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Abstract

The new three-parameter exponentiated power Ishita distribution is introduced, and
some of its mathematical properties are addressed. Its parameters are estimated by
maximum likelihood, and a simulation study examines the accuracy of the estimates.
A regression model is constructed based on the logarithm of the proposed distribution.
The usefulness of the proposed models is proved by means of two real data sets.
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1. Introduction

The development of new distributions is crucial in the field of statistics. By creating and
refining these distributions, researchers can more accurately model and understand complex
data sets. Recently, there has been a growing interest in the practice of adding parameters to
known distributions. This allows for the creation of diverse shapes of hazard rate functions
(HRFs), which can be used to analyze different types of data. Some distributions generated
using this technique include the transmuted Dagum (Elbatal et al., 2015), Harris extended
Lindley (Cordeiro et al., 2019), Mc-Donald Chen (Reis et al., 2022), and Topp-Leone log-
normal (Chesneau et al., 2022) distributions.

One popular approach is to raise a cumulative distribution to an additional power parame-
ter. This technique is commonly referred to as the exponentiated-G (exp-G) class. This class
is highly flexible and versatile and has gained significant attention in recent years. Tahir and
Nadarajah (2015) provided a summary of the properties of various distributions in the exp-
G class in Table 1, thus including well-known distributions such as the exp-Weibull (EW)
(Mudholkar and Srivastava, 1993), exp-exponential (Gupta and Kundu, 2001), exp-Fréchet
(EF) (Nadarajah and Kotz, 2003), and exp-gamma (Nadarajah and Gupta, 2007). One of
the main advantages of this class is that its mathematical properties can be used to obtain
the properties of other classes of distributions, such as the beta-G (Eugene et al., 2002),
gamma-G (Zografos and Balakrishnan, 2009), Kumaraswamy-G (Cordeiro and de Castro,
2011), and Weibull-G (Bourguignon et al., 2014) classes, among many others.
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Due to the limitations of the exponential and Lindley (Lindley, 1958) distributions for
modeling lifetime data from biomedical science and engineering, Shanker and Shukla (2017a)
introduced the Ishita (IS) distribution, based on a mixture of exponential and gamma dis-
tributions, which is capable of modeling this data set more accurately. Later, Shukla and
Shanker (2018) extended this distribution using the power transformation technique, called
the power Ishita (PI) distribution, with applications to real engineering data. In comparison
to other distributions, such as the power Akash (Shanker and Shukla, 2017b), power Lindley
(Ghitany et al., 2013), and exponential, the PI distribution has proved superior performance
in terms of both accuracy and flexibility.

This paper proposes a flexible extension of the PI distribution that can be applied in
several fields. The introduction of an extra shape parameter can provide better fits to various
types of data. This extension represents a valuable contribution to statistical modeling, since
it increases the flexibility and applicability of the PI distribution.

The remainder of the article is structured as follows: Section 2 defines the exponentiated
power Ishita (EPI) distribution, and Section 3 provides some of its structural properties.
The estimation of the parameters by maximum likelihood is addressed in Section 4, and
a regression model is constructed in Section 5. A simulation study is done in Section 6 to
examine the precision of the estimators. Two real data sets are analyzed in Section 7, and
some conclusions are reported in Section 8.

2. Background

The cumulative distribution function (CDF) of the PI distribution can be expressed as (for
x > 0)

G(x; θ, α) = 1−
[
1 + θxα (θxα + 2)

θ3 + 2

]
e−θxα , (2.1)

where θ, α > 0. The probability density function (PDF) corresponding to Equation (2.1) is

g(x; θ, α) = α θ3

θ3 + 2
[
θ + x2α

]
xα−1 e−θxα . (2.2)

The PI distribution is a two-component mixture that combines a Weibull distribution and
a generalized gamma distribution, with a mixing proportion θ3/(θ3 + 2).

