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Abstract

In this article, a two-parameter model called unit-Gompertz is studied over the unit
interval. We describe its statistical characteristics such as uncertainty measures of Shan-
non, Tsallis, Renyi, Mathai-Houbold, Kumar and Verma, order statistics, quantile func-
tion, maximum likelihood estimation, factorial and characteristic function, moment gen-
erating function, and stress-strength analysis. The effectiveness of the studied model is
demonstrated by the use of two datasets from the real life. The model has flexible haz-
ard rate shapes, presents better performance and fits the data better than other usual
models.

Keywords: Entropy · Gompertz model · Monte Carlo simulation · Reliability analysis
· Stochastic order · Stress-strength analysis.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F10.

1. Introduction

Different unit distributions have been used to represent data for fractions and percentages in
a variety of domains, including economics, fitness, risks, life studies, recovery and mortality
rates, and measurement sciences. When it comes to modeling and obtaining interpretations
based on datasets from the aforementioned domains, there is no doubt that the beta (John-
son, 1949) and Kumaraswamy (Kumaraswamy, 1980) distributions immediately come to
mind. It is possible that these traditional models are insufficient, which would seriously
impede accurate data analysis. As a result, there are an increasing number of studies in the
literature that use unit distributions as their basis. A considerable amount of recent scholarly
writing has focused on probability distributions that are included in the unit interval.
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Due to their importance in data modeling across numerous areas, including biology, fi-
nance, and environmental research, these bounded distributions have attracted the atten-
tion. Bounded distributions are essential because many examples in these domains involve
data that naturally falls into the unit range (0, 1). Additionally, better data fitting and more
accurate parameter estimations are frequently the outcome of using these distributions in
modeling, which closely aligns the model with the real data. Regarding bounded models,
check Gemeay et al. (2023), Yildirim et al. (2023), Belili et al. (2023) and Chotikapanich et
al. (2007) for further information.

It is evident that bounded distributions have a limited range, and as a result, new models
are being proposed and this topic is receiving increased attention. The following are some of
the novel models: the generalized exponentiated unit-Gompertz distribution (Sindhu et al.,
2023), the unit-Weibull distribution (Mazucheli et al., 2018), the mixture of Log-Bilal dis-
tributions (Lone et al., 2023), the unit inverse Gaussian distribution (Ghitany et al., 2019),
the unit-Lindley distribution (Mazucheli et al., 2019), the unit Gumbel type-II distribution
(Shafiq et al., 2023), unit Burr-III (Modi et al., 2020) distribution, the exponential Topp-
Leone distribution (Pourdarvish et al., 2015), log-shifted Gompertz distribution (Jodrá et
al., 2020), log-Lindley distribution (Gómez-Déniz et al., 2014), the log-extended exponential-
geometric distribution (Al-Zaydi et al., 2023), and the logit-slash distribution (Korkmaz et
al., 2020). Given that any other limited interval may be transformed from a random vari-
able (RV) specified on (0,1) using a straightforward linear transformation, it is amazing that
these models are defined on the unit interval.

The Gompertz model is a widely used generalized exponential distribution in various real-
world applications, particularly in the fields of actuarial science and medicine. It exhibits
strong correlations with other well-known models, including the double exponential, Gumbel,
Weibull, exponential, and generalized logistics models (Willekens, 2001). An exponentially
increasing rate of failure throughout the course of a system life is a fundamental component
of the Gompertz model. A number of scholars have currently made contributions to the
analysis of the statistical methods and characteristics of this kind of model. For example,
refer to references: Read (1983), Makany (1991), Rao et al. (1992), Franses (1994), Chen
(1997) and Wu et al. (1999). The statistics literature contains a number of models for
modeling lifetime data (see, for example, Ferreira et al. (2023), Cordeiro et al. (2022),
Chesneau et al. (2022), Ribeiro-Reis et al. (2022), Cordeiro et al. (2019) and Afify et al.
(2017)).

Motivated by the aforementioned literature, our goal is to investigate a novel restricted
model including a closed form cumulative distribution function with unit interval. The unit-
Gompertz (UG) distribution is the name of the suggested model. First, Mazucheli et al.
(2019) suggested this model but did not thoroughly characterize every characteristic of the
UG model.

We present the UG model for the following reasons:
(i) It has been observed that the survival times of systems or units are typically greater

than zero, but their lifespan cannot be considered infinite. This model can be applied
to a variety of issues, including public health and the environment.

(ii) It is effective in modeling bathtub hazards, where failure rates increase, peak, and then
decrease as several units are replaced.

(iii) It can accommodate multiple points lying within the range of (0, 1), where multiple
units may be dropped or replaced in various applications.

(iv) Two real data applications demonstrate its performance compared to other competing
lifetime models. Additionally, we provide several mathematical characteristics of the
new distribution that can be utilized by statisticians in their future studies.
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The article is organized as following. Section 2 presents the UG model and some of its
properties. In Section 3, we provide a random number generator for the UG model and
certain measures such as its mean, variance, skewness and kurtosis. In this section, the UG
model is also introduced for reliability analysis in a multicomponent stress-length framework.
Section 4 is devoted to the moments of the UG distribution and related aspects. In Section
5 are presented some entropy measures for the UG model and is also discussed the residual
life function for the UG model. In Section 6, we derive the estimation of parameters for
the UG distribution under a classical paradigm, conduct a simulation study, and apply our
results to two real data applications to illustrate the performance of the proposed model in
comparison with other models stated in the literature. Section 7 establishes our concluding
remarks and future extensions based on this work.

2. Novel Gompertz distribution

2.1 Context

By using Y = exp(−X), if X has a two-parameter Gompertz distribution, then the cumu-
lative distribution function (CDF) of Y is written as

F (y; b, η) = 1− exp (η (1− exp(b y))) , b, η, y > 0. (2.1)

We obtain the UG distribution (Benkhelifa, 2017) with its probability density function
(PDF) and CDF given by

f (y; b, η) = bηy−b−1 exp
(
η
(
1− y−b

))
; b, η > 0, (2.2)

F (y; b, η) = exp
(
η
(
1− y−b

))
, (2.3)

where y ∈ (0, 1) and b, η > 0 are scale and structure parameters, respectively. Note
that F (y; b, η) is differentiable and increases between 0 and 1, being in addition that
limy→0 F (y) = 0 and limy→1 F (y) = 1.

