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Abstract
In real life, we often observe circular data (for example, in the fields of geology, meteo-
rology, oceanography and medicine, among others). However, the common practice is to
ignore the periodic feature of such observations employing the usual available methods,
which often ends in misleading results in terms of inferential measures. The loss of sta-
tistical power is a serious issue if the method is applied to clinical trials involving human
subjects. In the present article, heuristic procedures for testing equality of treatment
effects are developed in the context of clinical trials with the assumption that responses
are circular in nature. The developed procedures are studied empirically in terms of
statistical power and are compared to relevant existing competitors. The procedures are
further applied to a real clinical trial on cataract surgery.

Keywords: Angular data · Clinical trials · Distance metric · Von Mises distribution
· Wrapped distributions

Mathematics Subject Classification: Primary 62F03 · Secondary 62F05.

1. Introduction

The notion of circular data analysis can arise from different real-life situations in geology,
meteorology, oceanography, and medicine, among others. Circular data (or angular data)
are a special class of observations, which are defined on the circumference of a unit circle; see
Mardia and Jupp (2004). The usual continuous probability distributions fail to model circu-
lar data because of their bounded domain and periodicity. This necessitates the formulation
of a special class of probability models, called circular probability distributions (Rao and
Sengupta, 2001). However, most of the clinical studies involving circular responses do not
assume any circular model; instead, they stick to the normality assumption. For example,
Mihata et al. (2012) conducted a comparison study on the rotator caff muscle under five
different conditions, where the total rotational range in motion (in degree) was recorded.
They carried out a pairwise comparison of the different conditions and reported p-values
of significant tests assuming normality. The rationale behind such an assumption is that in
real life, the angular responses lie in the first two quadrants; thus, the aspect of periodicity
does not arise. However, the assumption of normality is inappropriate, unless the circular
measurements are highly concentrated at a location, producing misleading conclusions.
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In statistical inference, an important aspect is the comparison of two or several populations
with respect to location. Since, circular data are periodic, such comparison cannot be carried
out based on the methods exclusive to linear data. Another major difficulty of applying linear
statistical methods to circular data is that the observations cannot be compared numerically,
because of their periodic nature. As an alternative, the observations can be compared with
respect to a reference point, called a preferred direction. In the field of medical research, the
preferred direction is usually set according to the desired medical condition. For example, in
studies related to shoulder movement, it is generally seen that a perfect shoulder allows 900

internal rotation (Jain et al., 2013) and hence the preferred direction should be considered
as 900. Therefore, in an interventional clinical trial with circular outcomes, treatment that
has outcomes near the preferred direction can be considered favourable over others. Taking
recourse to these facts, Biswas et al. (2015) developed a procedure for testing the equality of
treatment effects considering a treatment as favourable if the responses of the treatment have
a lower circular distance from the prescribed preferred direction than its competitor. Biswas
et al. (2015) applied their methodology to a real-life clinical trial on cataract surgery in
which the responses were circular. However, their methodology was limited to the von Mises
distribution only, involving two treatments. In fact, most of the inferential studies related
to circular responses (as the goodness of fit of Watson and Williams (1956)) are based on
the von Mises assumption (von Mises, 1918; Gumbel et al., 1953) due to its applicability.

The present article develops a convenient testing procedure to compare the treatment
effects in the context of a clinical trial under the assumption that the responses are circular
with a distribution having finite mean direction and concentration. Naturally, the proposed
procedure is not limited to von Mises distribution but is applicable to any circular family
of distributions (for example, wrapped normal, wrapped Cauchy).

The rest of the article is organized as follows. In Section 2, starting from a short review
of circular probability models, the relevant hypothesis testing problem is developed for
two populations. A multi-treatment extension of the proposed procedure is described in
Section 3. In Section 4, we conduct an extensive simulation study to compare the powers
of the proposed and existing procedures. In Section 5, we consider a real clinical trial with
circular responses, use the proposed procedure to reach a decision regarding equality of
treatment effects, and compare the decision with the actual one. Finally, Section 6 concludes
with some related and upcoming issues.