The CDF and PDF of the exp-G distribution with power parameter c > 0 are given by

F (x; c, ξ) = G(x; ξ)c , (2.3)

and

f(x; c, ξ) = c g(x; ξ)G(x; ξ)c−1, (2.4)

respectively, where ξ is the parameter vector of G(·).
By substituting Equation (2.1) in Equation (2.3) and Equation (2.1) and Equation (2.2)

in Equation (2.4), the CDF and PDF of the random variable X ∼ EPI (c, θ, α) having the
new three-parameter EPI distribution follow as

F (x; c, θ, α) =
{

1−
[
1 + θxα (θxα + 2)

θ3 + 2

]
e−θxα

}c
, x > 0, (2.5)
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and

f(x; c, θ, α) = c α θ3

θ3 + 2
[
θ + x2α

]
xα−1 e−θxα

{
1−

[
1 + θxα (θxα + 2)

θ3 + 2

]
e−θxα

}c−1
, (2.6)

respectively. Its HRF takes the form

τ(x; c, θ, α) =
c α θ3

θ3+2
[
θ + x2α]xα−1 e−θxα

{
1−

[
1 + θxα(θxα+2)

θ3+2

]
e−θxα

}c−1

1−
{

1−
[
1 + θxα(θxα+2)

θ3+2

]
e−θxα

}c .

The exponentiated Ishita (EI) (Rather and Subramanian, 2019), PI and IS distributions
are special cases of the EPI distribution when α = 1, c = 1 and α = c = 1, respectively. Fig-
ure 1 displays plots of the PDF of X to show some shapes, including decreasing, symmetric,
right-skewed, and left-skewed. Plots of the HRF of X are reported in Figure 2, which has
four shapes: increasing, decreasing, unimodal, and bathtub. All plots in Sections 2 and 3
are obtained in R (version 4.2.3) (R Core Team, 2022). This version is utilized for all of the
analyses conducted in this article.

The EPI distribution offers several motivations. This extension adds greater flexibility
to the PDF and HRF, with its HRF exhibiting both bathtub and unimodal shapes. Addi-
tionally, its mathematical properties, including ordinary and incomplete moments, can be
leveraged in future expansions of the PI distribution through the use of other generators
such as the Beta-G, Weibull-G, Gamma-G, and Kumaraswamy-G. This is possible by the
ability to determine the mathematical properties of these generators based on the proper-
ties of the exp-G class. Finally, it provides a consistently better fit to some real data sets
compared to its PI, EI, and IS sub-models, as illustrated in Section 7.
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Figure 1. PDF of X ∼ EPI (c, θ, α).
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Figure 2. HRF of X ∼ EPI (c, θ, α).

3. Properties

The sth moment of X is defined as µ′s = IE(Xs) =
∫∞

0 xs f(x) dx. We can write from
Equation (2.6)

µ′s = c α θ3

θ3 + 2

∫ ∞
0

(
θ + x2α

)
xs+α−1 e−θxα

{
1−

[
1 + θxα (θxα + 2)

θ3 + 2

]
e−θxα

}c−1
dx . (3.7)

The integral in Equation (3.7) can be solved numerically using the programs R,
Mathematica, Maple, or Ox, which have subroutines with great precision.

An analytical expression for the sth moment of X can be derived. By using the generalized
Binomial Theorem on

{
1−

[
1 + (θxα (θxα + 2))/(θ3 + 2)

]
e−θxα

}c−1, we have

µ′s = c α θ3

θ3 + 2

∞∑
i=0

(−1)i
(
c− 1
i

)∫ ∞
0

(
θ + x2α

)
xs+α−1 e−(i+1)θxα

[
1 + θxα (θxα + 2)

θ3 + 2

]i
dx .

Applying the Binomial Theorem on
[
1 + (θxα (θxα + 2))/(θ3 + 2)

]i gives

µ′s = c α
∞∑
i=0

i∑
j=0

(−1)i
(
c− 1
i

)(
i

j

)
θ3+j

(θ3 + 2)j+1

∫ ∞
0

(
θ + x2α

)
(θxα + 2)j

× xα(1+j)+s−1 e−(i+1)θxα dx .

