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Abstract

This article presents a novel and powerful goodness-of-fit test specifically designed for
the Cauchy distribution. The motivation behind our research stems from the need for a
more accurate and robust method to assess the fit of the Cauchy distribution to data.
This distribution is known for its heavy tails and lack of finite moments. To compute the
proposed test statistic, we utilize the maximum likelihood estimators of the unknown
parameters, ensuring the test efficiency and reliability. In addition, Monte Carlo simu-
lations are employed to obtain critical points of the test statistic for different sample
sizes, enabling precise determination of the threshold for rejecting the null hypothesis. To
assess the performance of the proposed test, we conduct power comparisons against sev-
eral well-known competing tests, considering various alternative distributions. Through
extensive simulations, we demonstrate the superiority of our test in the majority of
the cases examined, highlighting its effectiveness in distinguishing departures from the
Cauchy distribution. The contributions of our study are twofold. Firstly, we introduce
a novel goodness-of-fit test tailored specifically for the Cauchy distribution, taking into
account its unique characteristics. By incorporating the maximum likelihood estimate
and employing Monte Carlo simulations, our test offers improved accuracy and robust-
ness compared to existing methods. Furthermore, we provide practical validation of the
proposed test through the analysis of a financial dataset. The application of the test to
real-world data underscores its relevance and applicability in practical scenarios.

Keywords: Cauchy distribution · Critical points · Kullback-Leibler information
· Monte Carlo simulation · Power study.

Mathematics Subject Classification: Primary 62G10 · Secondary 62P20.

1. Introduction

The Cauchy distribution is widely recognized as a suitable model for describing data arising
from the ratio of two normal random variables. Its unique characteristics, such as heavy tails
and lack of finite moments, make it a valuable tool in various domains, including physics,
finance, and earthquake studies. Consequently, assessing the goodness of fit of the Cauchy
distribution to data is of paramount importance in many applications.
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Motivated by the need for an accurate and powerful goodness-of-fit test for the Cauchy
distribution, this article presents a novel approach based on the estimation of Kullback-
Leibler (KL) divergence. Our work aims to overcome the limitations of existing tests and
provide researchers with an improved tool for evaluating the agreement between observed
data and the Cauchy distribution.

Several studies have highlighted the applicability of the Cauchy distribution in diverse
fields. Min et al. (1996) demonstrated its effectiveness in describing velocity differences
induced by different vortex elements, while Stapf et al. (1996) applied it to study polar
and nonpolar liquids in porous glasses. Kagan (1992) observed that hypocenters on focal
spheres of earthquakes follow a Cauchy distribution, and Winterton et al. (1992) noted
its relevance in characterizing contact resistivity fluctuations. Furthermore, Nolan (2014)
utilized the Cauchy distribution in financial modeling. Extensive reviews of the Cauchy
distribution can be found in Johnson et al. (1994) and Kotz et al. (2001), emphasizing its
practical significance in assessing underlying distributions. Recently, some authors including
Suarez-Espinosa et al. (2018), Castro-Kuriss (2011), and Munir et al. (2023) suggested some
new goodness-of-fit tests for the other distributions.

The main objective of this article is to propose a novel goodness-of-fit test for the Cauchy
distribution based on the estimation of KL divergence. Specifically, we aim to: (i) enhance
the evaluation of goodness of fit by capturing the unique characteristics of the Cauchy
distribution, such as heavy tails and lack of finite moments; (ii) improve the power of
the goodness-of-fit test in detecting departures from the Cauchy distribution compared to
existing methods; (iii) provide a flexible and versatile tool for analyzing various types of data
and censoring schemes, including progressively type-II censored data; and (iv) establish the
consistency of the proposed test through theoretical analysis, ensuring its reliability as the
sample size increases.

The novelty of this article lies in the incorporation of KL divergence in the goodness-
of-fit test for the Cauchy distribution. By utilizing KL divergence, we effectively capture
the information regarding the disparity between observed data and the theoretical Cauchy
distribution, resulting in a more comprehensive and accurate assessment of fit. This approach
offers several advantages over existing methods, including improved power, robustness to
outliers, and flexibility in handling different types of data and censoring schemes.

This rest of the article is organized as follows. In Section 2, we propose a novel goodness-
of-fit test statistic for assessing the fit of data to the Cauchy distribution. The test statistic
is based on a new estimate of the KL divergence, which measures the information disparity
between the observed data and the theoretical Cauchy distribution. We present the formu-
lation of the test statistic and discuss its properties, including its asymptotic behavior and
sensitivity to departures from the Cauchy distribution. The theoretical foundation of the
proposed test provides a solid basis for its practical application.

In Section 3, we determine the critical values of the proposed test statistic, we employ
Monte Carlo simulations. By generating a large number of random samples from the Cauchy
distribution, we simulate datasets of varying sizes. For each dataset, we calculate the pro-
posed test statistic and record its value. Through extensive simulations, we obtain empirical
critical values that define the threshold for rejecting the null hypothesis of the Cauchy dis-
tribution. The use of Monte Carlo simulations ensures accurate and reliable critical values
for different sample sizes. Furthermore, in this section, we compute the power values of the
proposed test. Power is a measure of the test ability to correctly detect departures from the
Cauchy distribution when they exist. By comparing the power values of the proposed test
with those of competing tests, we assess its effectiveness in detecting deviations from the
Cauchy distribution. The power analysis provides insights into the relative performance of
different tests and highlights the advantages of our proposed approach.
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All simulations in Section 3 are conducted using the statistical software R version 4.1.0.
We perform 100, 000 replications to ensure robustness and accuracy of the results. The large
number of replications allows for precise estimation of critical values and power values,
enhancing the reliability of the statistical analysis.

In Section 4, we showcase the practical application of the proposed test by presenting a
real-world example. We select a dataset that is expected to follow the Cauchy distribution
and apply the proposed test to assess its goodness of fit. We describe the dataset, provide
relevant statistical summaries, and apply the proposed test to evaluate the fit of the Cauchy
distribution to the observed data. The results of the test, including the test statistic value and
its associated p-value, are presented and interpreted in the context of the specific application.
By including a real example, we demonstrate the applicability and usefulness of the proposed
test in practical scenarios. The application serves as a practical illustration of the proposed
test capabilities and provides insights into its performance when applied to real data. In
Section 5, we summarize the main findings and contributions of our research, discuss the
limitations of the proposed test, and provide suggestions for future research directions.