In general, reliability is concerned with assessing a system probability of aging or failure.
The survival function (SF) of an RV Y is defined as R(y) = 1− F (y) = P(Y > y). It may
be specified as probability of a system not failing within a specific given time. The SF of
the UG distribution is defined by

R(y; b, η) = 1− exp
(
η
(
1− y−b

))
. (2.4)

The hazard rate function (HRF) h(y; b, η) = f(y; b, η)/(1− F (y; b, η)) is a helpful tool for a
lifetime study. The instant failure rate of Y is the probability of a system failing as it has
existed to current moment t and it is given as

h(y; b, η) = bηy−b−1 exp
(
η
(
1− y−b

))
1− exp (η (1− y−b)) . (2.5)

The odd ratio is defined as

Υy (y; b, η) = Ry (y)
hy (y) =

(
1− exp

(
η
(
1− y−b

)))2
bηy−b−1 exp (η (1− y−b)) . (2.6)
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The cumulative HRF of the UG distribution is obtained as

H (y) =
∫ y

0
h(t; b, η)dt = − log

(
1− exp

(
η
(
1− y−b

)))
, (2.7)

where Ry (y) and hy (y) is defined in Equations (2.4) and (2.5). Equations (2.1)-(2.7) can
be evaluated numerically utilizing computing packages like Maple, MATLAB, Mathematica,
Minitab and R-project. The sketches of Equations (2.2) and (2.5) are given in Figures 1
and 2 for values of chosen parameter. Figure 1 demonstrate how parameters b and η influence
the UG PDF and demonstrate flexibility of the PDF forms given in Equation (2.2) where
small symmetry, skewness, modality and high tails can be calculated. These figures reflect
flexibility of the UG distribution. Figure 2 displays the increasing and bathtub pattern of
HRFs.

Figure 1.: Plots of the UG PDF at different parameter values.

Figure 2.: Plots of the UG HRF at different parameter values.

2.2 Characterization based on the HRF

Suppose F (y; b, η) be an absolute continuous model having PDF f (y; b, η). The HRF refer-
ring to F (y; b, η) is defined by

h (y; b, η) = f (y; b, η)
1− F (y; b, η) . (2.8)

Here, note that the HRF of a twice differentiable CDF is stated as

h′ (y; b, η)
h (y; b, η) − h (y; b, η) = k1 (y; b, η) , (2.9)
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where k1 is a suitable integrable function. For several continuous, univariate distributions
given in Equation (2.8) appears to be only differential equation in view of the HRF.

We create a differential equation that has the simplest possible form and not of the
trivial form given in Equation (2.9). However, that may not be feasible for certain general
distribution families. The characterization of the UG distribution is as follows.

Proposition 1. Let Y : χ → (0, 1) be a continuous RV. Then, the PDF of Y is given in
Equation (2.2) iff its HRF h (y; η, b) satisfies the differential equation formulated as

dh (y; η, b)
dy

−
(
ηby−b−1 exp

(
− η

(
1− y−b

))(
exp(−η

(
1− y−b

)
)− 1

)−1)
h (y; η, b)

= −bη
(
b+ 1

)
y−b−2 (exp(δy−η exp(−υy))− 1

)−1
.

The proofs of this proposition is in Appendix A.

2.3 Order statistics

Suppose Y(1) ≤ · · · ≤ Y(n) be order statistics of a random sample of size n from model.
Hence, the PDF of mth order statistics, Y(m) where m = 1, . . . , n, is given by

f(m) (y; b, η) = (y; b, η)m−1 (1− F (y; b, η))n−m f (y; b, η) , (2.10)

where Ψ = n!/ ((m− 1)!(n−m)!]. The PDF is obtained from Equations (2.2), (2.3)
and (2.10) and given by

f(m) (y; b, η) = bηΨ
n−m∑
f=0

(
n−m
f

)
(−1)f y−(b+1) exp

(
η (f +m− 1)

(
1− y−b

))
exp

(
η
(
1− y−b

))
,

whereas the CDF is F(m) (y; b, η) =
n∑

j=m

(n
j

)
F (y; b, η)j (1− F (y; b, η))n−j . Hence, the CDF

of the mth order statistic of the UG distribution, Y(m), is expressed as

F(m) (y; b, η) =
n∑

j=m

n−j∑
g=0

(−1)g
(
n

j

)(
n− j
g

)
F (y; b, η)j+g .

In particular, the CDFs of Y(1) and Y(n) are formulated as

F(1) (y; b, η) = 1−
(
1− exp

(
η
(
1− y−b

)))n
; (2.11)

F(n) (y; b, η) = exp
(
nη
(
1− y−b

))
, (2.12)

respectively.
Let Q(m) be (for 0 < ζ < 1) the quantile function (QF) of Y(m). Then, from Equa-

tions (2.11) and (2.12), we obtain

Q(1) (y) = Q
(
1− (1− ζ)1/n

)
, Q(n) (ζ) = Q

(
ζ1/n

)
,

where the QF of Y is represented by Q. We get an equation for the rth moment of the order
statistics denoted as ρr <∞. As in Siddiqui and Çağlar (1994), we represent rth moment
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as

ρr(m) = E
(
Y r

(m)

)
=

n∑
j=n−m+1

(−1)j−n+m−1
(
j − 1
n−m

)(
n

j

)
Ij (r) , (2.13)

with Ij (r) = r
∞∫
0
yr−1 (1− F (y))j dy.

Proposition 2. Let Y(1) ≤ · · · ≤ Y(n) be the order statistics of a random sample of size
n from the UG distribution. The rth moment of the mth order statistic of PDF given in
Equation (2.2) can be delineated as

ρr(m) = kj,m,n
r

b

j∑
s=0

(−1)s
(
j

s

)
exp(sη) (ηs)

r
b Γ
(
−r
b
, η

)
,

where kj,m,n =
∑n
j=n−m+1 (−1)j−n+m−1 ( j−1

n−m
)(n
j

)
. Appendix A contains the proof for this

proposition.

2.4 Stochastic ordering

It is of concern to describe, for practical reasons, the underlying Stochastic ordering (St-O)
of these members as per parameters if we work with a generalized family of distributions.
Here, certain model functions may be utilized as a function of likelihood ratio (LR) function,
HRF and CDF. Moreover, we’re focusing on likelihood ratios order listed below. For RV Y
and X, we say, Y � lrX, if ratio of relevant PDFs are reducing function in x. A significant
mechanism for the estimation of relative behavior is the St-O of continuous positive RVs.
Let RV Y > X have:

(i) Stochastic order X 4 stY , if FX (y) 4 FY (y) ,∀y;
(ii) Hazard rate order X 4 hrY if hX (y) < hY (y) ,∀y;
(iii) LR order X 4 lrY , if fX (y) /fY (y) reduces in y.
Consider the following implications (Ross et al., 1996):

X 4 lrY ⇒ X 4 hrY ⇒ X 4 stY. (2.14)

The UG models are ordered in relation to strongest LR ordering as reported below.

Proposition 3. Let X ∼ UG (η1, b) and Y ∼ UG (η2, b). If b1 = b2 = b and η1 ≤ η2, hence
X ≤ lrY (X ≤ stY,X ≤ hrY )

Refer to Appendix A for the proof of this proposition.

3. Random number generator, related measures, and reliability

3.1 Random number generator

The function F (y) is inverted to generate the RV Y as mentioned previously. Let ζ be an RV
and ζ ∼ U(0, 1). As a solution of the equation, an observation of Y can then be performed
solving η

(
1− y−b

)
= log (ζ). Therefore, we have that

Y = Q (ζ, b, η) =
(

1− log (ζ)
η

)− 1
b

∼ UG (b, η) . (3.15)
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Specifically, by placing ζ = (0.25, 0.50, 0.75) in Equation (3.15), the first, second, and third
quartiles are attained. Important quantities of SB;b,η and KM ;b,η are provided by φ3 = µ3/σ

3

and φ4 = µ4/σ
4, respectively, where µκ is the foundational κth moment and σ is the standard

deviation.