2. A two sample test for equality of treatment effects

2.1 Circular probability models

Circular random variables (RVs) are a special class of continuous RVs that are defined on the
circumference of a unit circle. Since, each point on the circumference represents a direction,
such a distribution is a way of assigning probabilities to different directions. The range of a
circular RV θ, measured in radians, can be taken to be [0, 2π) or [−π, π). The probability
density function (PDF) f(θ) of circular RV θ satisfies the following conditions:

(i) f(θ) > 0, ∀θ;
(ii)

∫ 2π
0 f(θ) dθ = 1; and

(iii) f(θ) = f(θ + 2πk), for any integer k, that is, f is periodic in nature.
Several probability distributions are available in the literature for modelling a circular

RV. First, we consider the most popular von Mises or circular normal model, described by
the PDF stated as

f(θ) = 1
2πI0(κ) exp (κ cos(θ − µ)) , 0 ≤ θ < 2π,
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where µ ∈ [0, 2π) is the mean direction, κ > 0 is the concentration parameter and

Ip(κ) = 1
2π

∫ 2π

0
exp(κ cos(θ)) cos(pθ)dθ

is the modified Bessel function of order p ≥ 0.
In addition to the von Mises distribution, there are several other distributions to model

circular data. The wrapped normal distribution is one of such distributions with PDF ex-
pressed as

f(θ) = 1
σ
√

2π

∞∑
k=−∞

exp
(
− (θ − µ+ 2πk)2

2σ2

)
, 0 ≤ θ < 2π,

where µ ∈ [0, 2π) is the mean direction and ρ = exp(−σ2/2) is the concentration parameter.
Another distribution in the sequence is the wrapped Cauchy distribution having the PDF
stated as

f(θ) = 1− ρ2

2π(1 + ρ2 − 2ρ cos(θ − µ)) , 0 ≤ θ < 2π,

where µ is the modal direction and ρ is the concentration parameter. Mean (or modal)
direction is analogous to mean (or mode) of the usual RVs. Furthermore, the concentration
parameter in a circular probability model acts as opposite to usual variance; as the con-
centration increases, the accumulation of observations near the mean(or modal) direction
increases as well. An account of these models can be found in Fisher (1993), Rao and Sen-
gupta (2001) and Mardia and Jupp (2004). In addition to the standard circular models, a
circular probability model related to skew-normal distribution can be found in Hernández-
Sánchez and Scarpa (2012).

2.2 Formulating the testing problem

Consider two competing treatments A and B in a phase III clinical trial. We denote the
corresponding responses from treatments A and B as YA and YB, respectively. As the re-
sponses are circular, a suitable circular distribution is assumed for Yg with mean direction
µg and concentration parameter κg, for g = A,B. However, numerical comparison of circu-
lar responses is not possible and hence such responses are compared with respect to some
study-specific reference point, called preferred direction. Consequently, we designate the
treatment that has responses nearer to the preferred direction as most promising. Since the
responses are circular, the departure from the preferred direction cannot be measured by
a straightforward difference, and therefore, we use the notion of circular distances (Mardia
and Jupp, 2004). For two points a and b on the circumference of a unit circle, a circular
distance is defined as d(a, b) = min{a−b, 2π−(a−b)}, which is the minimum of the two arc
lengths between these points along the circumference. Therefore, treatment A is considered
promising over treatment B when the response of a typical A-treated patient is closer to
the preferred direction than the response of a typical B-treated patient. However, without
loss of generality, we can set the preferred direction at 00 through a transformation (Fisher,
1993) without losing any information. Keeping 00 as the preferred direction, we find that
treatment A is promising over treatment B if d(YA, 0) < d(YB, 0) or equivalently if either of
the events (0 < YA < π, YA < YB < 2π− YA) and (π < YA < 2π, 2π− YA < YB < YA) hold.
Consequently, the two treatments are considered equally promising if d(YA, 0) = d(YB, 0) or
equivalently if YA = YB or YA + YB = 2π.
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Now consider two treatments A and B producing nA and nB independent and identically
distributed (IID) observations, respectively. Specifically, we denote the (circular) responses
corresponding to treatment g by Yg1, . . . , Ygng , where we assume that the circular distribution
corresponding to treatment g responses has mean direction µg, concentration parameter κg,
for g = A,B and responses from different treatments are independent. Then it follows
from the preceding discussion that treatment A is best if d(µA, 0) < d(µB, 0) and the two
treatments are equally effective if d(µA, 0) = d(µB, 0). Therefore, testing the equality of
treatment effects can be formulated as testing the null hypothesis H0: d(µA, 0) = d(µB, 0)
against the alternative H1: d(µA, 0) 6= d(µB, 0). Since, d(µA, 0) = d(µB, 0) implies µA = µB
or µA = 2π − µB, the equality of treatment effects holds if µA = µB or µA = 2π − µB.
Note that the distance measure d suffers from the drawback that it is not a conventional
distance metric. Consequently, a conventional distance metric D(a, b) = 1 − cos(a − b) is
popularly used to measure the circular distance. If the preferred direction is set at 00 and
we use the already introduced criterion of better treatment, we find that the inequalities
D(µA, 0) ≤ D(µB, 0) and d(µA, 0) ≤ d(µB, 0) are equivalent and hence the criterion for
equally effective treatments remains the same. Therefore, the notion of testing H0 against
H1 remains valid even if the distance measure is altered.