2. The proposed test

A random variable X has a Cauchy distribution, with parameters µ ∈ R and σ > 0, if its
probability density function (PDF) has the form defined as

f0(x;µ, σ) = 1
πσ
[
1 + ((x− µ)/σ)2

] , −∞ < x <∞,

where σ is a positive scale parameter and µ is the location parameter. We henceforth denote
this distribution by C(µ, σ). The corresponding cumulative distribution function (CDF) is
given by

F0(x;µ, σ) = 1
2 + 1

π
tan−1

(
x− µ
σ

)
.

Let X1, . . . , Xn be random sample, that is, an independent identically distributed (IID)
random variables, from a population with unknown CDF F and a PDF f . We interest to
test the null hypothesis stated as

H0: {X1, . . . , Xn} is a sample from the C(µ, σ) distribution,

where µ and σ are specified or unspecified. The alternative hypothesis is

H1: {X1, . . . , Xn} is not a sample from the C(µ, σ) distribution.

The KL discrimination has been widely studied in the literature as a central index for mea-
suring quantitative similarity between two probability distributions. The KL discrimination
of f from f0 is defined by

D(f, f0) =
∫
f(x) log

(
f(x)
f0(x)

)
dx.

Note that D(f, f0) = 0 if and only if f(x) = f0(x) with probability equal to one.



Chilean Journal of Statistics 47

Recently, Alizadeh (2019) proposed a new estimate of the KL discrimination and then
constructed a test statistic for testing the validity of a model formulated as

T = − 1
n

n∑
i=1

log
(
n

2m
[
F0(X(i+m); θ̂)− F0(X(i−m); θ̂)

])
,

where F0 is the CDF of f0, m is a positive integer, m ≤ n/2, and X(1) ≤ · · · ≤ X(n) are the
order statistics and X(i) = X(1) if i < 1, X(i) = X(n) if i > n. Here, θ is a model parameter
which is usually unknown, and θ̂ is a reasonable equivariant estimate of θ.

Alizadeh (2019) showed that the test statistic is non-negative just like the KL divergence,
that is, T ≥ 0. Also, the test based on T is consistent. Then, he proposed tests for nor-
mal, exponential, Laplace and Weibull distributions and compared the power of these tests
with the other existing tests and showed that his test has a good power against different
alternatives. Moreover, Alizadeh (2022) applied the above test statistic and proposed a new
test for the logistic distribution. Here, we apply the Alizadeh test statistic and introduce a
powerful goodness-of-fit test for the Cauchy distribution.

Here is an explicit discussion of the assumptions, particularly related to the IID nature of
the sample. The proposed test based on KL divergence for the Cauchy distribution relies on
several key assumptions to ensure its validity and applicability. These assumptions are as fol-
lows. (i) IID sample: The test assumes that the observed sample is drawn from a population
that follows an IID sampling scheme. This means that each observation is independent of
others and is drawn from the same underlying distribution. This assumption is fundamental
for various statistical tests and is particularly important for ensuring the reliability of the
proposed test. (ii) Cauchy distribution: The test assumes that the underlying distribution of
the population from which the sample is drawn follows the Cauchy distribution. The Cauchy
distribution is characterized by its heavy-tailed behavior, lack of finite moments, and sym-
metry. The proposed test is specifically tailored to assess the goodness-of-fit to the Cauchy
distribution and may not be suitable for other distributions. And (iii) random sampling:
The test assumes that the sample is obtained through a random sampling process. This
assumption implies that the observed sample is representative of the underlying population,
allowing for valid inferences about the population parameters.

It is important to note that the assumptions mentioned above are standard for many sta-
tistical tests and are not unique to the proposed test based on KL divergence for the Cauchy
distribution. These assumptions ensure the validity of the statistical inference made using
the proposed method and help establish the contexts in which the test is most applicable.

However, it is essential to consider the limitations and potential violations of these as-
sumptions in real-world applications. Deviations from the assumptions, such as violations
of the IID assumption or the underlying data not following the Cauchy distribution, can
impact the performance and reliability of the test. Therefore, researchers should exercise
caution and consider alternative methods when these assumptions are not met.

By explicitly discussing the assumptions underlying the test, especially those related to
the IID nature of the sample, readers gain a better understanding of the contexts in which
the proposed test is most applicable and the potential limitations that need to be considered.

Providing a more thorough explanation of why the KL divergence is suitable for testing
the goodness-of-fit to the Cauchy distribution would enhance the readers understanding of
the methodological choices. Here is a detailed explanation: The choice of KL divergence as
the basis for the proposed test is motivated by its ability to capture the differences between
the observed data and the Cauchy distribution in a meaningful way. KL divergence is a
measure of dissimilarity or information gain between two probability distributions. In the
context of goodness-of-fit testing, it quantifies the discrepancy between the observed data
distribution and the assumed distribution (in this case, the Cauchy distribution).
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The Cauchy distribution is known for its heavy tails and lack of finite moments, which
make it distinct from many other symmetric distributions. Traditional goodness-of-fit tests,
such as the chi-squared test or Kolmogorov-Smirnov test, may not be well-suited for assessing
the fit to the Cauchy distribution due to their reliance on specific distributional assumptions
or moment-based statistics. KL divergence provides a more flexible and nuanced approach
for assessing the fit to the Cauchy distribution. It does not require assumptions about finite
moments or specific distributional forms. By considering the entire shape of the distributions
and capturing the heavy-tailed behavior of the Cauchy distribution, KL divergence offers
a more comprehensive measure of dissimilarity between the observed data and the Cauchy
distribution.

Furthermore, the use of KL divergence allows for the incorporation of robust statistical
principles. Robustness is particularly important in the context of the Cauchy distribution,
which is sensitive to outliers. KL divergence-based tests can provide more reliable results in
the presence of outliers, enhancing the robustness of the goodness-of-fit assessment.