Again, using the Binomial Theorem on (θxα + 2)j ,

µ′s = c α
∞∑
i=0

i∑
j=0

j∑
k=0

(−1)i 2j−k
(
c− 1
i

)(
i

j

)(
j

k

)
θ3+j+k

(θ3 + 2)j+1

∫ ∞
0

(
θ + x2α

)
× xα(1+j+k)+s−1 e−(i+1)θxα dx .
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Replacing
∑∞
i=0
∑i
j=0 by

∑∞
j=0

∑∞
i=j gives

µ′s = c
∞∑
j=0

∞∑
i=j

j∑
k=0

(−1)i 2j−k
(
c− 1
i

)(
i

j

)(
j

k

)
θ3+j+k

(θ3 + 2)j+1

×
{
θ Γ [1 + j + k + s/α]
[(i+ 1) θ ]1+j+k+s/α + Γ [3 + j + k + s/α]

[(i+ 1) θ ]3+j+k+s/α

}
, (3.8)

where Γ(·) is the gamma function.

Table 1. Numerical moments of the EPI distribution.

Equation (3.7)
µ′s c = 0.5, α = 0.5 c = 0.5, α = 2.5 c = 0.5, α = 3.5
µ′1 0.2710083 0.4887077 0.5728775
µ′2 0.8083474 0.3347754 0.4035652
µ′3 6.0173901 0.2772582 0.3227265
µ′4 79.2698702 0.2612512 0.2823020
µ′s c = 1.5, α = 0.5 c = 1.5, α = 2.5 c = 1.5, α = 3.5
µ′1 0.7037671 0.7610903 0.8113205
µ′2 2.3492264 0.6555472 0.7044505
µ′3 17.9042204 0.6224355 0.6471525
µ′4 237.2658052 0.6400585 0.6237897

Equation (3.8)
µ′s c = 0.5, α = 0.5 c = 0.5, α = 2.5 c = 0.5, α = 3.5
µ′1 0.2709654 0.4722906 0.5441371
µ′2 0.8083471 0.3319362 0.3960836
µ′3 6.0173898 0.2766467 0.3204721
µ′4 79.2698679 0.2610981 0.2815484
µ′s c = 1.5, α = 0.5 c = 1.5, α = 2.5 c = 1.5, α = 3.5
µ′1 0.7037700 0.7618455 0.8125474
µ′2 2.3492264 0.6557035 0.7048268
µ′3 17.9042204 0.6224730 0.6472789
µ′4 237.2658052 0.6400686 0.6238354

The first four moments of X from Equations (3.7) and (3.8) for some values of c and
α with θ = 2.5 are listed in Table 1. These moments are quite close, thus demonstrating
the accuracy of Equation (3.8) with just the first 15 terms. Equations (3.7) and (3.8) are
computed using R and Mathematica (version 12.2) (Wolfram Research, 2020) programs.

The skewness and kurtosis of X are easily determined from the first four ordinary mo-
ments. Plots of these quantities as functions of c (for some values of θ and α) are reported
in Figure 3, which can be increasing, decreasing, decreasing-increasing, and increasing-
decreasing.
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Figure 3. Skewness and kurtosis of X ∼ EPI (c, θ, α).

Further, the sth incomplete moment of X, say ms(z) =
∫ z

0 x
s f(x) dx, can be expressed

as

ms(z) = c α θ3

θ3 + 2

∫ z

0

(
θ + x2α

)
xs+α−1 e−θxα

{
1−

[
1 + θxα (θxα + 2)

θ3 + 2

]
e−θxα

}c−1
dx .

Following the same steps that lead to Equation (3.8), we have

ms(z) = c
∞∑
j=0

∞∑
i=j

j∑
k=0

(−1)i 2j−k
(
c− 1
i

)(
i

j

)(
j

k

)
θ3+j+k

(θ3 + 2)j+1

×

θ γ
[
α(1+j+k)+s

α , (i+ 1)θzα
]

[(i+ 1) θ ]
α(1+j+k)+s

α

+
γ
[
α(3+j+k)+s

α , (i+ 1)θzα
]

[(i+ 1) θ ]
α(3+j+k)+s

α

 ,

where γ(·, ·) denotes the lower incomplete gamma function.
The first incomplete moment m1(z) can be used to calculate the total deviations from

the mean and median of X. These can be expressed as δ1 = 2µ′1F (µ′1) − 2m1(µ′1) and
δ2 = µ′1 − 2m1(M), respectively, where M can be found from the CDF given in Equation
(2.5) by setting F (M) = 0.5.