3.2 Related measures

Although for some parametric values, moments of model cannot occur, relevant quantile-
based measures SB;b,η and KM ;b,η are more appropriate often. For models without moments,
such indicators are more reliable and do occur. The indicators related to the Bowley skewness
and the Moors kurtosis are defined as

SB;b,η = Q (6/8; b, η) +Q (2/8; b, η)− 2Q (4/8; b, η)
Q (6/8; b, η)−Q (2/8; b, η) ,

KM ;b,η = Q (7/8; b, η)−Q (5/8; b, η) +Q (3/8; b, η)−Q (1/8; b, η)
Q (6/8; b, η)−Q (2/8; b, η) .

Therefore, if SB;b,η < 0, SB;b,η > 0, and SB;b,η = 0, then the distribution is called left, right
skewed, and symmetrical. Respectively, a higher value of KM ;b,η means a strong tail for
model and a small finding of KM ;b,η implies a mild tail conversely. Figures 3, 4 and 5 display
the 3D and contour graphs of mean, variance and median behavior in comparison to UG
distribution and the estimates of parameters. In the context of the UG model and according
to parametric values, Figures 6 and 7 graphically analyses behavior of SB;b,η and KM ;b,η.

Figure 3.: 3D and contour curves of mean of the UG distribution.

Figure 4.: 3D and contour graphs of variance of the UG distribution.
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Figure 5.: 3D and contour graphs for median of the UG distribution.

Figure 6.: Graphs of skewness function and contour plot of skewness function.

Figure 7.: Graphs of kurtosis function and contour plot of kurtosis function.

3.3 Reliability in a multicomponent stress-strength framework

The stress-strength distribution in concept of reliability provides scheme of survival of a
device. Let Y, Y1, . . . , Yk be random samples which makes FX to be the CDF of common
stress, with Y , and Y1, . . . , Yk being independent and identically distributed having CDF,
FY , subject to X. Thus, reliability in multicomponent stress-strength distribution is written
as

Rs,k = P (at least one Y1, . . . , Yk is greater than X)

=
k∑
i=s

(
k

i

) ∞∫
−∞

(1− FY (x; ·))i (FY (x; ·))k−i dFX (x; ·) . (3.16)

Now, after solving the integral, we have

Rs,k =
k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j η2

((j + k − i) η1 + η2) .
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If k = s = 1, then the stress-strength model is simplified to the form stated as

R1,1 =
1∑
j=0

(
1
j

)
(−1)j η2

jη1+η2
.

Therefore, we have R1,1 = η1/(η1+η2). Notice that we consider the well known value in the
identically distributed case where η1 = η2, is R1,1 = 0.5. It does mean that strength and
stress are equal in intensity.

4. Moments and associated indicators

4.1 Moments

Moments are relevant for statistical analysis, typically in implementations. The particular
parameters which may be utilized to determine the behavior of a homogeneous dataset are
named moments. For the UG model, we obtain the kth ordinary moment ρ́k given by

ρ́k = E
(
Y k
)

=
∫ 1

0
ykdF (y; b, η) ; k = 1, . . . (4.17)

First, some notation are provided. The upper incomplete gamma function symbolized by
Γ (%, x) is defined as

Γ (%, x) =
∫ ∞
x

u%−1 exp(−u)du; x > 0, % ∈ R. (4.18)

Furthermore, the exponential integral function can be specified regarding the upper incom-
plete gamma function stated as (Olver et al., 2018)

E~ (X) =
∫ ∞

1
t−~ exp(−tx)dt, x > 0, ~ ∈ R, E~ (X) = x~−1Γ (1− ~, x) , ~, x ∈ R. (4.19)

The given results presents an equation for the kth ordinary moment ρ́k of Y based on the
exponential integral function and gamma function. For b, η > 0, the kth ordinary moment
of Y can be written as

ρ́k (y; b, η) = η exp(η)E k
b

(η) = η
k
b exp(η)Γ (1− k/b, η) .

Specifically, mean of Y is ρ́1 = E(Y ) = η
1
b exp(η)Γ (1− 1/b, η) and facilitate the equation

of variance is Var(Y ) = ρ́2 − (ρ́1)2 = η
2
b exp(η)

(
Γ (1− 2/b, η)− exp(η) (Γ (1− 1/b, η))2

)
.

4.2 Indicators and functions associated with moments

In model characterization, the moment generating function (MGF) is widely used. It is easy
to express the MGF of the UG model as

M (y; b, η) =
∞∑
ς=0

tς

ς! ρ́k (y; b, η) =
∞∑
ς=0

tς

ς!η
k
b exp(η)Γ (1− k/b, η) .
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The characteristic function (CF) of Y can be assessed as

Φ (τy; b, η) =
∫ 1

0
exp(iτy)dF (y; b, η) =

∞∑
υ=0

(iτ)υ

υ! η
k
b exp(η)Γ (1− k/b, η) .

The factorial generating function is obtained as

zy (τy; b, η) =
∫ ∞

0
exp(log (1 + τ)y)dF (y; b, η) ,

=
∞∑
υ=0

(log (1 + τ))υ

υ! η
k
b exp(η)Γ (1− k/b, η) .

The incomplete ordinary moments perform a significant role in determining curves of
income inequality, such as the Lorenz curve, which is the most renowned inequality curve
utilized in the literature, and several income inequality indices are explicitly obtained from
this curve based on incomplete moments.

Proposition 4. Let Y be an RV. Then, the kth incomplete moment of Y is given by

ρ́Y,k (z) = η exp(η)z−(b−k)E k
b

(
ηz−b

)
= η

k
b exp(η)Γ

(
1− k/b, ηz−b

)
. (4.20)

4.3 Numerical illustration

As an empirical illustration, for certain parametric values, Q1; b, η, Median; b, η, Q3; b, η,
SB; b, η, and KM ; b, η of the UG model are given in Table 1. These outcomes indicate that
there are important effects of b and η on said measures. It is observed from Table 1 that
across various relevant parameter scenarios, an increasing trend is evident for the lower quar-
tile (Q1; b, η), median (Median; b, η), and upper quartile (Q3; b, η). Conversely, an opposite
trend is noted for skewness (SB; b, η) and kurtosis (KM ; b, η) across different patterns of the
parameters. We have SBb,η > 0. Therefore, the model is right-skewed with small variations
for KM ; b, η.

Table 1.: Descriptive measures of the UG model for certain values of b and η.