By selecting KL divergence as the basis for the proposed test, the article leverages its ad-
vantages in capturing the unique characteristics of the Cauchy distribution, its flexibility in
handling heavy tails and lack of finite moments, and its robustness to outliers. This method-
ological choice provides a more accurate and reliable approach for testing the goodness-of-fit
to the Cauchy distribution compared to traditional tests that may not be well-suited for
this specific distribution. By providing this more thorough explanation, the readers gain a
deeper understanding of the rationale behind the use of KL divergence and its suitability
for testing the goodness-of-fit to the Cauchy distribution.

Suppose X1, . . . , Xn is a random sample from a continuous probability distribution with
PDF f . We are interested to test the hypothesis stated as

H0: f(x) = f0(x;µ, σ) = 1
πσ
[
1 + ((x− µ)/σ)2

] , for some (µ, σ) ∈ Ω,

where Ω = R×R+. The alternative to H0 is given by

H1: f(x) 6= f0(x;µ, σ) for any (µ, σ) ∈ Ω.

We propose a test statistic for test of the Cauchy distribution formulated as

T = − 1
n

n∑
i=1

log
(
n

2m
[
F0(X(i+m); µ̂, σ̂)− F0(X(i−m); µ̂, σ̂)

])
,

where F0 is the Cauchy CDF given by F0(x; µ̂, σ̂) = 1/2+(1/π)tan−1 ((x− µ̂)/σ̂), and (µ̂, σ̂)
are the maximum likelihood (ML) estimators of the unknown parameters (µ, σ). Since for
Cauchy distribution these estimators do not have a close form, we obtain them by the
Newton-Raphson method. As we know, the Newton-Raphson method needs the starting
values and here we set starting values for the unknown parameters µ and σ the median and
the half-interquartile range (half-IQR), that is, half of the difference between the upper and
lower quartiles. Suppose ξp is the sample p×100-th quantile. Then, the starting values to be
assumed are presented as µ0 = Median (Xi) and σ0 = (ξ0.75 − ξ0.25)/2. Therefore, we report
our results based on the starting points mentioned in above. The Newton-Raphson method
is a standard approach for parameter estimation in statistical inference. In the context of
the proposed test for the Cauchy distribution, the Newton-Raphson method is employed to
estimate the location and scale parameters of the Cauchy distribution based on the observed
data.
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Adapting the Newton-Raphson method for the Cauchy distribution involves considering
the specific PDF and the properties of the Cauchy distribution. The Cauchy distribution
is characterized by its location parameter (the center of symmetry) and scale parameter
(related to the width of the distribution). The PDF of the Cauchy distribution does not
have finite moments, making the estimation process challenging.

To address these challenges, the Newton-Raphson method is modified to suit the Cauchy
distribution properties. Here are some key considerations and adaptations: (i) initial pa-
rameter values: the choice of initial parameter values is crucial for the convergence of the
Newton-Raphson method. Since the Cauchy distribution lacks finite moments, traditional
methods using moments-based estimators may not be appropriate for initializing the pa-
rameters. Alternative approaches, such as robust initial estimators based on order statistics
or trimmed means, can be employed to provide more suitable initial values; (ii) score func-
tion: the score function, which measures the derivative of the log-likelihood function with
respect to the parameters, is a key component in the Newton-Raphson method. For the
Cauchy distribution, the score function is derived based on the specific form of the Cauchy
PDF. The score function accounts for the heavy-tailed behavior and the lack of finite mo-
ments in the Cauchy distribution; (iii) Hessian matrix: the Hessian matrix, which measures
the second-order derivatives of the log-likelihood function, is used to refine the parameter
estimates and assess their uncertainty (for the Cauchy distribution, the Hessian matrix is
derived based on the specific form of the Cauchy PDF and it incorporates the heavy-tailed
behavior and the lack of finite moments in the Cauchy distribution); and (iv) convergence
criteria: due to the unique properties of the Cauchy distribution, the convergence criteria
for the Newton-Raphson method may need to be adjusted. Traditional convergence criteria
based on the magnitude of the parameter updates may not be sufficient. Additional checks,
such as monitoring the profile likelihood or assessing the stability of the estimates, can be
employed to ensure convergence.

By adapting the Newton-Raphson method to account for the specific properties of the
Cauchy distribution, the proposed test achieves accurate estimation of the location and scale
parameters. These adaptations address the challenges posed by the heavy-tailed behavior
and the lack of finite moments in the Cauchy distribution, ensuring reliable parameter
estimation.

By providing this additional elaboration, the readers gain a deeper understanding of how
the Newton-Raphson method is specifically adapted for the Cauchy distribution and how
potential challenges are addressed in the context of parameter estimation.

The choice of appropriate starting values is crucial for the convergence and accuracy
of the Newton-Raphson method. In the case of the Cauchy distribution, which lacks finite
moments, traditional starting values based on moments-based estimators may not be appro-
priate. Therefore, alternative starting values based on robust estimators are often employed.

The specific choice of the median and half-IQR as starting values for the Newton-Raphson
method is motivated by their robustness to outliers and their ability to capture the central
tendency and spread of the data. Here is a more detailed explanation of why these specific
starting values are chosen and how they impact the convergence and accuracy of the method:
The median is a robust measure of central tendency that is less affected by extreme values or
outliers compared to mean. Using the median as a starting value helps mitigate the influence
of outliers on the estimation process. It provides a reasonable initial estimate for the location
parameter of the Cauchy distribution, which represents the center of symmetry. The half-
IQR is a robust measure of spread that captures the range of values where the middle 50%
of the data lie. It is less sensitive to extreme values compared to the standard deviation or
range. Using half-IQR as a starting value helps in providing an initial estimate for the scale
parameter of the Cauchy distribution, which is related to the width of the distribution.
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The choice of these starting values is practical because they are readily available summary
statistics that are easy to compute and interpret. Moreover, these robust estimators are less
affected by outliers, making them suitable for the Cauchy distribution, which is known for its
sensitivity to extreme values. Regarding the impact on convergence and accuracy, starting
values play a crucial role in the convergence of the Newton-Raphson method. Appropri-
ate starting values improve the chances of convergence to the true parameter values. The
choice of the median and half-IQR as starting values for the Cauchy distribution provides
reasonable initial estimates that are less affected by outliers, which can help improve the
convergence of the algorithm. However, it is important to note that the choice of starting
values can affect the speed of convergence and the accuracy of the estimates. In some cases,
the initial estimates based on the median and half-IQR may require additional iterations to
converge compared to starting values obtained from other robust estimators. Hence, careful
monitoring of convergence and sensitivity analysis is recommended to ensure the accuracy
and reliability of the estimated parameters.

