 0.08
7 1.00 0.01 1.00 0.06 1.00 0.09 1.00 0.08
9 1.00 0.01 1.00 0.06 1.00 0.09 1.00 0.08

0.2
5 1.00 0.01 0.18 0.14 0.02 0.30 1.00 0.06
7 1.00 0.01 0.34 0.12 0.26 0.24 1.00 0.06
9 1.00 0.01 0.20 0.14 0.31 0.23 1.00 0.07

0.3
5 1.00 0.01 0.00 0.23 0.00 0.48 1.00 0.04
7 1.00 0.01 0.00 0.23 0.00 0.47 1.00 0.04
9 1.00 0.01 0.00 0.23 0.00 0.47 1.00 0.05

0.4
5 1.00 0.02 0.00 0.34 0.01 0.66 0.10 0.11
7 1.00 0.02 0.00 0.35 0.01 0.66 0.88 0.03
9 1.00 0.02 0.00 0.35 0.01 0.66 1.00 0.02
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Table 3. Comparison of outlier detection performances in terms of c and f metrics for the evaluated
methods.

p α δ SDE-SSD Mest MCD OGK
c f c f c f c f

50

0.1
5 1.00 0.02 0.78 0.08 0.90 0.12 1.00 0.09
7 1.00 0.02 0.78 0.08 0.81 0.13 1.00 0.09
9 1.00 0.02 0.82 0.08 0.93 0.11 1.00 0.08

0.2
5 1.00 0.02 0.00 0.19 0.00 0.40 1.00 0.06
7 1.00 0.02 0.00 0.19 0.00 0.40 1.00 0.07
9 1.00 0.02 0.02 0.18 0.00 0.40 1.00 0.07

0.3
5 1.00 0.02 0.00 0.26 0.00 0.56 1.00 0.04
7 1.00 0.02 0.00 0.27 0.00 0.56 1.00 0.05
9 1.00 0.02 0.00 0.27 0.00 0.56 1.00 0.05

0.4
5 1.00 0.03 0.00 0.40 0.00 0.76 0.37 0.10
7 1.00 0.03 0.00 0.40 0.00 0.76 0.93 0.03
9 1.00 0.03 0.00 0.41 0.00 0.76 0.99 0.03

100

0.1
5 1.00 0.02 0.02 0.17 0.00 0.31 1.00 0.09
7 1.00 0.02 0.00 0.17 0.00 0.31 1.00 0.08
9 1.00 0.02 0.01 0.17 0.00 0.31 1.00 0.09

0.2
5 1.00 0.02 0.00 0.24 0.00 0.51 1.00 0.07
7 1.00 0.02 0.00 0.24 0.00 0.51 1.00 0.07
9 1.00 0.02 0.00 0.24 0.00 0.51 1.00 0.07

0.3
5 1.00 0.02 0.00 0.33 0.00 0.74 1.00 0.04
7 1.00 0.02 0.00 0.33 0.00 0.74 1.00 0.05
9 1.00 0.02 0.00 0.34 0.00 0.74 1.00 0.05

0.4
5 1.00 0.05 0.00 0.47 0.00 0.92 0.70 0.08
7 1.00 0.05 0.00 0.48 0.00 0.92 1.00 0.02
9 1.00 0.05 0.00 0.47 0.00 0.92 1.00 0.02

We report the average computation times, denoted as t, for all methods as a function
of p, δ, and α in panel plots. Figure 2 presents these plots for each simulation across all
methods. In Figure 2(a), we show the computation times for the projection pursuit methods:
SDE-SSD, SDEH, SDE-AdjOut, and SD. The SDE-SSD method demonstrates performance
comparable to SDE. However, when δ = 9, SD is slightly faster than SDE-SSD.

Figure 2(b) shows the computation times for SDE-SSD, Mest, MCD, and OGK. Once
again, the SDE-SSD method shows competitive performance, similar to Mest. In contrast,
MCD exhibits the highest computational complexity, while OGK is the fastest method.
Overall, the proposed SDE-SSD exhibits strong computational efficiency.

4. Applications with real data

In this section, the proposed method is applied to real-world datasets.

4.1 Context

The proposed SDE-SSD method was implemented on three datasets with different sample-
space dimensions from various fields to evaluate its efficiency in identifying outliers. In all
datasets, the observations labeled as outliers are known. When applying the Mest, MCD,
and OGK methods to these datasets, numerical instability was observed, preventing effective
evaluation in the high-dimensional dataset. This instability is attributed to an insufficient
number of samples to support the model structure in higher dimensions, leading to difficulties
in matrix inversion and stable estimate computation.