For a given probability ν, the Bonferroni and Lorenz curves of X are B(ν) = m1(q)/νµ′1
and L(ν) = m1(q)/µ′1, respectively, where q is the solution of F (q) = ν. Plots of these curves
for X versus ν for selected values of c and θ (α = 1.5) are reported in Figure 4.

4. Estimation

Let x1, x2, . . . , xn be independent and identically distributed (IID) observations from the
EPI distribution, and let ζ = (c, θ, α)> be the vector of unknown parameters. The log-
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Figure 4. Bonferroni and Lorenz curves of X ∼ EPI (c, θ, α).

likelihood function for ζ is

`(ζ) =n [ log(c) + log(α) + 3 log(θ)− log(θ3 + 2)] +
n∑
i=1

log(θ + x2α
i ) + (α− 1)

n∑
i=1

log(xi)

− θ
n∑
i=1

xαi + (c− 1)
n∑
i=1

log
{

1−
[
1 + θxαi (θxαi + 2)

θ3 + 2

]
e−θxαi

}
. (4.9)

The maximum likelihood estimate (MLE) ζ̂ of ζ is determined by maximizing Equation
(4.9) numerically using statistical programs like R (optim function), Ox (MaxBFGS function),
and SAS (PROC NLMIXED function).

5. Regression

By applying the transformation Y = log(X), where X has PDF given in Equation (2.6) and
setting α = 1/σ and θ = e−µ/σ, the log-exponentiated power Ishita (LEPI) density has the
form (for y ∈ IR)

f(y; c, σ, µ) =
c e( y−3µ

σ ) (e−µ/σ + e2 y/σ) e−e(
y−µ
σ )

σ
(
e−3µ/σ + 2

)
1−

1 +
e( y−µ

σ )
(

e( y−µ
σ ) + 2

)
(
e−3µ/σ + 2

)
 e−e(

y−µ
σ )

c−1

,

(5.10)

where c, σ > 0 and µ ∈ IR. So, if X ∼ EPI (c, θ, α), then Y = log(X) ∼ LEPI (c, σ, µ).
The survival and density functions Z = (Y − µ)/σ are

S(z; c, σ, µ) = 1−
{

1−
[

1 + ez (ez + 2)(
e−3µ/σ + 2

)] e−ez
}c

and

f(z; c, σ, µ) = cw(z) e−ez(
e−3µ/σ + 2

) {1−
[

1 + ez (ez + 2)(
e−3µ/σ + 2

)] e−ez
}c−1

, z ∈ IR , (5.11)
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respectively, where

w(z) = e( zσ−2µ
σ )

(
e−µ/σ + e2(zσ+µ)/σ

)
.

Parametric regression models are often used for censored data. In this context, based on Equation
(5.10), a regression model for the response variable Yi and a vector of explanatory variables v>i =
(vi1, vi2, . . . , vip) is constructed as

yi = v>i β + σ zi , i = 1, . . . , n , (5.12)

where µi = v>i β, β = (β1, β2, . . . , βp)> is a vector of unknown coefficients, and z is the random
error with density given in Equation (5.11).

The density and survival functions of Yi|vi are

f(y|vi) = cw(zi) e−ezi

σ
(
e−3µi/σ + 2

) {1−
[

1 + ezi (ezi + 2)(
e−3µi/σ + 2

)] e−ezi
}c−1

(5.13)

and

S(y|vi) = 1−
{

1−
[

1 + ezi (ezi + 2)(
e−3µi/σ + 2

)] e−ezi
}c

,

respectively, where w(zi) = e( ziσ−2µi
σ ) (e−µi/σ + e2(ziσ+µi)/σ

)
and zi = (yi − µi)/σ.