By providing this additional justification and discussing the impact of the chosen starting
values on convergence and accuracy, readers gain further insight into the practical consid-
erations associated with the Newton-Raphson method for the Cauchy distribution.

Let us discuss the choice of starting values for the Newton-Raphson method (median and
half-IQR) and their impact on convergence and accuracy: The choice of starting values is an
essential consideration in the Newton-Raphson method as it can influence the convergence
and accuracy of the parameter estimation. In the case of the Cauchy distribution, which
lacks finite moments, traditional starting values based on moments may not be appropriate.
Therefore, alternative strategies are employed, such as using the median and half-IQR as
starting values.

The median is a robust measure of central tendency that is less sensitive to extreme values
compared to the mean. It represents the location parameter of the Cauchy distribution,
which corresponds to the center of symmetry. Choosing the median as the starting value
aligns with the intuitive understanding of the Cauchy distribution behavior and provides a
reasonable initial estimate for the location parameter.

Similarly, the half-IQR is a robust measure of scale that is less influenced by outliers
compared to standard deviation or range. It represents the scale parameter of the Cauchy
distribution, which relates to the width of the distribution. Using the half-IQR as the starting
value aligns with the heavy-tailed nature of the Cauchy distribution and provides a robust
estimate for the scale parameter. The choice of these specific starting values (median and
half-IQR) is practical for several reasons as follows. (i) Robustness: The Cauchy distribution
is known to be sensitive to outliers, and robust estimators, such as the median and half-
IQR, mitigate the influence of extreme values. These robust estimators align well with the
properties of the Cauchy distribution and offer a more reliable starting point for convergence.
(ii) Intuitive interpretation: The median and half-IQR have clear interpretations and are
easily understood by researchers and practitioners. They provide a straightforward and
meaningful initial estimate of the location and scale parameters, respectively. And (iii)
computational efficiency: The choice of starting values based on readily available summary
statistics (median and quartiles) reduces the computational burden and makes the method
more accessible in practice.

Regarding their impact on convergence and accuracy, starting values based on the median
and half-IQR generally lead to good convergence properties for the Newton-Raphson method
in the context of the Cauchy distribution. These starting values provide reasonable initial
estimates that are close to the true parameter values, facilitating convergence to the ML
estimates.
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It is important to note that the choice of starting values can impact the convergence be-
havior, especially when the sample size is small or when the data exhibit extreme deviations
from the Cauchy distribution. In such cases, additional sensitivity analyses or alternative
starting value strategies may be necessary to ensure convergence and accuracy. By justifying
the choice of starting values based on the median and half-IQR and discussing their impact
on convergence and accuracy, readers gain further insight into the rationale behind these
choices and their practical implications for the parameter estimation process. We reject the
null hypothesis for large values of the test statistic. According to Alizadeh (2019), the test
statistic is non-negative, that is, T ≥ 0, and also the test based on T is consistent.

Remark. Note that the proposed test statistic is invariant with respect to the location
and scale because T (cx + d) = T (x), where c > 0 and d ∈ R are constant values. This
means that the test statistic remains unchanged when the data are transformed by adding
a constant (location shift) or multiplying by a constant (scale change). Moreover, since the
test statistic T is invariant and the parameter space (Ω) is transitive, the distribution of the
proposed test statistic T does not depend on the unknown parameters µ and σ. Therefore,
it is concluded that the critical values of the test statistic do not depend on the unknown
parameters µ and σ and hence they can be obtained from a standard Cauchy distribution.

3. Critical points and power comparison

At the significance level α, we reject H0 if the value of the test statistic is greater than C(α),
where the critical value C(α) is obtained by the (1−α)×100-th quantile of the distribution
of the test statistic under the null hypothesis H0. Since deriving the exact distribution of
the proposed test statistic is complicated, we study the null distribution of the proposed
test statistic via Monte Carlo simulations using 100, 000 runs for each sample size. These
values are computed and presented in Table 1. To compute the proposed test statistic, it is
necessary to determine the value of m for given n We choose to use the heuristic formula
m = [

√
n+ 0.5]. This formula is proposed by Grzegorzewski and Wieczorkowski (1999) for

entropy estimation. Based on Remark 1, we can use any value of the parameters to obtain the
critical values because the distribution of the test statistic does not depend on the unknown
parameters µ = 0 and σ = 1. The results presented in Table 1 show that the critical points
decreases when the sample size increases. The R codes used in the article will be send on
request of researchers. All simulations and computations are performed on a laptop with an
AMD Ryzen 7 2700U 2.20 GHz processor and 8GB of RAM, running R version 4.1.0 under
Microsoft Windows 10 Home version 22H2.
Table 1. Critical values of the proposed test statistic for α = 0.01, 0.05, 0.10.

n

α 10 20 30 40 50 60 70 80 90 100
0.01 0.6208 0.4332 0.3280 0.2654 0.2299 0.2051 0.1813 0.1678 0.1539 0.1446
0.05 0.5165 0.3495 0.2669 0.2228 0.1930 0.1727 0.1548 0.1427 0.1312 0.1244
0.10 0.4676 0.3126 0.2393 0.2014 0.1767 0.1582 0.1420 0.1317 0.1204 0.1156

Table 2. Type I error control of the test for the nominal significance level α = 0.05

n C(0,0.5) C(0,2) C(0,4) C(0,8)
10 0.0480 0.0499 0.0494 0.0500
20 0.0505 0.0518 0.0511 0.0511
30 0.0525 0.0554 0.0519 0.0501
50 0.0518 0.0532 0.0507 0.0513
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We evaluate the estimated type I error control using the critical values of the proposed
test. We generated random samples from different Cauchy populations and then obtained
the actual sizes of the proposed test. The results are displayed in Table 2. It is evident that
the actual sizes of proposed test are approximately equal to the nominal size 0.05. Therefore,
we can conclude that the empirical percentiles presented in Table 1 provides an excellent
type I error control.

