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M. Dolores Ugarte Universidad Pública de Navarra, Spain



Chilean Journal of Statistics

Volume 13, Number 1

April 2022

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
© Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs





Chilean Journal of Statistics

Volume 13, Number 1

April 2022

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
© Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs





Chilean Journal of Statistics Volume 13 – Number 1 – April 2022

Contents

Carolina Marchant and Vı́ctor Leiva

Chilean Journal of Statistics: Thirty eight years generating quality knowledge 1
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The Mc-Donald Chen distribution: A new bimodal distribution with properties

and applications 91
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UNCORRECTED PROOFS
Thirteenth Volume – First Issue

Editorial Paper

Chilean Journal of Statistics: Thirty eight years

generating quality knowledge

Carolina Marchant1
and V́ıctor Leiva2

1
Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile

2
School of Industrial Engineering, Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile

Welcome to the first issue of the thirteenth volume of the Chilean Journal of Statistics

(ChJS), published on 28 April 2022. The ChJS celebrates 38 years of life during very

di�cult times due, on the one hand, to the COVID-19 pandemic, which is still present,

and, on the other hand, to diverse conflicts around the world. Statistical scientific research

provides relevant information in decision making in di↵erent phenomena and national and

international events that a↵ect us. For example, in the COVID-19 pandemic has permitted

the governments to establish regulations stopping its spread.

The scientific and editorial production of this volume would not have been achieved

without the valuable contributions of many people. We are pleased to inform the inter-

national community that outstanding researchers have honored us by publishing their

interesting work in our journal. We are publishing articles written by colleagues from

Algeria, Australia, Brazil, Chile, Colombia, France, India, and Spain. We also thank

all the anonymous reviewers who have contributed to maintaining ChJS’ high-quality

standards. Furthermore, we feel obliged and pleased to thank our prestigious edito-

rial board listed in http://soche.cl/chjs/board.html. Of course, we must also thank

the President and the Board of Directors of the Chilean Statistics Society (listed in

https://soche.cl/quienes-somos) and the entire Chilean statistical community for

placing on us, the Editors-In-Chief of the ChJS, their confidence in our work.

The first issue of the thirteenth volume of the ChJS comprises six articles as follows:

(i) In our first paper, Maŕıa Dueñas and Ramón Giraldo, from Colombia, explored ordinary

kriging for functional data based on Andrews curves as an alternative to the classical

multivariate approach.

(ii) The second paper is authored by Ernesto San Mart́ın and Eduardo Alarcón-Bustamante

from Chile, which carry out a dissection of three Chilean surveys.

(iii) In the third paper, an analysis about Bayesian detection of change in the parameters

of an autoregressive process of known order was proposed by Abdeldjalil Slama from

Algeria.

(iv) The fourth paper is authored by Christophe Chesneau, Muhammed Rasheed Irshad,

Damodaran Santhamani Shibu, Soman Latha Nitin and Radhakumari Maya from France

and India, who proposed a new version of the two-parameter log-normal distribution

with applications to astronomy and cancer data.

(v) In the fifth paper, Lucas D. Ribeiro-Reis, Gauss M. Cordeiro, and José J. de Santana

e Silva, from Brazil, derived a new bimodal distribution named the Mc-Donald Chen

model.

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
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(vi) The sixth and last paper is authored by Emilio Gómez-Déniz, Enrique Caldeŕın-Ojeda,

and José Maŕıa Sarabia, from Australia and Spain, which explored the arctan family of

distributions and provided three numerical applications related to insurance.

As the Chilean Statistics Society, we are proud because we continue to provide, by

means of the ChJS, an open-access forum, publishing high-quality works free of any article

processing charges (APC). In addition, we are indexed to the Elsevier Scopus and Clarivate

ISI WoS systems. We are very motivated because, at the beginning of 2022, we received

30 submissions from di↵erent countries.

Finally, we would like the international statistical and data-science communities, our

editorial board, and our collaborators, to champion the ChJS as a long-lived, international,

free of charges, and open-access forum, with fair and high-quality reviews. We encourage

the international scientific community to submit their works to the ChJS.

Vı́ctor Leiva and Carolina Marchant

Editors-in-Chief

Chilean Journal of Statistics

http://soche.cl/chjs

http://soche.cl/chjs
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Spatial Statistics
Research Paper

Multivariate spatial prediction based on Andrews

curves and functional geostatistics

Maŕıa Dueñas1 and Ramón Giraldo1,ú

1
Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia

(Received: 03 March 2022 · Accepted in final form: 06 April 2022)

Abstract

There are two usual ways for modeling the realizations of multivariate random fields:

Applying kriging individually on each variable or using cokriging, which considers the

spatial cross-dependence between the variables. It has been shown that the second way,

in general, allows a prediction variance reduction. The use of cokriging may be limited

in practice when the number of variables increases because estimating the linear model

of coregionalization (the cross-dependence between the variables) becomes complex.