Maximum likelihood is adopted to estimate the parameters in Equation (5.12) for right-censored
data. Let Yi and Ci be the lifetime and the non-informative censoring time (assuming indepen-
dence), respectively, and yi = min(Yi, Ci). Then, the log-likelihood function for η = (c, σ,β>)>
is

`(η) = d [ log(c)− log(σ) ]−
∑
i∈F

log
(

e−3µi/σ + 2
)

+
∑
i∈F

log[w(zi)]−
∑
i∈F

ezi

+ (c− 1)
∑
i∈F

log
{

1−
[

1 + ezi (ezi + 2)(
e−3µi/σ + 2

)] e−ezi
}

+
∑
i∈C

log
[

1−
{

1−
[

1 + ezi (ezi + 2)(
e−3µi/σ + 2

)] e−ezi
}c]

, (5.14)

where F and C are the sets of uncensored and censored observations, respectively, and d is the
number of failures. The MLE η̂ of the vector of unknown parameters can be found by maximizing
Equation (5.14).

6. Simulations

The EPI distribution is simulated under three different scenarios to examine the accuracy of the
MLEs. The acceptance-rejection method is adopted to generate random samples of sizes n =
50, 100, 300, and 600 from this distribution. The process is repeated 1,000 times and the average
estimates (AEs), biases, and mean squared errors (MSEs) are computed.

The algorithm for generating random samples uses the acceptance-rejection method:
(1) Generate t from the density h(t) = α θ tα−1e−θ tα .
(2) Generate u ∼ uniform (0, 1).
(3) If u ≤ f(t)/Nh(t), set x = t, where f(·) is the PDF given in Equation (2.6) and N =

max [f(t)/h(t) ]. Otherwise, return to step 1.
Figure 5 displays graphically the approximation of the acceptance-rejection method. The esti-

mated PDF and CDF of the EPI distribution are very close to the histogram and empirical CDF
of the generated samples, thus indicating a good performance of this method.
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Table 2. Simulation findings from the EPI distribution.
(2.0, 10, 0.5) (1.4, 7.0, 5.0) (3.0, 9.0, 3.5)

n ζ AE Bias MSE AE Bias MSE AE Bias MSE
50 c 3.3155 1.3155 15.8513 2.1312 0.7312 8.5224 4.7897 1.7897 39.0636

θ 13.0738 3.0738 66.8723 8.5586 1.5586 14.3504 11.4107 2.4107 32.4455
α 0.5598 0.0598 0.0582 5.7608 0.7608 6.8695 4.1010 0.6010 3.4317

100 c 2.6372 0.6372 5.4844 1.6828 0.2828 1.4734 4.2802 1.2802 20.6862
θ 11.2604 1.2604 16.9159 7.7355 0.7355 5.7606 9.9202 0.9202 6.0715
α 0.5250 0.0250 0.0245 5.3505 0.3505 2.5289 3.7087 0.2087 1.4281

300 c 2.1606 0.1606 0.6441 1.4539 0.0539 0.1919 3.2622 0.2622 2.0005
θ 10.3520 0.3520 2.1693 7.1913 0.1913 0.4788 9.2594 0.2594 0.8096
α 0.5085 0.0085 0.0069 5.1220 0.1220 0.5843 3.5798 0.0798 0.3345

600 c 2.0609 0.0609 0.2186 1.4374 0.0374 0.0969 3.1098 0.1098 0.7249
θ 10.1348 0.1348 0.7482 7.1046 0.1046 0.2178 9.1221 0.1221 0.3645
α 0.5037 0.0037 0.0029 5.0560 0.0560 0.3241 3.5399 0.0399 0.1625
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Figure 5. Histogram and empirical CDF of the generated samples. Estimated PDF and CDF for the scenario (1.4,
7.0, 5.0).

The numbers in Table 2 indicate that the AEs converge to the true parameters and that the biases
and MSEs tend to zero when n increases, which proves the consistency of the EPI estimators. Note
that for the (2.0, 10, 0.5) scenario the parameter estimates are less accurate (except for α), while
for the (1.4, 7.0, 5.0) scenario, the parameter estimates are more accurate (for c and θ). Overall,
the simulation results suggest that larger sample sizes and the appropriate choice of ζ are crucial
for accurate parameter estimation of the EPI distribution.