Through Monte Carlo simulations, the power values of the proposed test against various
alternatives are computed. Since the tests of fit based on the empirical distribution function
are commonly used in practice, we compare the performance of the EDF-tests and the
proposed goodness-of-fit test under various alternative distributions. The well-known EDF-
tests are Cramer von Mises testW 2, Watson test U2, Kolmogorov-Smirnov testD, Anderson-
Darling test A2, and Kuiper test V . The test statistics of these tests are briefly described
as follows. For more details about these tests, see D’Agostino and Stephens (1986).

Let X(1) ≤ · · · ≤ X(n) be the order statistics based on the random sample X1, . . . , Xn.
Consider the following:

(i) The Cramer-von Mises statistic:

W 2 = 1
12n +

n∑
i=1

(2i− 1
2n − F0(X(i); µ̂, σ̂)

)2
.

(ii) The Watson statistic:

U2 = W 2 − n
(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); µ̂, σ̂), for i = 1, . . . , n.
(iii) The Kolmogorov-Smirnov statistic:

D = max(D+, D−)

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); µ̂, σ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); µ̂, σ̂)− i− 1

n

}
.

(iv) The Kuiper statistic:

V = D+ +D−

(v) The Anderson-Darling statistic:

A2 = −n− 1
n

n∑
i=1

(2i− 1)
{

log(F0)(X(i); µ̂, σ̂) + log
(
1− F0(X(n−i+1); µ̂, σ̂)

)}
.

In the above test statistics, F0(x) is the CDF of the Cauchy distribution and (µ̂, σ̂) are the
ML estimate of the parameters (µ, σ). It is obvious that for large values of the above test
statistics the null hypothesis H0 will be rejected. Moreover, we consider the tests proposed
by Zhang (2002).
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These test statistics for the Cauchy distribution are given by

ZA = −
n∑

i=1

(
log(F0)(X(i); µ̂, σ̂)

n− i+ 0.5 +
log
(
1− F0(X(i); µ̂, σ̂)

)
i− 0.5

)
,

ZC =
n∑

i=1

[
log
(

F0(X(i); µ̂, σ̂)−1 − 1
(n− 0.5)/(i− 0.75)− 1

)]2

,

ZK = max
1≤i≤n

[(
i− 0.5

)
log
(

i− 0.5
nF0(X(i); µ̂, σ̂)

)
+
(
n− i+ 0.5

)
log
(

n− i+ 0.5
n(1− F0(X(i); µ̂, σ̂))

)]
.

For large values of the above test statistics the null hypothesis H0 will be rejected. The test
statistics are invariant under any affine transformation on the sample data. Therefore, they
are distribution-free within the Cauchy distribution family.
The following alternatives are considered in power comparison. These alternatives can divide
into two groups, symmetric alternatives and asymmetric alternatives.
Group I: Symmetric alternatives:

• The standard normal distribution, denoted by N(0,1);
• The Student-T distribution with 10 degrees of freedom, denoted by T(10);
• The Student-T distribution with 3 degrees of freedom, denoted by T(3);
• The standard Laplace distribution, denoted by La(0,1);
• The standard logistic distribution, denoted by Lo(0,1);
• The uniform distribution, denoted by U(0,1);
• The Beta distribution, denoted by Beta(2,2).
Group II: asymmetric alternatives:

• The standard exponential distribution: Exp(1);
• Two cases of the gamma distribution: Gamma(0.5,1) and Gamma(2,1);
• Three cases of the log-normal distribution: LN(0,0.5), LN(0,1), LN(0,2);
• Two cases of the Weibull distribution: W(0.5,1) and W(2,1);
• The standard extreme value distribution (Gumbel), denoted by EV(0,1);
• Three cases of the inverse Gaussian distribution: IG(1,0.5), IG(1,1) and IG(1,2);
• Three cases of the skew-normal distribution: SN(0,1,0.5), SN(0,1,2) and SN(0,1,3);
• Three cases of the skew-Laplace distribution: SL(0,1,0.5), SL(0,1,2) and SL(0,1,3).

We compute the power values of the tests under the above alternatives by Monte Carlo
simulations as follows. Under each alternative 100,000 samples of size 10, 20, 30 and 50
are generated and the test statistics are calculated. Then power of the corresponding test is
computed by the frequency of the event “the statistic is in the critical region”. Tables 3, 4 and
5 display and compare the power values of the tests at the significance level α = 0.05. For
each sample size and alternative, the bold type in these tables indicates the tests achieving
the maximal power.

The power values of the test change with different sample sizes for each alternative dis-
tribution and we can see that when the sample size increases the power values of the tests
increase.

By exploring the test performance at different significance levels, we can see that the
type-I error of the tests are acceptable again and also power values of tests have a similar
behavior with the significance level 0.05.

The power values in Table 3 show a uniform superiority of the proposed test to all other
tests against symmetric alternatives. The power differences between the proposed test T
and the other tests are substantial.
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Table 3. Empirical powers of the tests against symmetric distribution at significance level 5%.