(b, η) Q1; b, η Median; b, η Q3; b, η SB; b, η KM ; b, η

(0.25, 0.50) 0.16236 0.00495 0.03084 0.67092 2.08971
(0.35, 0.50) 0.27293 0.02251 0.08333 0.51431 1.57212
(0.45, 0.50) 0.36423 0.05231 0.14475 0.40729 1.36290
(0.50, 0.50) 0.40294 0.07026 0.17561 0.36666 1.30340
(0.55, 0.50) 0.43765 0.08945 0.20570 0.33228 1.26019
(0.35, 0.25) 0.11214 0.00466 0.02251 0.66783 2.36850
(0.35, 0.35) 0.18014 0.01030 0.04415 0.60137 1.92782
(0.35, 0.45) 0.24361 0.01799 0.06969 0.54171 1.66581
(0.35, 0.55) 0.30058 0.02743 0.09730 0.48841 1.49518
(0.35, 0.65) 0.35100 0.03829 0.12572 0.44083 1.37736
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4.4 Conditional moments

The conditional moments E(Y k|Y > t), for k = 1, 2, are helpful in interaction with lifetime
distributions in predictive inference. The kth conditional moment of the UG model is stated
as

E
(
Y k|Y > t

)
= 1
S (t)

(
E
(
Y k
)
−
∫ t

0
ykf (y) dy

)
= η

k
b exp(η)Γ (1− k/b, η)− µ́Y,k (t)

1− exp (η (1− t−b)) .

The mean deviations provide important information about the characteristics of a popu-
lation and can be estimated from the first incomplete moment. Additionally, the extent of
dispersion in a dataset can be partially determined by considering all deviations from the
median and mean. The mean deviations of Y about mean µ́1 = E(Y ) and about median
Med are stated as Φ = 2F (µ́1) − 2λ1µ́1 and Ψ = µ́1 − 2λ1M , where λ1 (z) =

∫ z
0 yf (y) dy

and F (µ́1) is specified in Equation (2.3).

5. Uncertainty measures and residual life function

5.1 Information generating function

The differentiation of the information generating function (IGF) at zero or one enables us
to extract measures of information that are otherwise difficult to describe and calculate. For
the UG model, the IGF of Y is given by

Ĩψ (f) = E
(
fψ−1 (y; b, η)

)
=
∫ 1

0
fψ (y; b, η) dy =

∫ 1

0

(
bηy−b−1 exp

(
η
(
1− y−b

)))ψ
dy.

(5.21)
Put t = ψηy−b ⇒ dt = −1/

(
bt1+1/b (ηψ)−1/b

)
dt in Equation (5.21) and after a some

simplification Ĩψ (f) is reduced to

Ĩψ (f) = bψ−1η
1−ψ
b ψ(1−ψ) 1

b
−ψ exp(ψη)Γ

(
ψ + ψ − 1

b
, ηψ

)
.

5.2 Entropy measures

Entropy is a significant concept in various fields such as thermodynamics, communication,
information theory, topological dynamics, statistical mechanics, and measure-preserving dy-
namical systems. It serves as a measure for different attributes like chaos, work-impossible
energy, uncertainty, randomness, complexity, etc. However, note that there are multiple
concepts of entropy, and they may not be universally applicable to all situations.

The Shannon entropy is defined as

S (Y ) = E (− log (f (Y )))

= −
∫ 1

0
log ((y; b, η)) f (y; b, η) dy, (5.22)

= −
(

log (bη exp(η))− bη(b+ 1)
∫ 1

0
log (y) y−b−1 exp

(
η
(
1− y−b

))
dy

−bη2
∫ 1

0
y−by−b−1 exp

(
η
(
1− y−b

)))
dy.
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By using the transformation t = y−b and after some simplification, we have

S (Y ) = − log (bη exp(η)) +
(
b+ 1
b

)
E1 (η)−

(
exp(−η)− exp(−η)

η2

)
.

Then, we have

S (Y ) = 1
η
− log(b)− log(η)−

(
b+ 1
b

)
E1 (η) .

The Renyi entropy Ĩδ (Y ) is defined as

Ĩδ (Y ) =
( 1

1− δ

)
log
∫ ∞

0
f δ (y; b, η) dy; δ 6= 1, δ > 0,

where

f δ (y; b, η) =
(
bηy−b−1 exp

(
η
(
1− y−b

)))δ
.

Using the information mentioned above, we obtain

∫ ∞
0

f δ (y; b, η) dy = bδ−1η
1−δ
b δ(1−δ) 1

b
−δ exp(δη)

∫ ∞
0

z
δ
b
(b+1)− 1

b
−1 exp(−z)dz.

Then, we have

Ĩδ (Y ) =
( 1

1− δ

)
log
(
bδ−1η

1−δ
b δ(1−δ) 1

b
−δ exp(δη)Γ

(
δ + δ − 1

b
, ηδ

))
.

It is necessary to note that Shannon entropy S (Y ) is given in Equation (5.22) is accom-
plished as a unique case of Renyi entropy Ĩδ (Y ) for δ → 1.

The Verma entropy Vδ,β (Y ) is

Vδ,β (Y ) =
( 1
δ − β

)
log
∫ ∞
−∞

f δ+β−1 (y; b, η) dy; β − 1 < δ < β, β ≥ 1, δ 6= β, (5.23)

where

f δ+β−1 (y; b, η) =
(
bηy−b−1 exp

(
η
(
1− y−b

)))δ+β−1
.

It is significant to noted that, for β → 1, in Equation (5.23), the Renyi entropy is attained.
Furthermore, for β → 1 and δ → 1, in Equation (5.23), then it reduces to Shannon entropy.
Utilizing above mentioned information, we have

Vδ,β (Y ) =
( 1
δ − β

)
log
(
bδ+β−2η

2−δ−β
b (δ + β − 1)(2−δ−β) 1

b
−(δ+β−1) exp ((δ + β − 1) η)

Γ
(

(δ + β − 1)
(

1 + 1
b

)
− 1
b
, η (δ + β − 1)

))
.
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The Tsallis entropy Tδ (Y ) is given by

Tδ (Y ) = 1
δ − 1

(
1−

∫ ∞
0

f δ (y; b, η) dy
)
, δ 6= 1.

Using the above transformation, we have

Tδ (Y ) = 1
δ − 1

(
1− bδ−1η

1−δ
b δ(1−δ) 1

b
−δ exp(δη)Γ

(
δ + δ − 1

b
, ηδ

))
.

The classical Shannon entropy has been generalized in several directions, one of which is
the generalized entropy δ1 introduced by Mathai et al. (2013) and defined as

Ĩδ1 (Y ) =
( 1
δ1 − 1

)∫ ∞
0

f2−δ1 (y; b, η) dy − 1, δ1 6= 1.

Relevant assertions to f2−δ1 gives the expression stated as f2−δ1 (y; b, η) =(
bηy−b−1 exp

(
η
(
1− y−b

)))2−δ1 . Consequently, the above integral is formulated as

Ĩδ1 (Y ) = 1
1− δ1

(
b1−δ1η

δ1−1
b (2− δ1)(δ1−1) 1

b
−(2−δ1) exp ((2− δ1) η)

× Γ
(

(2− δ1)
(

1 + 1
b

)
− 1
b
, η (2− δ1)

)
− 1

)
.