To compare their performance in outlier classification on these three datasets, we also
implemented five other well-known methods from the literature: (i) the minimum regu-
larized covariance determinant (MRCD) (Boudt et al., 2020); (ii) the k-means algorithm
(MacQueen, 1967), where k is the number of clusters; (iii) the k-medians algorithm (Jain
and Dubes, 1981), which also uses k as the number of clusters; (iv) the standard h-nearest
neighbor (h-NN) algorithm (Cover and Hart, 1967), where h is the number of neighbors;
and (v) the density-based spatial clustering of applications with noise (DBSCAN) (Ester
et al., 1996).
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(b) Computation times for the SDE-SSD, Mest, MCD, and OGK methods.

Figure 2. Computation times for the SDE-SSD and competing methods. Panel (a) covers p ∈ {2, 4, 6, 8, 10}, while
panel (b) covers p ∈ {10, 20, 40, 60, 80, 100}.

As mentioned, the performance metrics used were the true positive rate (c), true negative
rate (1− f), and corresponding accuracy measure (A).
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4.2 Arrhythmia data

The Arrhythmia dataset contains 279 attributes, of which 206 are continuous and the re-
mainder are nominal, designed to advance the understanding of cardiac arrhythmia (Guvenir
et al., 1998). This extensive dataset primarily differentiates between the presence of cardiac
arrhythmia and classifies them into one of 16 distinct categories. Class 01 represents ’nor-
mal’ electrocardiogram (ECG) results, while Classes 02 through 15 correspond to various
types of arrhythmia, and Class 16 encompasses all other unclassified cases.

For arrhythmia detection, we conducted experiments to assess the effectiveness of our
method. The results measure the performance of SDE-SSD and compare it with other unsu-
pervised techniques. This evaluation analyzes accuracy balanced across classes and compares
the c and 1− f metrics of the proposed method with existing approaches in the literature.

Table 4. Classification performance for the arrhythmia, musk, and WDBC datasets using the metrics c,
1 − f , and A for SDE-SSD, MRCD, k-means, k-medians, h-NN, and DBSCAN.

Method Arrhythmia dataset Musk dataset WDBC dataset
c 1− f A c 1− f A c 1− f A

SDE-SSD 0.84 0.63 0.68 0.98 0.96 0.98 0.70 0.98 0.83
MRCD 0.45 0.00 0.45 0.96 0.96 0.50 0.17 0.98 0.80
k-means 0.53 0.59 0.57 0.02 0.96 0.57 0.37 0.99 0.88
k-medians 0.49 0.56 0.53 0.49 0.56 0.53 0.49 0.56 0.53
DBSCAN 0.54 0.46 0.54 0.00 1.00 0.50 0.40 0.98 0.82
h-NN 0.64 0.94 0.81 0.98 1.00 1.00 0.66 0.96 0.82

The evaluation of methods for arrhythmia detection reveals performance differences, as
shown in Table 4, second column. The SDE-SSD method achieves a specificity of 0.63 and
a c of 0.84, resulting in an overall accuracy of 0.68. In contrast, methods such as k-means,
k-medians, and DBSCAN show more balanced but moderate performance, with A values
around 0.57, 0.53, and 0.54, respectively. The MRCD method fails to detect arrhythmia
effectively. Meanwhile, the h-NN method demonstrates high proficiency in separating data
compared to unsupervised methods, achieving an A value of 0.81.

4.3 Molecules classification data

The Musk dataset consists of 102 unique molecules, identified by human experts as com-
prising 39 musks and 63 non-musks (Chapman and Jain, 1994). We classify new molecules
as either musks or non-musks. This task is complicated by the fact that each molecule can
adopt numerous conformations due to rotational flexibility in bond structures, resulting
in structural variability. To address this diversity, all low-energy conformations were enu-
merated, producing a total of 6,598 conformations. Each conformation is represented by
a 166-feature vector, encapsulating the shape and specific structural arrangement of the
molecule in its respective state.

Table 4, third column, presents the results for this dataset. The SDE-SSD method demon-
strates exceptional efficacy, achieving an almost perfect accuracy of 0.98, along with corre-
spondingly high true positive rate and specificity values of 0.98 and 0.96, respectively.

The level of precision is comparable to that of h-NN, which also achieves near-perfect clas-
sification for this dataset. The SDE-SSD method employs advanced algorithmic mechanisms
capable of handling the structural variability inherent in molecular conformations.