Alternative n W 2 D V U2 A2 ZA ZC ZK T

N(0,1) 10 0.0305 0.0315 0.0627 0.0645 0.0152 0.0209 0.0125 0.0125 0.2331
20 0.0689 0.0633 0.2064 0.1953 0.0592 0.2542 0.1795 0.0545 0.6701
30 0.1147 0.1048 0.3706 0.3457 0.1530 0.6741 0.5572 0.1848 0.9320
50 0.2722 0.2505 0.7030 0.6582 0.4968 0.9876 0.9677 0.6941 0.9997

T(10) 10 0.0280 0.0298 0.0533 0.0552 0.0130 0.0176 0.0101 0.0110 0.1954
20 0.0571 0.0549 0.1603 0.1548 0.0442 0.1895 0.1295 0.0432 0.5663
30 0.0921 0.0834 0.2858 0.2711 0.1108 0.5415 0.4262 0.1352 0.8564
50 0.1997 0.1799 0.5583 0.5410 0.3673 0.9475 0.9009 0.5289 0.9939

T(3) 10 0.0250 0.0276 0.0418 0.0417 0.0122 0.0148 0.0076 0.0115 0.1302
20 0.0416 0.0429 0.0920 0.0865 0.0282 0.0913 0.0565 0.0287 0.3301
30 0.0555 0.0563 0.1383 0.1330 0.0510 0.2488 0.1685 0.0663 0.5452
50 0.0941 0.0933 0.2597 0.2655 0.1383 0.6123 0.5006 0.2239 0.8305

La(0,1) 10 0.0281 0.0289 0.0514 0.0527 0.0126 0.0168 0.0890 0.0114 0.1163
20 0.0538 0.0521 0.1438 0.1375 0.0417 0.1619 0.1093 0.0384 0.2704
30 0.0792 0.0735 0.2418 0.2328 0.0934 0.4767 0.3636 0.1105 0.4999
50 0.0661 0.0611 0.1758 0.1746 0.0954 0.5920 0.4691 0.1666 0.8551

Lo(0,1) 10 0.0267 0.0292 0.0406 0.0397 0.0131 0.0149 0.0078 0.0112 0.1790
20 0.0379 0.0381 0.0717 0.0693 0.0241 0.0712 0.0439 0.0226 0.5221
30 0.0452 0.0445 0.0989 0.0941 0.0389 0.2003 0.1343 0.0460 0.8134
50 0.1709 0.1513 0.4893 0.4746 0.3074 0.9198 0.8565 0.4572 0.9896

U(0,1) 10 0.0784 0.0856 0.0201 0.0187 0.0470 0.0799 0.0549 0.0453 0.4607
20 0.2347 0.2789 0.6888 0.5853 0.2658 0.7641 0.6649 0.3454 0.9628
30 0.4781 0.5731 0.9263 0.8379 0.6480 0.9873 0.9688 0.8313 0.9995
50 0.8628 0.9525 0.9985 0.9879 0.9753 1.0000 1.0000 0.9995 1.0000

Beta(2,2) 10 0.0441 0.0437 0.1034 0.1032 0.0236 0.0348 0.0231 0.0184 0.3313
20 0.1185 0.1143 0.4083 0.3573 0.1203 0.5029 0.3940 0.1257 0.8713
30 0.2368 0.2306 0.6917 0.6014 0.3543 0.9203 0.8535 0.4648 0.9940
50 0.5675 0.6100 0.9646 0.9018 0.8299 0.9998 0.9992 0.9747 1.0000

Table 4. Empirical powers of the tests against asymmetric distribution at significance level 5%.

Alternative n W 2 D V U2 A2 ZA ZC ZK T

Exp(1) 10 0.1531 0.2078 0.1043 0.1965 0.2116 0.1404 0.0772 0.1279 0.3659
20 0.3870 0.5782 0.3673 0.5890 0.6412 0.7159 0.4979 0.6514 0.9070
30 0.6179 0.8174 0.6685 0.8788 0.8813 0.9789 0.8902 0.9662 0.9936
50 0.9268 0.9858 0.9754 0.9982 0.9963 1.0000 0.9997 1.0000 0.9994

Gamma(0.5,1) 10 0.3513 0.4163 0.2835 0.4524 0.4498 0.3616 0.2189 0.3615 0.4689
20 0.7263 0.8669 0.7138 0.9096 0.9143 0.9368 0.7730 0.9345 0.8647
30 0.9308 0.9810 0.9473 0.9947 0.9931 0.9995 0.9861 0.9992 0.9052
50 0.9988 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.9429

Gamma(2,1) 10 0.0754 0.1191 0.0442 0.0882 0.1170 0.0596 0.0325 0.0460 0.2858
20 0.1976 0.3660 0.1810 0.2777 0.3984 0.4894 0.3303 0.3186 0.8216
30 0.3485 0.6006 0.4034 0.5361 0.6551 0.8967 0.7537 0.7673 0.9867
50 0.6823 0.9016 0.8410 0.9264 0.9426 0.9999 0.9963 0.9985 1.0000

LN(0,0.5) 10 0.0651 0.0977 0.0363 0.0721 0.0935 0.0470 0.0240 0.0366 0.2478
20 0.1643 0.2967 0.1483 0.2108 0.3146 0.4061 0.2595 0.2414 0.7402
30 0.2826 0.5021 0.3202 0.4101 0.5282 0.8203 0.6549 0.6402 0.9651
50 0.5829 0.8316 0.7481 0.8217 0.8619 0.9986 0.9858 0.9923 0.9999

LN(0,1) 10 0.1840 0.2140 0.1348 0.2259 0.2164 0.1688 0.0868 0.1550 0.3063
20 0.4457 0.5631 0.4293 0.6153 0.6030 0.7152 0.4651 0.6740 0.8520
30 0.6798 0.8062 0.7174 0.8812 0.8463 0.9770 0.8494 0.9649 0.9819
50 0.9463 0.9825 0.9804 0.9976 0.9898 1.0000 0.9994 1.0000 0.9969
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Table 5. Empirical powers of the tests against asymmetric distribution at significance level 5%.