The accuracy of the MLEs in the new regression model is investigated from 1,000 samples
for c = 0.5, σ = 0.8, β0 = 0.3, β1 = 0.5, and n = 50, 100, 300, and 600. The observations
are generated from Yi ∼ LEPI (c, σ, µi), where µi = β0 + β1 vi1 and vi1 ∼ uniform (0, 1).
The algorithm for generating random samples from the LEPI regression is similar to the EPI
distribution. First, generate vi1 ∼ uniform (0, 1) and calculate µi = β0 + β1 vi1. Then, write
h(ti) = (1/σ) exp [(ti − µi)/σ] exp {− exp [(ti − µi)/σ]} and f(·) is the PDF given in Equation
(5.13).

The findings in Table 3 show that the AEs converge to the true parameters and the biases
and MSEs decay to zero when n increases (in all parameters). This fact proves that the LEPI
regression estimators are consistent. In general, the estimates for β0 and β1 have the highest biases
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and MSE values, while the estimates of c and σ have the lowest values of these measures. These
simulations are done using a script with the optim subroutine in R program. All computations,
including those presented in Section 7, are conducted on a Windows 10 computer with an i7-7700k
processor operating at 4.20 GHz, and equipped with 16GB of memory.

Table 3. Simulation findings from the LEPI regression.

n Parameter AE Bias MSE
50 c 0.6618 0.1618 0.2711

σ 0.7594 -0.0405 0.0452
β0 0.2378 -0.0621 0.2695
β1 0.4898 -0.0101 0.5688

100 c 0.5614 0.0614 0.0923
σ 0.7547 -0.0452 0.0333
β0 0.2782 -0.0217 0.2136
β1 0.5436 0.0436 0.2403

300 c 0.5172 0.0172 0.0245
σ 0.7743 -0.0256 0.0119
β0 0.2837 -0.0162 0.0538
β1 0.5445 0.0445 0.0712

600 c 0.5138 0.0138 0.0124
σ 0.7854 -0.0145 0.0059
β0 0.2852 -0.0147 0.0307
β1 0.5268 0.0268 0.0325

7. Applications

The suitability of the proposed models is empirically proved by means of two real data applica-
tions. Model selection criteria are based on the Cramér-von Mises (W ∗) and Anderson-Darling
(A∗) statistics defined by Chen and Balakrishnan (1995). In addition, we consider the Akaike in-
formation criterion (AIC), Consistent Akaike information criterion (CAIC), Bayesian information
criterion (BIC), Hannan-Quinn information criterion (HQIC), and Kolmogorov-Smirnov (KS) (and
its p-value). The lower the value of these statistics, the stronger the evidence of a good fit. Graph-
ical analysis is also crucial for identifying the best fitting model. This includes analysis of data
histograms, estimated PDFs and CDFs, and the empirical CDF calculated using the Kaplan-Meier
method (Kaplan and Meier, 1958). The AdequacyModel package (Marinho et al., 2019) in R is used
to obtain the results in Section 7.1, whereas those in Section 7.2 are found using a script developed
in R with the optim function.

7.1 Cancer data
The data set comprises remission times (in months) for a random sample of 128 bladder cancer
patients (Lee, 2003). The data are: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52,
4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06,
14.77, 32.15, 2.64, 3.88,5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66,
1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83,
4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93,
11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51,
6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Some descriptive statistics for these data are reported in Table 4. The standard deviation (SD)
is greater than the mean and median, and it can be deduced that the data are right-skewed and
leptokurtic.
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Table 4. Descriptive to cancer data.

Mean Median SD Variance Skewness Kurtosis Min. Max.
9.3656 6.3950 10.4670 109.560 3.2866 18.4830 0.080 79.0501

The proposed model is compared with the PI, EF, EW, EI, and IS distributions. The EW and
EF distributions are well-known nowadays. Table 5 lists the MLEs and their standard errors (SEs)
from the fitted models to the current data. The results indicate that all models provide accurate
estimates (except for EF).

Table 5. Findings from the fitted models to cancer data.