The Kapur entropy Ĩα,β (Y ) is defined as

Ĩα,β (Y ) =
( 1
β − α

)
log
(∫∞

0 fα (y) dy∫∞
0 fβ (y) dy

)
, (5.24)

= 1
β − α

(
log
(∫ ∞

0
fα (y) dy

)
− log

(∫ ∞
0

fβ (y) dy
))

,

Relevant assertions to f δ used in Equation (5.24) stated the expression given by

Ĩα,β (Y ) = 1
β − α

log
(
bα−1η

1−α
b δ(1−α) 1

b
−α exp(αη)Γ

(
α
(
1 + 1

b

)
− 1

b , ηα
)

bβ−1η
1−δ
b δ(1−δ) 1

b
−δ exp(βη)Γ

(
β
(
1 + 1

b

)
− 1

b , ηβ
)
)
.

3D behavior of entropies (Shannon, Renyi, Mathai, Tsallis, Kapur and Verma entropy) of
the UG distribution are plotted in Figures 8(a)-(f). The information in Table 2 outlines
the variations in Shannon, Renyi, Mathai, Tsallis, Kapur, and Verma entropy with different
parameter values in the UG distribution, while holding other parameters constant. Notably,
Shannon, Mathai, and Verma entropies presents an increasing trend with the parameter
b, whereas Renyi, Tsallis, and Kapur entropies depict a decreasing trend by keeping other
parameter fixed (η; δ1; δ; β). For elevated values of η, Shannon, Renyi, Mathai, Tsallis, and
Kapur entropies rise, while Verma entropy declines with the other parameters maintained.
Moreover, an increase in δ1 leads to constancy in Shannon, Renyi, Kapur, Tsallis, and Verma
entropies, while Mathai entropy experiences a decreasing trend. On the contrary, changes
in δ result in Shannon entropy exhibiting a constant behavior, while other entropies display
mixed patterns of increase and decrease.
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(a) Renyi (b) Shannon (c) Tsallis

(d) Kapur (e) Verma (f) Mathai

Figure 8.: Behavior of various entropies of the UG distribution.

Table 2.: The values of the Shannon, Renyi, Mathai, Tsallis, Kapur and Verma entropy of
the UG distribution for some parameter values.

Entropies
b η δ1 δ β Shanon Renyi Mathai Tsallis Kapur Verma

0.2 0.5 1.1 2.5 3 −1.23488 3.41897 −6.27843 0.66272 3.14144 −48.6853
0.6 0.5 1.1 2.5 3 0.74288 1.58266 −2.17344 0.60459 1.28606 −22.0735
1.0 0.5 1.1 2.5 3 0.84733 0.94298 −1.53368 0.50463 0.59889 −14.7177
2.0 0.5 1.1 2.5 3 0.61563 0.18146 −1.34429 0.15886 −0.23716 −7.06456
2.0 0.4 1.1 2.5 3 1.15140 0.20661 −1.31290 0.17766 −0.22597 −7.15680
2.0 0.6 1.1 2.5 3 0.24245 0.14452 −1.37855 0.12993 −0.26731 −6.85219
2.0 0.8 1.1 2.5 3 −0.25687 0.05571 −1.44841 0.05344 −0.35547 −6.24762
0.6 0.6 0.2 4.5 5 0.48050 3.32872 0.54551 0.28571 3.06992 −74.5745
0.6 0.6 0.5 4.5 5 0.48050 3.32872 0.08206 0.28571 3.06992 −74.5745
0.6 0.6 1.3 4.5 5 0.48050 3.32872 −2.63598 0.28571 3.06992 −74.5745
0.6 0.6 1.5 4.1 5 0.48050 3.08392 −2.46861 0.32256 2.82143 −38.2444
0.6 0.6 1.5 4.5 5 0.48050 3.32872 −2.46861 0.28571 3.06992 −74.5745
0.6 0.6 1.5 4.9 5 0.48050 3.55110 −2.46861 0.25641 3.29715 −402.085

5.3 Residual life function with a measure of reliability

RVs of residual life and inverted residual life are widely practiced in risk investigation. Hence,
in connection with the UG distribution, we explore some associated statistical features, like
mean, SF and variance.
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The residual life is explained by conditional RV R (t) = Y − t;Y > t, t ≥ 0, and described
as period between the moment t and the moment of failure. The reversed residual life (or
time since failure) can also be described as

...
R (t) = t− Y ;Y ≤ t, This refers to the moment

elapsed due to the component failure, given that its lifetime ≤ t (Das and Nanda , 2013;
Tang et al., 1999; Siddiqui and Çağlar , 1994).

The SF of residual lifetime, R(t) namely, with t ≥ 0 and y > 0, for the UG model is given
by

SR(t) (y) = S (y + t)
S (t) =

(
1− exp

(
η
(
1− (y + t)−b

)))
(1− exp (η (1− t−b))) .

Thus, the PDF of R(t) simplifies to the expression stated as

fR(t) (y; η, δ, υ) =
bη (y + t)−b−1 exp

(
η
(
1− (y + t)−b

))
(1− exp (η (1− t−b))) .

Therefore, the HRF of R(t) is provided by

hR(t) (y) =
bη (y + t)−b−1 exp

(
η
(
1− (y + t)−b

))
(
1− exp

(
η
(
1− (y + t)−b

))) .

The mean residual life function (MRL) has many application, like in maintenance, insurance
and quality control of products, social studies and economics. For the UG distribution, we
can represent its mean residual life as

Λ (t) = E (R(t)) = 1
(1− F (t))

∫ ∞
t

yf (y) dy − t,

= 1
(1− F (t)) (E (Y )− ρ́Y,1 (z))− t, t ≥ 0,

where f(y), F (y) are specified in Equation (2.2), (2.3) and E (Y ) = η
1
b exp(η)Γ (1− 1/b, η).

The variance residual life (VRL) is another measure of concern that has increased attention
in latest years (Khorashadizadeh et al., 2013; Gupta, 2006), which is defined as

VRL = V (R(t)) = 2
S (t)

∫ ∞
t

yS (y) dy − 2tΛ (t)− Λ2 (t) ,

= 1
S (t)

(
E
(
Y 2)− ρ́Y,2 (z)

)
− t2 − 2tΛ (t)− Λ2 (t) ,

where E
(
Y 2) = η

2
b exp(η)Γ (1− 2/b, η) and ρ́Y,2 (z) specified in Equation (4.20) by setting

r = 2.
The SF of the reversed residual lifetime,

...
R (t) say, with 0 ≤ y < t, for the UG model is

established as

S ...
R (t) (y) = F (t− y)

F (t) =

(
exp

(
η
(
1− (t− y)−b

)))
(
exp

(
η
(
1− (t)−b

))) .
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Then, the
...
R (t) PDF becomes formulated as

f ...
R (t) (y; η, δ, υ) =

bη (t− y)−b−1 exp
(
η
(
1− (t− y)−b

))
(exp (η (1− t−b))) .