This work explores ordinary kriging for functional data based on Andrews curves as

an alternative to the classical multivariate approach. Employing a simulation study, we

compare the predictor proposed with kriging and cokriging. The methodology is applied

to an environmental dataset.

Keywords: Andrews curves · Cokriging · Functional data · Geostatistics · Kriging

Mathematics Subject Classification: Primary 60G10 · Secondary 60G25.

1. Introduction

In many fields of applied science, it is required to simultaneously model data of several vari-
ables. Several statistical tools have been adapted to deal challenging multivariate problems.
Among other areas, regression analysis (Bilodeau and Brenner, 1999), ANOVA (Smith et al.,
1962), longitudinal data (Verbeke et al., 2014), and generalized linear models (Fahrmeir et
al., 1994) have been tailored to this challenge. When the number of characteristics increases,
the modeling becomes more complex. Also, the analysis of multivariate data is a big problem
if there are inherent temporal and spatial dependence structures. One example is the mul-
tivariate spatial statistics (Gelfand et al., 2010), where it is necessary to consider auto and
cross-correlations. The problem is solved using cokriging (assuming stationarity)(Giraldo et
al., 2021). An advantage of this method is that it does not require that the variables are
measured at the same sites. Its use has demonstrated to reduce uncertainty concerning ordi-
nary kriging (spatial prediction of each variable separately). In its simplest form, cokriging
assumes that the joint spatial correlation of the multivariate random field is generated from
combinations of basic spatial covariance models and coregionalization matrices. If there are
p variables, it is then necessary to estimate p(p + 1)/2 variograms (including simple and
cross-variograms). This makes this technique di�cult to implement when p increases.

úCorresponding author. Email: rgiraldoh@unal.edu.co

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
© Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs

https://doi.org/10.32372/ChJS.13-01-01


4 Dueñas and Giraldo

Andrews curves (Andrews, 1972) are generally utilized in multivariate analysis to detect
outliers (Embrechts et al., 1986), carry out clustering (Moustafa, 2011) and discriminant
analysis. In this work, we propose its usage in multivariate geostatistics (Genton and Kleiber,
2015) as a tool for solving the high dimensionality problem. When the number of variables
increases, it is not easy to estimate the coregionalization model and, therefore, to make
predictions using cokriging. Employing Andrews curves combined with functional geostatis-
tics (Giraldo et al., 2011) can simplify the problem because it only requires to fit a single
variogram model. Once an Andrews curve is predicted on an unsampled site, implicitly all
the variables of the multivariate random field of interest are predicted too.

Classical tools for spatial data analysis can be extended to functional data. Particularly
in geostatistics, several alternatives for this purpose have been proposed. Ordinary, residual,
and universal kriging for functional data (Mateu and Giraldo, 2022) are some approaches to
solve the problem of spatial prediction when we have a realization of a functional random
field (when a curve or, in general, a function is recorded at several sites of a region with
spatial continuity). Here we propose an alternative for carrying out spatial prediction in mul-
tivariate geostatistics using ordinary kriging for functional data (Giraldo et al., 2011) based
on Andrews curves. This alternative does not require to estimate a linear coregionalization
model (Wackernagel, 2003), and consequently reducing the complexity of the problem.

The work is organized as follows. Section 2 gives a review on Andrews curves, multivariate
geostatistics, and functional geostatistics. Section 3 presents the methodology proposed. An
illustration with simulated data and an application to real data are shown in Section 4. The
article ends with some conclusions, limitations and ideas for further research in Section 5.

2. Background

In this section, we present a short overview about Andrews curves (Andrews, 1972; Moustafa,
2011), multivariate geostatistics (Wackernagel, 2003), and ordinary kriging for functional
data (Giraldo et al., 2011).

2.1 Andrews curves

A statistical multivariate analysis is considered when we have data of a p-dimensional ran-
dom vector (p > 1). Given a realization of size n of a random vector X = (X1, . . . , Xp)€,
we obtain the data matrix

x =

Q

ccca

x11 x12 . . . x1p

x21 x22 . . . x2p
...