2.3 Test procedure for equal concentration

For our purpose, we use the transformed responses dgj = d(Ygj , 0), for j = 1, . . . , ng and
g = A,B as the available set of observations and assume that the response distributions
have the same concentration, that is, κA = κB. Since the observations dgj are linear in
nature, an independent sample t-type statistic based on the observations dgj can be used to
test H0. In particular, we suggest the statistic given by

Zc = d̄B − d̄A
v̂
√

1
nA

+ 1
nB

,

where v̂2 = (nAV̂ar(dA1) + nBV̂ar(dB1))/(nA + nB) is the pooled estimator of the common
variability parameter and V̂ar(dg1) is the sample variance based on dgj , d̄g =

∑ng

j=1 dgj/ng,
for j = 1, . . . , ng and g = A,B. We observe that as the parameter values drift away from
the null situation, |Zc| is expected to be larger, and hence a right-tailed test based on |Zc|
seems appropriate. Since, dgjs are an IID set of linear variables for each g, the central limit
theorem coupled with the Slutsky Theorem reveals that under the null hypothesis, Zc follows
approximately a standard normal distribution for large nA and nB. Hence, a large sample
test of size α rejects H0 if |Zc| exceeds the upper percentage point α/2 of a standard normal
distribution. However, a similar statistic based on the other distance measure D could be
defined as

Z∗c = D̄B − D̄A

v̂∗
√

1
nA

+ 1
nB

,

with D̄g =
∑ng

j=1 Dgj/ng, for g = A,B, v̂∗2 = (nAV̂ar(DA1) + nBV̂ar(DB1))/(nA + nB),
where V̂ar(Dg1) is the usual sample variance based on Dg1 = D(Yg1, 0). At this point, it is
interesting to note that the development of Zc and Z∗c is very general and hence are well
applicable for a wide class of circular distributions.
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2.4 Test procedure for unequal concentration

In real practice, the assumption of equal concentration is difficult to justify apriori and
hence we give the development for κA 6= κB. First of all, we observe from Appendix A.2
on the exact distribution of d(Y ) = d(Y, 0) that E(d(Y )) will depend, in general, on the
parameters of the distribution. Thus, unlike an equal concentration situation, a naive test
based on the estimated mean difference d̄B − d̄A cannot be constructed, as E(d̄B − d̄A) is
different from zero for unequal sample sizes even under the null hypothesis. As a reasonable
alternative, we, therefore, develop a Wald type test based on the transformed set of observa-
tions assuming further that the circular family under consideration possesses asymptotically
normal maximum likelihood (ML) estimators of mean direction. That is, we assume that
there exists ML estimator µ̂g for g = A,B such that µ̂g follows asymptotically a normal
distribution with mean µg and asymptotic variance σ2

g = 1/Ig, where Ig is the corresponding
Fisher information (may involve parameters). Again, it follows from Appendix A.1 that un-
der such conditions, d(µ̂g) = d(µ̂g, 0) is also asymptotically normal with mean d(µg, 0) and
asymptotic variance σ2

g . Since d(µ̂g) is the ML estimator of d(µg, 0) and, σ̂2
g is a consistent

estimator of σ2
g , with g = A,B, a Wald type statistic for testing H0 can be expressed as

Wc =

 d(µ̂B)− d(µ̂A)√
σ̂2
B/nB + σ̂2

A/nA

2

.