Hence, the HRF of
...
R (t) is reduced to the formula given by

h ...
R (t) (y) =

bη (t− y)−b−1 exp
(
η
(
1− (t− y)−b

))
(
exp

(
η
(
1− (t− y)−b

))) .

The mean and variance of
...
R (t) are presented as

...
Λ (t) = E

( ...
R (t)

)
= t− 1

F (t)

∫ t

0
yf (y) dy = t− 1

F (t) (ρ́t,1 (z)) , 0 < y < t;

V ...
R L = Var

( ...
R (t)

)
= 2t

...
Λ (t)−

...
Λ 2 (t)− 2

F (t)

∫ t

0
yF (y) dy,

= 2t
...
Λ (t)−

...
Λ 2 (t)− t2 + 1

F (t) (ρ́t,2 (z)) ,

in which F (t), f(y) and ρ́t,2 (z) can be identified from Equations (2.3), (2.2) and (4.20) by
setting r = 2, respectively.

The Bonferroni and Lorenz curves are income inequality measures that are commonly
applicable to certain other fields including reliability, demography, medicine and insurance
and medicine. The Bonferroni curve BF (y) of Y is stated as

BF (y) = 1
E (Y )F (y)

∫ y

0
yf (y) dy = ρ́Y,1 (z)

E (Y )F (y) .

Groves-Kirkby et al. (2009) highlighted the significance of the Lorenz curve for applications
in various scientific fields. The Lorenz curve LF (y) of Y is expressed as

LF (y) = 1
E (Y )

∫ y

0
yf (y) dy = ρ́Y,1 (z)

E (Y ) .

6. Estimation, simulation, and real data analysis

6.1 Computational setting

Using the R software and its features optimum and MaxLik; the Ox program and its subroutine
MaxBFGS; the Matlab software with tool log_lik; and the SAS software with its procedure
PROC NLMIXED); the parameters of the UG model can be estimated from the corresponding
log-likelihood function based on sample data. Furthermore, certain goodness-of-fit statistics
are used for model fitting and selection with the distributions considered.

6.2 Maximum likelihood estimation

The maximum likelihood (ML) estimated are obtained by optimizing the corresponding
equation in accordance with η and b.
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The ML. estimates are the maximum of log-likelihood function defined as ly;η,b =
logL (y; η, b). For a given data y1, . . . , yn, the log-likelihood function for the UG model
is given by

L (y; η, b) =
n∏
i=1

bηy−b−1 exp
(
η
(
1− y−b

))
,

ly;η,b = n log(b) + n log(η)− (b+ 1)
n∑
i=1

log(yi) + η
(
n−

n∑
i=1

y−bi

)
.

To obtain the ML estimates, we get the components of the parameter vector
Ληb=(Λη,Λb)τ , and set them zero. Such components are given by

Λb = ∂ly;η,b

∂ly;b
= n

b
−

n∑
i=1

log (yi) + η
n∑
i=1

y−bi log (yi) .

Λη = ∂ly;η,b

∂ly;η
= n+ n

η
−

n∑
i=1

y−bi .

The ML estimate (η̂, b̂) of (η, b) is obtained setting Λη = Λb = 0 and solving them simultane-
ously. It indicates that the ML estimate of η can be obtained directly as n/(

∑n
i=1 y

−b
i − n).

To estimate confidence intervals for parameters, we need the 2 × 2 information matrix
J(Ληb) = Jηb(Ληb). The asymptotic distribution (Λ̂ηb − Ληb) is N2

(
0,∆(Ληb)−1), where

∆(Ληb) = E(J(Ληb)). The approximate multivariate normal distribution, N2
(
0, J(Ληb)−1)

say, where J(Ληb)−1 is the inverse of information matrix at Ληb = Λ̂ηb, can be implemented
upon usual regularity conditions to develop approximate confidence intervals for the model
parameters.

6.3 Simulation

The statistical properties of the ML estimators for the UG distribution are difficult to
compare from a theoretical perspective. However, we suggest a simulation analysis using
their mean square errors (MSEs) as a standard for various sample sizes. The study considered
various parameters sets: (0.5, 0.7) , (1.5, 2.5) , (1.0, 3.0) , and (3.0, 1.5). We also consider the
following sample sizes: n = 30, 70, 100, 200, 300 and 500. All simulations were run using the
R programming language. The performance of these estimators is assessed using empirical
meand and MSEs, which are calculated using the optim function and the Nelder-Mead
method ofl R. To assess the effectiveness of the estimators, Algorithm 1 was used.

Algorithm 1 Algorithm
1: Generate pseudo-random numbers of size n using the UG distribution.
2: Find the ML estimates b̂ML and η̂ML for the UG model.
3: Perform steps 1 and 2 M = 5000 times.
4: Use b̂ML and η̂ML for determinate the estimates, and MSEs of the estimations.

Based on the empirical mean and MSEs of the ML estimators, a validation study is
conducted. Various set sizes, and distinct parameters levels are all considered when utilizing
Monte Carlo simulation.
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For each simulated scenario, we use

Meanθ (n) = 1
M

M∑
j=1

Θ̃j , MSEθ (n) = 1
M

M∑
j=1

(
Θ̃j −Θ

)2
.

The empirical mean and MSE are presented in Tables 3 and 4. The results illustrate that
the average estimates are closer to the true values of the parameters as the sample size
increases. Further, the MSEs for all estimates decrease with the increase in sample size. The
method demonstrates the consistency property of the ML estimators. We conclude that the
ML approach performs well in estimating the parameters of the UG distribution.

Table 3.: Empirical mean and MSEs of the ML estimators for the UG distribution with
values of (b, η) ∈ {(0.5, 0.7) , (1.5, 2.5)}.

n Parameter Initial Value MLE MSE Initial value MLE MSE
30 b 0.5 0.58555 0.04278 1.5 2.01564 1.58644

η 0.7 1.21662 1.73062 2.5 2.74294 6.64286
70 b 0.5 0.51695 0.01752 1.5 1.77301 0.62046

η 0.7 0.80272 0.28841 2.5 2.65420 6.13443
100 b 0.5 0.51511 0.01083 1.5 1.69771 0.46644

η 0.7 0.73911 0.12824 2.5 2.62053 3.79372
200 b 0.5 0.50637 0.00496 1.5 1.60774 0.22182

η 0.7 0.71752 0.03497 2.5 2.59669 1.45851
300 b 0.5 0.50492 0.00354 1.5 1.56151 0.14441

η 0.7 0.70977 0.02451 2.5 2.56815 0.87391
500 b 0.5 0.50486 0.002107 1.5 1.50541 0.07173

η 0.7 0.70169 0.014406 2.5 2.50602 0.44074

Table 4.: Empirical mean and MSEs of the ML estimators for the UG distribution with
values of (b, η) ∈ {(1.0, 3.0) , (3.0, 1.5).

n Parameters Initial Value MLE MSE Initial Value MLE MSE
30 b 1.0 1.40271 0.99856 3.0 3.67576 3.62236