Model MLEs (SEs)
EPI (c, θ, α) 3.8899 1.3690 0.4955

(1.9327) (0.2862) (0.0628)
EW (c, β, α) 3.4207 0.6583 2.7156

(1.5491) (0.1116) (0.9872)
EF (c, β, α) 18.0663 0.3296 210.2781

(6.4246) (0.0298) (131.0810)
PI (θ, α) 0.6448 0.6905

(0.0494) (0.0326)
EI (c, θ) 0.3915 0.1897

(0.0479) (0.0199)
IS (θ) 0.3209

(0.0160)

According to the results in Table 6, which includes only distributions with accurate estimates,
the EPI model has the lowest values of the adequacy measures, particularly W ∗, A∗, and KS, thus
indicating that it provides the best fit to the COVID-19 data among the fitted models. The EW
model ranks second in terms of these measures. In contrast, the EI and IS models have the highest
values for W ∗ and A∗, as well as for other measures, suggesting a comparatively poorer fit to the
data.

Since the PI, EI, and IS distributions are special cases of the EPI distribution, the likelihood
ratio (LR) tests are presented in Table 7. In all three cases, the null hypotheses are rejected with
low p-values, thus indicating that the EPI distribution provides a significantly better fit to the
data than any of the other three distributions. This suggests that the EPI distribution is a more
appropriate model for this data set.

Figure 6 illustrates that the PDF and CDF of the EPI distribution are closer to the histogram and
empirical CDF of the data, and Figure 7 displays the quantile-quantile (QQ) plots, thus revealing
that the points are closest to the diagonal line for the EPI distribution. Based on these results, the
EPI distribution can be selected as the best model.

Table 6. Some measures for the fitted models to cancer data.
Model W ∗ A∗ AIC CAIC BIC HQIC KS p-value
EPI 0.039 0.255 826.673 826.867 835.229 830.150 0.043 0.970
EW 0.044 0.290 827.381 827.574 835.937 830.857 0.048 0.923
PI 0.115 0.692 830.477 830.573 836.181 832.795 0.071 0.529
EI 0.199 1.216 839.661 839.757 845.365 841.978 0.101 0.141
IS 0.160 0.984 903.367 903.399 906.219 904.526 0.200 < 0.001
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Table 7. LR tests for cancer data.
Model Hypotheses LR p-value
EPI vs PI H0 : c = 1 vs H1 : H0 is false 5.8041 0.0159
EPI vs EI H0 : α = 1 vs H1 : H0 is false 14.9876 0.0001
EPI vs IS H0 : c = α = 1 vs H1 : H0 is false 80.6940 < 0.0001
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Figure 6. Estimated PDFs (a) and CDFs (b) for Cancer data.
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Figure 7. EPI QQ-Plot (a); PI QQ-Plot (b); and EW QQ-Plot (c) for Cancer data.

7.2 COVID-19 data
This dataset comprises the lifetime (in days) of 322 individuals who were diagnosed with COVID-
19 via RT-PCR screening in Campinas, Brazil. These data were previously analyzed by Rodrigues
et al. (2022) and are available at https://github.com/gabrielamrodrigues/OLLW/blob/main/data.
covid.txt. The response variable yi represents the time elapsed from the onset of symptoms until
death due to COVID-19 (failure).

https://github.com/gabrielamrodrigues/OLLW/blob/main/data.covid.txt
https://github.com/gabrielamrodrigues/OLLW/blob/main/data.covid.txt
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In this sample, around 66.45% of the observations are censored. The variables considered (for
i = 1, . . . , 322) include: δi : censoring indicator (0 = censored, 1 = observed lifetime), vi1 : age
(in years), and vi2 : diabetes mellitus (1 = yes, 0 = no or not informed). Figure 8(a) shows
that individuals between the ages of 60 and 90 have the highest frequency of hospitalizations,
while Figure 8(b) reveals that individuals with diabetes have a higher risk of death. The proposed
regression model for these data is written as

yi = β0 + β1vi1 + β2vi2 + σzi, i = 1, . . . , 322 ,

where zi follows the pdf given in Equation (5.11). The results are compared with the log-
exponentiated Weibull (LEW) (Hashimoto et al., 2010), log-exponentiated Frechét (LEF) (Al-
Amoudi et al., 2016), and log-PI (LPI) regressions. The numbers in Table 8 show that the explana-
tory variables age and diabetes mellitus are significant at the 5% level. The negative signs of β1
and β2 mean that older individuals or those with diabetes tend to have shorter failure times.