Thus, a right tailed test based on Wc is appropriate. Further, it follows from Appendix A.1
that Wc follows asymptotically a chi-square distribution with one degree of freedom under
the null hypothesis. Therefore, for large sample sizes, a test of size α rejects the null if
Wc exceeds the upper percentage point α of a chi-square distribution with one degree of
freedom. However, for the other distance measure “D”, it follows from the Appendix A.1
that under a similar set of conditions D(µ̂g) = D(µ̂g, 0) is asymptotically normal with mean
D(µg, 0) and asymptotic variance τ 2

g = sin2(µg)σ2
g . Then due to the consistency property

of ML estimator, µ̂g, D(µ̂g) and τ̂ 2
g are both consistent and hence a Wald type statistic for

testing H0 can be defined as

W ∗c =

 D(µ̂B)−D(µ̂A)√
τ̂ 2
B/nB + τ̂ 2

A/nA

2

.

Since W ∗c follows asymptotically a chi-square distribution with one degree of freedom under
the null hypothesis, a concerned large sample test rejects H0 at size α if W ∗c exceeds upper
percentage point α of a chi-square distribution with one degree of freedom. These test
procedures are capable of identifying a departure from the equality of true treatment effects
for a wide class of circular distributions.

3. A multi-sample test for equality of treatment effects

3.1 Context

In any clinical trial, the problem of multiple treatment comparison frequently arises. How-
ever, the complexity involved is increased many folds when the outcome is circular in nature.
Therefore, we develop a treatment comparison procedure that involves multiple treatments,
when the treatment outcomes are circular in nature. For development, we assume multiple
treatments (say t ≥ 3), each treatment producing circular outcomes based on ng independent
observations from the gth treatment arm.
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3.2 Hypotheses

We assume that the distribution of the responses from treatment g is a member of a circular
family of distributions with mean direction µg and concentration parameter κg, for g =
1, . . . , t. However, the definition of treatment effect remains the same as in the two-sample
case, and hence testing equality of treatments can be expressed through testing the null
hypothesis defined as H0: d(µ1, 0) = d(µ2, 0) = · · · = d(µt, 0) against the general alternative
stated as H1: At least one inequality in H0. These hypotheses can be equivalently written
as H0: Cd = 0 against H1: at least one component of Cd is non zero, where

C(t−1)×t =


1 −1 0 · · · 0
1 0 −1 · · · 0
...

... . . . ...
1 0 0 · · · −1

 , dt×1 =


d(µ1, 0)
d(µ2, 0)

...
d(µt, 0)

 .

3.3 Test statistic

The above hypotheses can be thought of as a test of equality of elementary treatment
contrasts in the transformed scale. Now, from Appendix A.1, we find that the large sam-
ple distribution of d(µ̂g, 0) is normal with mean d(µg, 0) and variance n−1

g σ2
g and that

d(µ̂g, 0) are independent, for g = 1, . . . , t. Therefore, it follows that the large sample dis-
tribution of Cd̂ is (t − 1) variate normal with mean vector Cd and dispersion matrix
Ψ = Cdiag(σ2

1, σ
2
2, . . . , σ

2
t )C>, where

d̂t×1 =

d(µ̂1, 0)
...

d(µ̂t, 0)

 .
Motivated by the above, we propose a statistic based on the estimated distance metric given
by Tc = (Cd̂)>(Ψ̂)−1(Cd̂), where Ψ̂ is a consistent estimator of Ψ. Thus, Tc is expected to
be larger whenever the treatment effects drift away from the null configuration, and hence
a right-tailed test based on it is appropriate. However, under the null hypothesis, Tc follows
asymptotically a chi-square distribution with (t− 1) degrees of freedom, and hence a large
sample test rejects the null if observed Tc exceeds the upper percentage point α of a chi-
square distribution with (t−1) degrees of freedom. However, the corresponding development
with the other distance function is straightforward and, therefore we skip details for brevity.

4. Performance evaluation of the proposed test

4.1 Context

To explore the performance (that is, statistical power) of the proposed procedures, we carry
out an extensive simulation with programs written in the R software using the packages
CircStat and Circular, dedicated for circular data. The average run-time for simulation
of size 10,000 is approximately 4 minutes in a 64 bit machine with core i3 processor. However,
for a meaningful evaluation, we need to justify assumptions on the underlying distributions
and relevant competitors. Further, the development assumed large samples and consequently
we start with the relevant quantile-quantile (QQ) plot for the selected sample sizes, check
closeness to normality and envisage the nature of power. Specifically, we consider sample
sizes 40 and 80, equally distributed to each treatment arm, and carry out the simulation
study with 10,000 repetitions. Furthermore, for a valid comparison, we need to select valid
competitors. But competitors in this context are only available for the von Mises distribu-
tion. Consequently, we compare the performance of the proposed procedure for von Mises
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responses and also include a few other distributions from the circular family of distributions
for our purposes.