η 3.0 4.03190 9.05440 1.5 2.02742 8.38644
70 b 1.0 1.17146 0.36151 3.0 3.28572 1.29957

η 3.0 3.75358 8.87920 1.5 1.66935 1.56111
100 b 1.0 1.11537 0.23260 3.0 3.22973 0.94178

η 3.0 3.58433 8.20469 1.5 1.57504 0.66874
200 b 1.0 1.05919 0.11352 3.0 3.10632 0.42723

η 3.0 3.28323 3.42921 1.5 1.54323 0.27760
300 b 1.0 1.03126 0.07672 3.0 3.05927 0.26288

η 3.0 3.24122 2.03550 1.5 1.53031 0.16035
500 b 1.0 1.02841 0.04649 3.0 3.05351 0.16284

η 3.0 3.08923 0.83264 1.5 1.50436 0.09279
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6.4 Real data applications

We examine two real-life datasets for illustrative purposes to see if our distribution pro-
vides a better fit for data than some other standard distributions. The performance of the
UG distribution is compared with the Kumaraswamy (KSW), size-biased Kumaraswamy
(SBKSW), beta, transmuted Kumaraswamy (TKSW) and exponentiated generalized Ku-
maraswamy (EG-KSW) models via suitable measures such as the Akaike information cri-
terion (AIC), Hannan-Quinn information criterion (HQIC), Bayesian information criterion
(BIC) and consistent Akaike information criterion (CAIC). Further, formal goodness-of-fit
measures as Cramer-von Mises (W∗), Anderson-Darling (A∗), and log-likelihood (l̂), are used
to check which distribution fits better these datasets. Using these goodness of fit measures,
the results are presented in Tables 6-9. As expected, the lower of these criteria suggest the
model with a better fit. Likewise, Kolmogorov-Smirnov (KS) and p-values are reported. We
notice that with largest p-values, the UG model does have smallest statistics then providing
the best fit among the compared distributions.

Data 1: Flood data. The flood data of 20 observations is used here. The data were also
examined in Dumonceaux et al. (1973) and are given by

0.265, 0.297, 0.392, 0.3235, 0.269, 0.402, 0.315, 0.338, 0.379, 0.654, 0.418, 0.379, 0.412,
0.423, 0.416, 0.484, 0.449, 0.613, 0.494, 0.74.

Data 2: Strengths of 1.5 cm glass fibers. The following data reflects the strengths of
1.5 cm glass fibers, initially collected by employees at the UK National Physical Laboratory.
The data are given by

0.13, 0.17, 0.16, 0.20, 0.14, 0.15, 0.11, 0.13, 0.15, 0.12, 0.15, 0.12, 0.12, 0.16, 0.21, 0.23,
0.20, 0.16, 0.12, 0.32, 0.10, 0.33, 0.36, 0.33, 0.38, 0.26, 0.20.

A summary for the data is provided in Table 5 and the boxplot for both datasets are
plotted in Figure 9. Figures 10-11 present the probability-probability (PP) plots of the fitted
models. For each model, we estimate unknown parameters by paradigm of ML estimation.
Tables 10 and 11 show the ML estimates with their respective standard errors (SEs) of
above distributions using R.

Table 5.: Descriptive measures for datasets 1 and 2.

Dataset Min 1st Quartile Median Mean 3rd Quartile Max
1 0.2650 0.3344 0.4070 0.4231 0.4577 0.7400
2 0.100 0.130 0.160 0.193 0.220 0.380

Table 6.: Values of the performance indicators for dataset 1.

Distribution W∗ A∗ KS value KS p-value
UG(η, b) 0.05297 0.30130 0.14682 0.8017
KSW(α, β) 0.16581 0.97220 0.21093 0.3358
SBKSW(λ, δ) 0.04631 0.30000 0.96493 < 0.0001
Beta(α, β) 0.07313 0.44410 0.99997 < 0.0001
TKSW(α, β, θ) 0.14093 0.84098 0.19299 0.4457
EG-KSW(α, β, λ, κ) 0.06740 0.41334 0.15615 0.7140
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Table 7.: Values of the performance indicators for dataset 2.

Distribution W∗ A∗ KS value KS p-value
UG (η, b) 0.05394 0.39496 0.12328 0.8064
KSW(α, β) 0.23762 1.43931 0.19094 0.2785
SBKSW(λ, δ) 0.07270 0.53266 0.99514 2.2× 10−16

Beta(α, β) 0.06905 0.51241 0.99897 2.2× 10−16

EG-KSW(α, β, λ, κ) 0.11309 0.74610 0.16275 0.4719

Table 8.: Performance measures for all models for dataset 1.

Distribution AIC CAIC BIC HQIC −l̂
UG (η, b) −28.71941 −28.01353 −26.72795 −28.33066 −16.35971
KSW(α, β) −21.73238 −21.0265 −19.74092 −21.34363 −12.86619
SBKSW(λ, δ) −22.45675 −21.75086 −20.46528 −22.06799 −13.22837
TKSW(α, β, θ) −21.04188 −19.54188 −18.05468 −20.45874 −13.52094
Beta(α, β) −24.12447 −23.41859 −22.13301 −23.73571 −14.06223
EG-KSW(α, β, λ, κ) −23.42618 −20.75951 −19.44325 −22.64867 −15.71309

Table 9.: Performance measures for all models for dataset 2.

Distribution AIC CAIC BIC HQIC −l̂
UG(η, b) −67.0739 −66.5739 −64.48223 −66.30326 −35.53695
KSW(α, β) −57.34612 −56.84612 −54.75445 −56.57548 −30.67306
SBKSW(λ, δ) −58.56875 −58.06875 −55.97707 −57.79811 −31.28437
Beta(α, β) −60.54254 −60.04254 −57.95086 −59.7719 −32.27127
EG-KSW(α, β, λ, κ) −60.58179 −58.7636 −55.39844 −59.04051 −34.29089

Table 10.: ML estimates with the corresponding SEs of real dataset 1.

Distribution Estimate

UG(η, b) 4.12466 0.01500 - -
0.74445 0.01305 - -

KSW(α, β) 3.36326 11.7886 - -
0.60328 5.35874 - -

SBKSW(λ, δ) 2.77847 10.5672 - -
0.61510 4.62355 - -

Beta(α, β) 6.75693 9.11177 - -
2.09457 2.85181 - -

TKSW(α, β, θ) 3.72639 10.9712 0.61397 -
0.64923 6.04152 0.37517 -

EG-KSW(α, β, λ, κ) 0.47562 2.16057 2.16057 98.96214
0.97436 1.85918 1.85918 552.08653
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Table 11.: ML estimates with the corresponding SEs of real dataset 2.