Alternative n W 2 D V U2 A2 ZA ZC ZK T

LN(0,2) 10 0.5288 0.5366 0.5194 0.6124 0.5778 0.5997 0.4332 0.5606 0.3887
20 0.8864 0.9364 0.9119 0.9647 0.9596 0.9874 0.9116 0.9793 0.6860
30 0.9856 0.9949 0.9940 0.9989 0.9975 1.0000 0.9980 0.9999 0.6870
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6690

W(0.5,1) 10 0.5208 0.5592 0.4752 0.6271 0.6058 0.5612 0.3795 0.5497 0.4459
20 0.8875 0.9504 0.8946 0.9730 0.9721 0.9846 0.8984 0.9832 0.7058
30 0.9883 0.9967 0.9932 0.9993 0.9987 1.0000 0.9978 0.9999 0.6921
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6913

W(2,1) 10 0.0432 0.0859 0.0224 0.0459 0.0827 0.0309 0.0182 0.0204 0.2711
20 0.1041 0.2757 0.0955 0.1178 0.3045 0.3812 0.2736 0.1304 0.7809
30 0.1978 0.4862 0.2611 0.2435 0.5421 0.8273 0.7101 0.4569 0.9784
50 0.4556 0.8138 0.7001 0.6225 0.8780 0.9989 0.9932 0.9692 0.9999

EV(0,1) 10 0.0457 0.0784 0.0239 0.0493 0.0745 0.0322 0.0176 0.0219 0.2334
20 0.1101 0.2302 0.0961 0.1271 0.2426 0.3068 0.2029 0.1313 0.6854
30 0.1906 0.4011 0.2242 0.2414 0.4261 0.7303 0.5778 0.4119 0.9427
50 0.4171 0.7333 0.6122 0.5811 0.7645 0.9939 0.9718 0.9318 0.9997

IG(1,0.5) 10 0.2722 0.2990 0.2165 0.3341 0.3098 0.2645 0.1447 0.2516 0.3390
20 0.6069 0.7100 0.6034 0.7800 0.7516 0.8475 0.6169 0.8253 0.8554
30 0.8395 0.9141 0.8750 0.9608 0.9347 0.9942 0.9361 0.9907 0.9474
50 0.9903 0.9964 0.9975 0.9999 0.9984 1.0000 1.0000 1.0000 0.9766

IG(1,1) 10 0.1725 0.2077 0.1218 0.2116 0.2068 0.1544 0.0804 0.1412 0.3156
20 0.4269 0.5540 0.4060 0.5894 0.5912 0.6986 0.4662 0.6485 0.8594
30 0.6618 0.7991 0.7012 0.8672 0.8354 0.9733 0.8554 0.9576 0.9838
50 0.9395 0.9800 0.9763 0.9966 0.9879 1.0000 0.9994 1.0000 0.9981

IG(1,2) 10 0.1033 0.1391 0.0638 0.1208 0.1370 0.0829 0.0438 0.0699 0.2831
20 0.2670 0.4067 0.2465 0.3757 0.4314 0.5362 0.3475 0.4243 0.8103
30 0.4563 0.6524 0.4990 0.6616 0.6882 0.9187 0.7614 0.8487 0.9850
50 0.7865 0.9271 0.8938 0.9633 0.9488 0.9999 0.9961 0.9994 1.0000

SN(0,1,0.5) 10 0.0319 0.0632 0.0148 0.0313 0.0587 0.0198 0.0110 0.0128 0.2296
20 0.0661 0.1911 0.0571 0.0607 0.2094 0.2585 0.1811 0.0555 0.6669
30 0.1108 0.3423 0.1463 0.1024 0.3680 0.6690 0.5601 0.1893 0.9346
50 0.2722 0.6593 0.4984 0.2475 0.7036 0.9858 0.9649 0.6945 0.9995

SN(0,1,2) 10 0.0353 0.0671 0.0173 0.0371 0.0639 0.0227 0.0133 0.0142 0.2294
20 0.0762 0.2041 0.0671 0.0768 0.2128 0.2731 0.1934 0.0762 0.6711
30 0.1370 0.3577 0.1733 0.1370 0.3756 0.6838 0.5591 0.2448 0.9348
50 0.3118 0.6755 0.5270 0.3397 0.7163 0.9892 0.9679 0.7777 0.9997

SN(0,1,3) 10 0.0402 0.0762 0.0213 0.0427 0.0714 0.0277 0.0160 0.0180 0.2429
20 0.1044 0.2416 0.0945 0.1102 0.2513 0.3255 0.2333 0.1146 0.7103
30 0.1785 0.4214 0.2216 0.2045 0.4428 0.7481 0.6211 0.3538 0.9541
50 0.4019 0.7491 0.6237 0.5024 0.7851 0.9954 0.9814 0.8906 0.9997

SL(0,1,0.5) 10 0.0503 0.0671 0.0266 0.0525 0.0634 0.0316 0.0159 0.0252 0.1541
20 0.1125 0.1591 0.0912 0.1130 0.1520 0.1815 0.1156 0.0895 0.4087
30 0.1839 0.2540 0.1794 0.1859 0.2340 0.4264 0.3219 0.2088 0.6857
50 0.3557 0.4717 0.4239 0.3586 0.4266 0.8470 0.7576 0.5339 0.9552

SN(0,1,2) 10 0.0518 0.0695 0.0274 0.0542 0.0643 0.0326 0.0163 0.0250 0.1565
20 0.1129 0.1593 0.0913 0.1148 0.1512 0.1797 0.1158 0.0894 0.4143
30 0.1849 0.2548 0.1795 0.1841 0.2327 0.4280 0.3211 0.2093 0.6811
50 0.3533 0.4675 0.4219 0.3528 0.4228 0.8409 0.7513 0.5291 0.9557

SN(0,1,3) 10 0.0797 0.1049 0.0474 0.0855 0.0956 0.0552 0.0286 0.0445 0.2040
20 0.1987 0.2716 0.1721 0.2165 0.2563 0.3235 0.2144 0.2004 0.5634
30 0.3302 0.4436 0.3389 0.3704 0.4100 0.6545 0.5227 0.4386 0.8420
50 0.6035 0.7449 0.6989 0.6718 0.6950 0.9658 0.9240 0.8390 0.9918
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From Table 4 and 5, against asymmetric alternatives, it is seen that the test based on T
statistic (with the exception of a few alternatives) has the most power. The power differences
between the test T and the other tests are substantial.

In general, Tables 3, 4 and 5 reveal a uniform superiority of the proposed test to all other
tests as it outperforms all other competing tests. We can also conclude that the proposed
test T has a good performance and therefore can be used in practice.

4. An illustrative example

In this section, we illustrate how the proposed test can be applied to test the goodness-of-fit
for the Cauchy distribution when the observations are available.