4.2 Competitors

To describe suitable competitors, we assume that Ygi are independent observations from the
von Mises (Mardia and Jupp, 2004) distribution with mean direction µg and concentration
parameter κg, for i = 1, . . . , ng. As cosµA > cosµB is an indicative of the fact that treatment
A performs better (that is, has a lower mean direction), Biswas et al. (2015) considered
testing H0: cosµA = cosµB with an objective to develop an analogous test for the equality
of mean directions. Assuming equal concentration, Biswas et al. (2015) suggested a test
statistic given by

W= = C̄A − C̄B√
σ̂ (1/nA + 1/nB)

,

where C̄g =
∑ng

i=1 cos(Ygi)/ng, for g = A,B, σ̂ = (1 + α̂2 − 2α̂2
1)/2 with α̂s =

(
∑
g=A,B

∑ng

i=1 cos(sYgi))/n, and s = 1, 2. Under the alternative hypothesis, the statistic
|W=| is expected to be larger, and hence a right-tailed test based on |W=| is suggested.
However, under the null hypothesis, for large sample sizes, the statistic W= converges to an
RV with standard normal distribution and consequently the square of W= converges to an
RV with chi-square distribution with degree of freedom unity. Therefore, a large sample size
α test rejects the null hypothesis if the squared W= exceeds the upper percentage point α
of a chi-square distribution with one degree of freedom. However, under κA 6= κB, Biswas
et al. (2015) suggested to use the statistic given by

W 6= =
(
T 2
A

S2
A

+ T 2
B

S2
B

−
(
TA
S2
A

+ TB
S2
B

)2)/( 1
S2
A

+ 1
S2
B

)
,

where

Tg = arccos C̄g√
C̄2
g + S̄2

g

, S2
g = 1− A(κ̂g, 1)

2NgnA(κ̂g, 0) ,

with κ̂g being the ML estimator of κg, for g = A,B and A being a function of modified
Bessel functions. Following Biswas et al. (2015), we note that for mean direction parameters
not close to zero direction, the asymptotic null distribution of the statistic W 6= is chi-square
with one degree of freedom. As larger values of W 6= indicate a deviation from the null
hypothesis, a large sample size α test rejects H0 if W 6= exceeds the upper α percentage
point of a chi-square distribution with one degree of freedom.

As another competitor, we consider the procedure suggested by Watson and Williams
(1956) to test H0: µA = µB. Under equal concentration κA = κB = κ, the authors suggested
the statistic given by

V = (RA +RB −R)(nA + nB − 2)
(nA + nB −RA −RB) ,

where Rg is the mean resultant length for sample g, with g = A,B, and R is the mean re-
sultant length of the combined sample. For moderately large values of κ, V is approximately
distributed as F with degrees of freedom (1, nA + nB − 2) under the null hypothesis.
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4.3 Simulation studies

First of all, we assume two treatment arms (that is, A and B), response distribution corre-
sponding to treatment g as von Mises with mean direction µg and concentration parameter
κg with ng observations from treatment g, for g = A,B.

As the proposed tests are based on asymptotic null distributions and the exact null distri-
bution is difficult to obtain even for small samples, we examine the null distributions of Zc
and Wc through simulated data based QQ plots in Figure 1 for moderate choices of (nA, nB)
and observe the closeness with the desired distributions (that is, asymptotic normality for
Zc test and asymptotic chi square for Wc test). Now for the sake of power computation,
we take preferred direction at 00 and fix µA at 50 making treatment A better and vary µB
upto 1200 and simulate the power for each of the proposed and competing procedures at 5
percent level of significance. All these are computed assuming equal sample sizes (that is,
n) for each treatment arm and different choices of (κA, κB) and the powers of the corre-
sponding tests are reported in Table 1 and 2. From these power figures, it is readily noticed
that both the proposed procedures (that is, Zc and Wc tests) outperform the W= test of
Biswas et al. (2015) at equal concentration. However, for unequal concentration, apart from
minor exceptions, the proposed Wc test is more powerful than the W 6= test of Biswas et al.
(2015) when the better treatment has higher concentration. Thus, the proposed procedures
are capable of detecting a difference in the treatment effects with considerably higher power
under the von Mises responses.