Distribution Estimate

UG (η, b) 2.95800 0.00373 - -
0.21864 0.00154 - -

KSW(α, β) 2.49359 43.54502 - -
0.36807 23.26493 - -

SBKSW(λ, δ) 1.95440 30.67920 - -
0.36489 15.25790 - -

Beta(α, β) 5.07424 21.12431 - -
1.33911 05.78928 - -

EG-KSW(α, β, λ, κ) 0.48445 02.84163 2.84164 67.16952
0.22520 03.74947 3.74948 91.90553

(a) dataset 1 (b) dataset 2

Figure 9.: Boxplots for datasets 1 and 2.

7. Concluding remarks

We implemented the three-parameter lifetime model recognized as the unit-Gompertz distri-
bution. Different mathematical properties were discussed with discussion involving quantile
function, stochastic ordering and related measures. We included some figures for probability
density function and hazard rate function. The general non-central complete and incomplete
moments and residual life function with a certain measure of reliability were also studied.
Entropies for uncertainty measures (like Shannon, Tsallis, Renyi, Mathai-Houbold, Kumar
and Verma) were obtained, calculated and displayed graphically. For moment generating
function, non-moment (complete and incomplete), conditional moments and mean devia-
tions, residual lifetime and reversed residual life functions, we also got explicit expressions
for the studied model. To determine variation of maximum likelihood estimates in finite
samples, we accessed these estimates via Monte Carlo simulation for complete sample. We
tested the effectiveness of the unit-Gompertz model with its five important counterparts
by the use of the classical goodness of fit measures and probability plots. These results are
consistent with the fact that the current model is very suited for areas of real-life data.
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(a) UG(η, b) (b) KSW(α, β) (c) SBKSW(λ, δ)

(d) Beta(α, β) (e) TKSW(α, β, θ) (f) EG-KSW(α, β, λ, κ)

Figure 10.: PP plots for dataset 1.

Note that, by solving the linear equation Q (ζ, b, η) − µ = 0 in η, we have η =
log (ζ)/(1− µ−b), where Q (ζ, b, η) was given in Equation (4.17). In this way, we can pa-
rameterize Equations (2.2) and (2.3) as a function of µ, where 0 < µ < 1 and 0 < ζ < 1 is
fixed. In this new parameterization, we can study the effect of covariates on the ζth quan-
tile of the response variable. This strategy has been widely considered in the literature in
recent years; see for example, Mazucheli et al. (2021) and the references therein. Quantile
regression considering the unit-Gompertz distribution is under development by the authors
and will be presented in a future article.

Appendix A: Proof of characterization based on HRF

Proof of Proposition 1

If Y follows Equation (2.2), then obviously Equation (2.9) holds. If h (y; η, b) satisfies the
above mention equation, then, after some algebraic calculation, we can show that

d

dy

(
h
(
exp(−η

(
1− y−b)

)
− 1

))
= d

dy

(
bηy−b−1),

from which we arrive at

h (y; η, b) = f (y; η, b)
1− F (y; η, b) = bηy−b−1

(exp(−η (1− y−b))− 1) ,

which ends the proof.�
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(a) UG(η, b) (b) KSW(α, β) (c) SBKSW(λ, δ)

(d) Beta(α, β) (e) EG-KSW(α, β, λ, κ)

Figure 11.: PP plots for dataset 2.

Proof of Proposition 2

By definition, we get

ρr(m) = E
(
Y r

(m)
)

=
n∑

j=n−m+1
(−1)j−n+m−1

(
j − 1
n−m

)(
n

j

)
Ij (r) .

Now, evaluate Equation (2.13). By including F (y) presented in Equation (2.3), we obtain

Ij (r) = r

1∫
0

j∑
s=0

(
j

s

)
(−1)s yr−1 exp

(
sη
(
1− y−b

))
dy,

= r
j∑
s=0

(
j

s

)
(−1)s exp (sη)

1∫
0

yr−1 exp
(
sηy−b

)
dy. (1)
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Letting t = sy−b, using the result dy = −s 1
b /
(
bt1+ 1

b

)
dt in Equation (1) and after some

algebraic manipulation, we obtain

Ij (r) = r

b

j∑
s=0

(
j

s

)
(−1)s s

r
b exp (sη)

∞∫
1

t−( rb+1) exp (ηt) dt,

= r

b

j∑
s=0

(
j

s

)
(−1)s s

r
b exp (sη)E( rb+1) (η) ,

= r

b

j∑
s=0

(
j

s

)
(−1)s s

r
b exp (sη) η

r
b Γ
(
−r
b
, η

)
.

By incorporating the equalities listed above together, the proof of the proposition is
completed.�

Proof of Proposition 3

The LR is given by

fX (y)
fY (y) = η1 exp(y−b

(
yb − 1

)
(η1 − η2))

η2
.

Thus, if b1 = b2 = b and η1 ≤ η2, then we have that

d

dy

(
fX (y)
fY (y)

)
= b exp(y−b

(
yb − 1

)
(η1 − η2))y−b−1η1 (η1 − η2)

η2
≤ 0.

Therefore, it indicates that X ≤LR Y , and subject to Equation (2.14), X ≤HR Y , and
X ≤ST Y are also hold.�

Appendix B: Proof of multicomponent stress-strength distribution

Next, we evaluate equation of reliability based on stress X, and strength Y , two RVs, in
multi-component stress power distribution, where Y ∼ UG(b, η1) and X ∼ UG(b, η2). The
process works if at the minimum s components out of k function at same time, else they
crash. Equations (2.2), (2.3) and (3.16) can therefore be used to assess the reliability of the
UG distribution in multicomponent stress-strength distribution as

Rs,k =
k∑
i=s

(
k

i

) 1∫
0

(
1− exp

(
η1
(
1− x−b

)))i (
exp

(
η1
(
1− x−b

)))k−i
×bη2x

−b−1 exp
(
η2
(
1− x−b

))
dx,

Rs,k = bη2

k∑
i=s

i∑
j=0

(−1)j
(
k

i

)(
i

j

) 1∫
0

x−(b+1) exp
(
((j + k − i) η1 + η2)

(
1− x−b

))
dx. (2)
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By using t = x−b ⇒ −bx−b−1dx = dt in Equation (2) and after some algebraic manipulation,
we obtain

Rs,k = η2

k∑
i=s

i∑
j=0

(−1)j
(
k

i

)(
i

j

)
exp ((j + k − i) η1 + η2)

∞∫
1

exp (− ((j + k − i) η1 + η2) t) dt.

Now, after solving the integral, we have

Rs,k =
k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j η2

((j + k − i) η1 + η2) .

Appendix C: Proof of the kth ordinary moment

Consider the integral given by

ρ́k (y; b, η) =
∫ 1

0
ykbηy−b−1 exp

(
η
(
1− y−b

))
dy.

Allowing t = x−b, using the result −bx−b−1dx = dt, and after some algebraic manipulation,
we attain at

ρ́k (y; b, η) = η exp(η)
∫ 1

∞
t−

k
b exp(−ηt) (−dt) . (C1)

Then, after using Equation (4.18) and (4.19) in Equation (C1), we obtain given by

ρ́k (y; b, η) = η exp(η)E k
b

(η) = η
k
b exp(η)Γ (1− k/b, η) ,

which completes the proof.�
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