In contrast, the k-means and k-medians methods exhibit lower efficacy, with A values
of 0.57 and 0.53, respectively. These methods face limitations in accurately classifying
molecules, particularly in identifying musks, as reflected by their poor true positive values
(0.02 for k-means and 0.49 for k-medians). DBSCAN fails to identify any musk molecules,
although it achieves a perfect 1− f value, indicating high specificity.
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These results suggest that methods such as k-means, k-medians, and DBSCAN struggle
with the high dimensionality and dispersed nature of the dataset, which likely hinders their
ability to form effective clusters.

4.4 Wisconsin diagnostic breast cancer data

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset, developed by the University of
Wisconsin and Madison Clinical Sciences Center (Wolberg et al., 1995), contains 569 sam-
ples. Each sample is characterized by 30 features derived from a digitized image of a fine
needle aspirate of a breast mass. These features quantify cellular properties indicative of tu-
mor severity, facilitating classification into two categories: malignant or benign. The dataset
includes 357 benign samples and 212 malignant samples, consistent with the established
medical taxonomy for non-cancerous and cancerous tumor cells, respectively.

Table 4, fourth column, presents the results for this application. The SDE-SSD method
demonstrates strong proficiency and performs competitively with the k-means and h-NN
algorithms.

Meanwhile, methods such as MRCD, k-medians, and DBSCAN achieve respectable A
values, with DBSCAN particularly noted for its robustness in clustering-based tasks. No-
tably, the k-medians method shows lower overall performance and reduced efficacy in the
classification of cancerous data compared to other methods.

The SDE-SSD method achieves reasonable performance in the classification of cancerous
data, effectively identifying non-cancer samples but including some false negatives. Com-
pared to other approaches, SDE-SSD exhibits competitive and robust performance.

5. Conclusions

In this work, we introduced an approach of the Stahel-Donoho estimator, structured as
a finite set of 5p + 1 directions. The 5p directions are estimated through stratified sam-
pling of an informative direction seed, along with the direction that maximizes the squared
sample third moment of the projected data. We proved that this approach enables the pro-
posed Stahel-Donoho estimator with skewness-based specific directions to be faster than
other Stahel-Donoho variants, without compromising its effectiveness in multivariate outlier
detection.

The empirical results indicate that the Stahel-Donoho estimator with skewness-based spe-
cific directions performs proficiently in high-dimensional sample spaces and exhibits robust
properties, such as a high breakdown point. However, further exploration is necessary to
address other contamination scenarios, including asymmetric contaminations with multiple
outlying clusters, symmetric contamination, or contamination in non-symmetric multivari-
ate distributions.

The principal advantage of the Stahel-Donoho estimator with skewness-based specific
directions lies in the informativeness of the generated directions regarding the core structure
of the data. These directions provide insight into the generative process of the sample and
are instrumental in identifying the primary generative mechanism. By reducing the number
of directions, computational costs are decreased, thereby improving the efficiency of the
estimator in outlier detection. Compared to the directions produced by Stahel (1981), those
generated by our method offer richer information, leading to a better understanding of the
data structure and enhancing the separability between the general sample and any outliers.

It is worth noting that the proposed modification enables the Stahel-Donoho algorithm to
function effectively in high-dimensional spaces, addressing a common challenge for conven-
tional projection pursuit methods due to computational constraints. Our approach, which
utilizes fewer but more informative directions, preserves high detection efficacy while avoid-
ing computational difficulties in higher dimensions.
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Computational experiments revealed that our algorithm performed robustly compared to
the studied alternatives, demonstrating consistent performance across various dimensions
and levels of contamination. It remained efficient under diverse contamination scenarios,
regardless of whether the outliers were close to or distant from the main data cluster, while
maintaining practical computation times.

In real-world applications, the Stahel-Donoho estimator with skewness-based specific di-
rections proved effective at classifying data and identifying outliers with high accuracy. It
outperformed or matched established methods, even under demanding conditions.

Looking ahead, it is advisable to pursue more sophisticated techniques for direction se-
lection to further enhance the precision and stability of outlier detection. Incorporating
additional directional measures, such as kurtosis, may prove beneficial (Peña et al., 2010).
Additionally, exploring alternative loss functions that provide greater accuracy is encouraged
(Zuo et al., 2004). In addition, the impact of cellwise outliers on multivariate analysis merits
closer examination due to their capacity to distort results in extensive datasets (Raymaekers
and Rousseeuw, 2025).
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