Since the development of the proposed procedure is not based on any specific distributional
assumption, it is expected to perform well for any distribution of the circular family. We,
therefore, consider wrapped Cauchy and wrapped Normal distributions further to model
the distribution of for responses and compute the relevant power figures for the already
mentioned Zc and Wc tests. Specifically, we assume that the responses for treatment g
are distributed as wrapped normal with mean direction µg and concentration parameter
ρg ∈ (0, 1), for g = A,B and compute the relevant powers for the proposed tests at 5
percent level considering different configuration of (µA, µB, ρA, ρB) and equal sample size n.
For the wrapped Cauchy distribution, we continue with the same set of notation as above,
but with the exception that µg denotes the modal direction. All of these can be found in
Tables 3 and 4.

As expected, the powers stated in Tables 3 and 4 increase as µB deviates more from µA
irrespective of the configuration of the concentration parameters, resembling the features for
the von Mises responses. In fact, for either response distributions, a little deviation from the
null configuration causes a stable increase in power indicating sensitivity. We further observe
that power rises more sharply for wrapped Cauchy responses under equal concentration,
whereas for unequal concentration, computation with wrapped normal responses produces
higher powers compared to those for wrapped Cauchy responses. We further focus towards
multi-sample test under the von Mises responses. Specifically, we consider three treatments,
where the response from treatment g has a von Mises distribution with mean direction µg
and concentration κg, for g = 1, 2, 3. We calculate the powers of the Tc test by setting
(µ1, µ2, µ3) in such a way that Treatment 1 is the superior followed by Treatment 3 and
Treatment 2. Two sets of concentration parameters are considered ensuring higher and
lower concentrations, respectively, for the superior treatment. For the computation, µ1 is
fixed at 50, µ2 and µ3 are varied according to the assumed ordering. For all the selected set
of parameters, the power is computed for equal sample sizes (n) 20 and 40 per treatment
arm and are reported in Table 5. It is easy to observe the upward movement of power with
increasing difference in treatment effects with the further observation of rapid increase in
power when the superior treatment (that is,Treatment 1) has the lower concentration. Thus
the Tc test has good ability of detecting a little deviation from the null configuration.
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(a) WC with nA = nB = 20, κA = 2, κB = 1.
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(b) WC with nA = nB = 40, κA = 2, κB = 1.
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(c) ZC with nA = nB = 20, κA = 1, κB = 1.
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(d) ZC with nA = nB = 40, κA = 1, κB = 1.

Figure 1. QQ plots of Zc and Wc for von Mises responses under µA = µB = 50.

Table 1. Power comparison for von Mises response under equal concentration with κA = κB = 1.
Zc Wc W= V

µA µB n = 20 n = 40 n = 20 n = 40 n = 20 n = 40 n = 20 n = 40
5 5 0.0520 0.0500 0.0542 0.0500 0.0520 0.0500 0.0500 0.0500
5 20 0.0730 0.0730 0.1202 0.1768 0.0688 0.0668 0.0556 0.0610
5 45 0.1736 0.2454 0.3638 0.6082 0.1666 0.2398 0.1194 0.1408
5 60 0.3192 0.4862 0.5622 0.8514 0.3124 0.4762 0.1884 0.2470
5 75 0.5132 0.7466 0.7432 0.9660 0.4990 0.7402 0.2766 0.3756
5 90 0.7030 0.9160 0.8866 0.9942 0.6944 0.9130 0.3740 0.5274
5 120 0.9438 0.9978 0.9792 0.9996 0.9410 0.9980 0.6062 0.7956
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Table 2. Power comparison for von Mises response under unequal concentration.
Wc W 6=