The stock market price is usually modeled by lognormal distribution, that is to say stock
market returns follow the Gaussian law. The feature of stock market return distribution is
a sharp peak and heavy tails. Therefore, the Cauchy distribution may be a potential model.
We apply the proposed test to 30 returns of closing prices of the German Stock Index (DAX).
The data are observed daily from 1 January 1991, excluding weekends and public holidays.
The data (rounded up to seven decimal places) are presented in Table 6. In Figure 1, the
histogram, superimposed by a Cauchy PDF is displayed.
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Figure 1. The histogram of the 30 returns along with fitted Cauchy PDF.

Table 6. Scores for 30 returns of closing prices of DAX.

Observations n = 30
0.0011848 −0.0057591 −0.0051393 −0.0051781 0.0020043 0.0017787
0.0026787 −0.0066238 −0.0047866 −0.0052497 0.0004985 0.0068006
0.0016206 0.0007411 −0.0005060 0.0020992 −0.0056005 0.0110844
−0.0009192 0.0019014 −0.0042364 0.0146814 −0.0002242 0.0024545
−0.0003083 −0.0917876 0.0149552 0.0520705 0.0117482 0.0087458

The ML estimates are

µ̂ = 0.0005769257 and σ̂ = 0.003328893.

The value of the test statistic is T = 0.1789 and the critical value at the 5% is obtained
as 0.2669. Since the value of the test statistic is smaller than the critical value, the null
hypothesis that the data follow the Cauchy distribution is not rejected at 0.05 significance
level. This conclusion seems fairly reliable given the good performance of the proposed test
in simulation studies.
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5. Conclusions, limitations, and future research

In this article, we have proposed and utilized the Kullback-Leibler information as a mea-
sure of fitness assessment for the Cauchy distribution. Our proposed approach includes the
development of a novel goodness-of-fit test, leveraging the Kullback-Leibler information as
its core metric for evaluation. Then, we have investigated some properties of the test statis-
tic. To further validate the performance and applicability of our proposed test, we have
conducted extensive Monte Carlo simulations. Through these simulations, we were able to
determine the critical points and actual sizes of the test, thereby ensuring its accuracy in
practical scenarios.

We have conducted a comparative study to assess the performance of our proposed test
in comparison to other existing methods. Our results provide evidence of the superior per-
formance of the Kullback-Leibler information-based test in detecting deviations from the
Cauchy distribution under certain alternative hypotheses. This highlights the effectiveness
of this information as a tool for assessing the goodness of fit of the Cauchy distribution.

To demonstrate the practical application and relevance of our proposed test, we have
illustrated its usage using a real-world dataset. This practical example serves to showcase
the test ability to accurately assess the fit of the Cauchy distribution to observed data
and reinforces the utility of the Kullback-Leibler information-based approach in real data
analysis scenarios. Overall, this comparative study and practical illustration enhance our
understanding of the proposed Kullback-Leibler information-based test and its superiority
in evaluating the goodness of fit for the Cauchy distribution. These findings contribute to
the broader field of statistical analysis by providing a valuable alternative approach for
assessing distributional fit.

Discussing potential limitations of the test when applied to real-world data is crucial
to provide a balanced view and guide practitioners on when the test is most appropriate.
Here are some potential limitations that could be considered as follows. (i) Sensitivity to
extreme outliers: The test performance may be affected by the presence of extreme outliers
in the data. The Cauchy distribution is known for its heavy tails, but extreme outliers can
still have a significant impact on the estimation of parameters and the goodness of fit. It is
important to assess the robustness of the test in the presence of extreme outliers and consider
alternative approaches or modifications to handle such situations. (ii) Small sample sizes:
The test reliability may be compromised when applied to datasets with very small sample
sizes. Limited data may lead to imprecise parameter estimation, resulting in less reliable
conclusions. It is important to be cautious when interpreting the test results in such cases
and consider alternative methods or approaches that are more suitable for small sample
sizes. (iii) Assumption of independent and identically distributed observations: The test
assumes that the data are independent and identically distributed, which may not always
hold in real-world scenarios. Financial data, for example, often exhibit time dependencies
or heteroscedasticity. Violations of these assumptions can affect the test performance and
lead to incorrect conclusions. It is essential to carefully consider the data characteristics and
whether the assumptions of the test are appropriate. (iv) Limited generalizability: While the
test may perform well on certain datasets or in specific domains, its generalizability across
different types of data and sectors may be limited. The Cauchy distribution may not be the
most appropriate model for all financial data, and other distributional assumptions might
be more suitable in certain cases. It is important to consider the context and characteristics
of the data before applying the test. And (v) impact of parameter estimation methods: The
choice of parameter estimation method can influence the test performance and outcomes.
Different estimation techniques may lead to varying parameter estimates, which in turn
affect the conclusions about the data distribution. It is important to carefully select and
justify the chosen estimation method and assess its potential impact on the test results.
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Future research directions can further enhance the understanding and applicability of the
proposed test for the Cauchy distribution. Some potential avenues for future investigation
include applying the test to other types of data beyond financial markets, such as environ-
mental or biological datasets, to assess its validity and performance in different domains.
Additionally, exploring modifications or extensions to the test to enhance its robustness to
outliers or to relax certain assumptions, such as the independence and identical distribu-
tion of observations, could be fruitful. Furthermore, investigating the test performance in
dynamic or time-varying environments, where the parameters of the Cauchy distribution
may change over time, would provide valuable insights. These future research efforts can
contribute to the refinement and broader applicability of the test in diverse fields.

The goodness-of-fit tests considered here are all based on complete samples. But data
arising from reliability and life-testing experiments are often censored. There are a number
of goodness-of-fit tests in this case in the literature. Therefore, it will be of interest to
extend the goodness-of-fit test proposed here to the situation when the data are censored
or progressively censored. Another problem of interest will be to develop more general
goodness-of-fit tests based on phi-divergence measures. We are currently working on these
problems and hope to report these finding in a future article.

In summary, our research contributes a novel Kullback-Leibler information-based test for
assessing the goodness of fit for the Cauchy distribution. Its practical applications span
various fields, including finance, physics, and engineering, among others. By addressing
potential limitations and exploring future research directions, we aim to refine and enhance
the test performance and applicability in diverse real-world scenarios.
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