According to Table 9, the LEPI regression has the lowest criterion values. The generalized likeli-
hood ratio (GLR) test (Vuong, 1989) is used to compare the LEPI regression against the LPI (GLR
= 14.1684), LEF (GLR = 10.0742), and LEW (GLR = 16.8083) regressions for a significance level
of 5%. These results confirm that the LEPI model provides a better fit to the current data. For a
residual analysis of this fitted regression, we adopt the quantile residuals (qrs) defined by (Dunn
and Smyth, 1996)

qri = Φ−1


(

1−
[

1 +
eẑi
(
eẑi + 2

)(
e−3 µ̂i/σ̂ + 2

)] e−eẑi
)ĉ ,

where Φ(·)−1 is the standard normal quantile function, ẑi = (yi − µ̂i)/σ̂, and µ̂i = v>i β̂. Only one
observation is outside the range [-3,3] according to Figure 9(a), which also shows that the qrs are
randomly distributed. The normal probability plot in Figure 9(b) shows that the qrs approximately
follow a standard normal distribution. Therefore, there is no evidence against the LEPI regression
assumptions.
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Figure 8. Histogram for age (a); and Kaplan-Meier curves for diabetes mellitus (b) for COVID-19 data.



78 Ferreira and Cordeiro

Table 8. Findings from the fitted models to COVID-19 data.

Model c σ β0 β1 β2

0.2070 0.3971 4.4367 -0.0180 -0.2439
LEPI (0.0887) (0.1460) (0.2365) (0.0037) (0.1162)

[< 0.0001] [< 0.0365]
1.1926 3.2401 -0.0197 -0.2848

LPI 1 (0.0774) (0.3020) (0.0039) (0.1296)
[< 0.0001] [< 0.0287]

154.1795 3.8146 10.9723 -0.0212 -0.3014
LEF (116.3051) (0.4878) (1.3599) (0.0041) (0.1453)

[< 0.0001] [< 0.0389]
0.8877 0.5106 4.5518 -0.0182 -0.2803

LEW (0.7995) (0.3514) (0.3585) (0.0045) (0.1265)
[0.0008] [0.0274]

Table 9. Some measures of the fitted models to COVID-19 data.
Model AIC CAIC BIC HQIC
LEPI 428.959 429.316 447.832 436.494
LPI 433.594 433.860 448.692 439.621
LEF 441.908 442.265 460.781 449.443
LEW 429.849 430.206 448.722 437.383
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Figure 9. Index plot (a); and Normal probability plot (b) for Covid-19 data.
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8. Conclusions, limitations, and future research

We introduced a new three-parameter exponentiated power Ishita model, which includes as spe-
cial cases the power Ishita, exponentiated Ishita, and Ishita distributions. Some of its structural
properties were studied. Some simulation results showed that the maximum likelihood estimators
are consistent. Additionally, based on its log-transform, we constructed a regression model for
censored data and demonstrated its applicability to the COVID-19 data set. Compared to other
established models, our model has proven to have the best fit. The results showed that advanced
age or pre-existing diabetes are significant factors affecting survival time.

A limitation of the exponentiated power Ishita distribution is the absence of an analytic solution
for its quantile function. As a result, numerical methods must be utilized to estimate the quantile
values. This limitation also impacts the generation of random samples from this distribution, thus
resulting in a process that can be slower and less precise (depending on parameter selection)
compared to distributions with analytical solutions for their quantile functions.

Future work could be directed towards building other regression models based on this distribu-
tion, drawing on the approaches outlined in recent studies by Prataviera et al. (2018), Biazatti et
al. (2022), and Rodrigues et al. (2022).

Supplementary materials

The computational routine implemented in R is available online at https://github.com/alexaaf31/
Exponentiated-power-Ishita-distribution.R.git.
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