(µA, µB , κA, κB) n = 20 n = 40 n = 20 n = 40
(5, 5, 2, 1) 0.0500 0.0500 0.0500 0.0500
(5, 30, 2, 1) 0.2334 0.4600 0.2446 0.4224
(5, 45, 2, 1) 0.4658 0.8052 0.4576 0.7248
(5, 60, 2, 1) 0.7136 0.9568 0.6412 0.8828
(5, 75, 2, 1) 0.8892 0.9970 0.7736 0.9518
(5, 90, 2, 1) 0.9626 1.0000 0.8398 0.9750
(5, 120, 2, 1) 0.9916 1.0000 0.9238 0.9918
(5, 5, 1, 2) 0.0500 0.0500 0.0500 0.0500
(5, 30, 1, 2) 0.2814 0.4680 0.1708 0.3312
(5, 45, 1, 2) 0.5132 0.7936 0.3744 0.6588
(5, 60, 1, 2) 0.7562 0.9628 0.5952 0.8630
(5, 75, 1, 2) 0.9082 0.9964 0.7448 0.9452
(5, 90, 1, 2) 0.9726 1.0000 0.8274 0.9728
(5, 120, 1, 2) 0.9984 1.0000 0.9176 0.9910

Table 3. Power evaluation for wrapped normal and wrapped Cauchy responses under equal concentration
with ρA = ρB = 0.5

Wrapped normal Wrapped Cauchy
(µA, µB , ρA, ρB) n = 20 n = 40 n = 20 n = 40

(5, 5, 0.5, 0.5) 0.0500 0.0500 0.0500 0.0500
(5, 30, 0.5, 0.5) 0.0808 0.1204 0.0974 0.1394
(5, 45, 0.5, 0.5) 0.1508 0.2734 0.2106 0.3572
(5, 60, 0.5, 0.5) 0.1508 0.5218 0.4220 0.6574
(5, 75, 0.5, 0.5) 0.4830 0.7946 0.6610 0.8968
(5, 90, 0.5, 0.5) 0.6894 0.9438 0.8564 0.9840
(5, 120, 0.5, 0.5) 0.9538 0.9996 0.9906 1.0000

Table 4. Power evaluation for wrapped normal and wrapped Cauchy responses under unequal concentra-
tion

Wrapped normal Wrapped Cauchy
(µA, µB , ρA, ρB) n = 20 n = 40 n = 20 n = 40

(5, 5, 0.8, 0.5) 0.0500 0.0500 0.0500 0.0500
(5, 30, 0.8, 0.5) 0.2564 0.3926 0.1218 0.2322
(5, 45, 0.8, 0.5) 0.6564 0.9040 0.5032 0.9192
(5, 60, 0.8, 0.5) 0.8630 0.9944 0.8600 0.9952
(5, 75, 0.8, 0.5) 0.9726 0.9990 0.9692 0.9998
(5, 90, 0.8, 0.5) 0.9960 1.0000 0.9940 1.0000
(5, 120, 0.8, 0.5) 0.9994 1.0000 0.9990 1.0000

Table 5. Power comparison of Tc test for t = 3.
κ1 = 2, κ2 = 2, κ3 = 1 κ1 = 1, κ2 = 2, κ3 = 2

µ1 µ2 µ3 n = 20 n = 40 n = 20 n = 40
5 5 5 0.0500 0.0500 0.0500 0.0500
5 15 10 0.0522 0.0544 0.0539 0.0721
5 25 15 0.0771 0.1104 0.1071 0.2068
5 45 30 0.1384 0.3775 0.2557 0.5617
5 60 45 0.3128 0.8003 0.4886 0.8647
5 75 60 0.6070 0.9836 0.7418 0.9822
5 90 75 0.8478 0.9997 0.9059 0.9988
5 120 100 0.9935 1.0000 0.9936 1.0000



Chilean Journal of Statistics 95

5. Application to a real clinical trial

5.1 Context

To judge the consistency of the decision of the proposed testing procedure in real situations,
we consider a real clinical trial involving circular responses. A small incision cataract surgery
(SICS) trial was conducted at the Disha Eye Hospital and Research Center, Barrackpore,
West Bengal, India, over a period of two years (2008-2010) by Bakshi (2010). We take
into account two competing treatments from the study, namely SICS with Snare technique
(Rao et al., 1993) and SICS with Irrigating Vectis technique (Masket, 2004) with 19 and
18 observations, respectively. In the original study, the treatments were concluded to be
equally performing. Here, we analyze the same data, but in the light of the proposed test,
Wc namely.

5.2 Data analysis

For the current analysis, the original study variable is multiplied by 4 in the modulo 2π
system to make the preferred direction 00. Next, the data are transformed using the circular
distance function d as described in Section 2.2. Now we prepare a side-by-side boxplot of
the transformed data for each of the treatment groups and provide in Figure 2. However,
the boxplot indicates presence of outliers; one for each treatment group. We carry out the
test Wc twice: one with the outliers and the other, without the outliers.

The concerned p-value comes out as 0.39 when outliers are retained, whereas removal of
outliers produces the updated p-value 0.61. The difference in these p-values indicates the
impact of presence of outliers in the analysis. However, for both analyzes, the two treatments
(that is, Snare and Irrigating Vectis techniques) do not show significant differences with
respect to treatment effects and hence mimic the conclusion obtained in the original trial.

Snare's Technique Irrigating Vectis
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Figure 2. Boxplot for transformed data.
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6. Conclusions, limitations, and future research

In the current work, we have suggested a measure of treatment effect in the context of
clinical trials with circular responses, developed two treatment and multiple treatment tests
for equality of treatment effects and assessed the statistical power of the proposed procedures
empirically assuming responses from different circular distributions. In the context of circular
data, the proposed procedures are analogous to two sample t test multi-sample contrast
based tests. Moreover, the development is based on a relevant asymptotic distribution and
hence may produce lower power for small samples. However, in any clinical trial, responses
are often influenced by covariates and we intend to develop relevant measures of treatment
effect and corresponding testing procedures, when the covariates are either circular or linear
in nature.

Appendix A.1

Suppose X1, . . . , Xn are IID RVs from a regular circular family of distributions. Assume
that the true mean direction is µ and the family of distributions admits the ML esti-
mator of µ. Then, for the distance function d and the ML estimator µ̂, under certain
regularity conditions, we have that

√
n(d(µ̂) − d(µ)) → N(0, σ2) provided µ 6= π, where

σ2 is the inverse of the Fisher information contained in µ. However, for µ = π, we have
limn→∞ P (

√
n(d(µ̂)− d(π)) ≤ x) = 2Φ(x/σ), if x < 0, or it is equal to one, if x ≥ 0.

The previous result can be proven as follows. Under certain regularity conditions the
asymptotic distribution of the ML estimator of µ is given by (Mardia and Jupp, 2004)

√
n(µ̂− µ)→ N(0, σ2).

Now, d(µ̂) is µ̂ when 0 < µ̂ < π and it is 2π − µ̂ when π < µ̂ < 2π. Thus, d is piecewise
continuous and differentiable except at π. For µ 6= π, we note that (d′(µ))2 = 1 and hence
by the delta method, the result follows. However, for µ = π, assume x ≥ 0 and consider the
representation

P
(√
n(d(µ̂)− d(π)) ≤ x

)
= P

(√
n(µ̂− π) ≤ x, µ̂ ≤ π

)
+ P

(√
n(2π − µ̂− π) ≤ x, µ̂ > π

)
= P

(√
n(µ̂− π) ≤ 0

)
+ P

(√
n(µ̂− π) > 0

)
(1)

Since
√
n(µ̂−π) converges in distribution to a normal variable with mean zero and variance

σ2, the right hand side of Equation (1) converges to unity as n→∞. In a similar way, for
x < 0, we get

P
(√
n(d(µ̂)− d(π)) ≤ x

)
= P

(√
n(µ̂− π) ≤ x

)
+ P

(√
n(µ̂− π) ≥ −x

)
. (2)

Now, it follows easily from the asymptotic normality of the distribution of µ̂ that, for
large n, the right hand side of Equation (2) converges to 2Φ(x/σ).

Remark: Under the above assumptions, the asymptotic distribution of D(µ̂) = 1− cos(µ̂)
is normal with mean D(µ) and variance τ 2 = sin2(µ)σ2, the proof of which follows from
the Delta method and the fact that D(µ) is a continuous differentiable function having
D′(µ) 6= 0 except for µ = π, 2π.
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Appendix A.2

The PDF of the distance function d = d(Y, 0) is given by fd(y) = fY (y) +fY (2π− y), where
f is the PDF of the circular RV Y .

The previous result can be proven as follows. Note that

P(d(Y ) ≤ y) = P(d(Y ) ≤ y, 0 < Y < π) + P(d(Y ) ≤ y, π < Y < 2π)
= P(Y ≤ y) + P(2π − Y ≤ y) = FY (y) + 1− FY (2π − y).

The result follows from differentiating the above with respect to y.
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