... . . . ...
xn1 xn2 . . . xnp

R

dddb . (2.1)

The underlying idea of Andrews curves is that each multivariate data point (observation)
can be represented by a curve using a Fourier interpolation function where the coe�cients
are the observation�s components (Moustafa, 2011). Andrews curves are used as a descriptive
tool for summarizing a multivariate data set as represented in Matrix given in expression
(2.1) or employed to identify atypical values or clustering the individuals (Moustafa, 2011).
These are built as linear combinations of the observations (Andrews, 1972). Specifically, for
all i, for i = 1, . . . , n, the i-th Andrews curve is given by

xi(t) = 1Ô
2fi

xi1 + sin(t)xi2 + cos(t)xi3 + sin(2t)xi4 + · · · , (2.2)

with t œ [≠fi, fi] . The order of the variables plays an important role in obtaining the curve:
when there are many variables, the last ones have a low contribution to the shape of the
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curve. For this reason, they are usually ordered previously according to the amount of
information that each of them provides. Generally, for this, a principal component analysis
is initially carried out.

2.2 Multivariate geostatistics
This subsection is based on Giraldo et al. (2017). Let {X(s) = (X1(s), . . . , Xm(s)) : s œ D}
be a multivariate spatial process defined over a domain D µ 2. Assume X(s) = µ(s)+‘(s)
is a stationary process with µ(s) the mean vector and ‘(s) a stationary noise process with
E(‘(s)) = 0. We use the following notation: (i) 2“lq(si, sj) = V(Xl(si) ≠ Xq(sj)), for l, q =
1, . . . , m, i, j = 1, . . . , n; (ii) “€

lk = (“lk(s1, s0), . . . , “lk(sn, s0)); and (iii)

�lq =

Q

ca
“lq(s1, s1) · · · “lq(s1, sn)

... . . . ...
“lq(sn, s1) · · · “lq(sn, sn)

R

db .

The cokriging predictor of the random variable Xk(s0) based on the realization X(si), for
i = 1, . . . , n, is defined as

‚Xk(s0) =
mÿ

j=1
⁄k

1jXj(s1) + · · · +
mÿ

j=1
⁄k

njXj(sn) =
nÿ

i=1

mÿ

j=1
⁄k

ijXj(si). (2.3)

The predictor given in Equation (2.3) is unbiased if
qn

i=1 ⁄k
ik = 1 and

qn
i=1 ⁄k

ij = 0 for j ”= k,
j = 1, . . . , m. Using the Lagrange method to minimize the mean squared prediction error,
E( ‚Xk(s0) ≠ Xk(s0))2, subject to the unbiasedness constraints gives the cokriging system of
equations, which in matrix notation can be expressed by C⁄k = ck, with

C =

Q

ccccccccccccccccccca

�11 · · · �1k · · · �1m 1 · · · 0 · · · 0

... . . . ...
... . . . ...

�k1 �kk �km 0 1 0

... . . . ...
... . . . ...

�m1 · · · �m2 · · · �mm 0 · · · 0 · · · 1

1
€ · · · 0

€ · · · 0
€ 0 · · · 0 · · · 0

... . . . ...
... . . . ...

0
€

1
€

0
€ 0 0 0

...
... . . . ...

... . . . ...
0

€ · · · 0
€ · · · 1

€ 0 · · · 0 · · · 0

R

dddddddddddddddddddb

=
3

� Z
Z€

0
ú

4
,

⁄k =

Q

ccccccccccccccccccca

⁄k
1
...

⁄k
k
...

⁄k
m

”1
...

”k
...

”m

R

dddddddddddddddddddb

, ck =

Q

ccccccccccccccccccca

“k
1
...

“k
k
...

“k
m

0
...
1
...
0

R

dddddddddddddddddddb

,
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where (�ij)(n◊n), 1 = (1, . . . , 1)€
(n◊1), 0 = (0, . . . , 0)€

(n◊1), (�)(m◊n)◊(n◊m), (Z)(n◊m)◊m,
(0ú)(m◊m), ⁄k

j = (⁄k
1j , . . . , ⁄k

nj)€, and “k
j = (“k

1j , . . . , “k
nj)€, for all i, j = 1, . . . , m. Cokriging

could be used for predicting simultaneously all m variables instead of predicting a variable,
one at a time.

2.3 Functional geostatistics

Let {Xt(s), t œ , s œ D ™ 2} be a second-order stationary and isotropic functional
random field (Giraldo et al., 2011) whose realizations are functions defined in the real
interval T with Xt(s) œ L2(T ) the space of square integrable functions. From the stationarity
conditions and taking h = Îsi ≠ sjÎ we have

• E(Xt(s)) = µt.
• V(Xt(s)) = ‡2

t .
• C(Xt(si), Xt(sj)) = C(||si ≠ sj ||; t) = C(h; t).
• 1

2V(Xt(si) ≠ Xt(sj)) = “(||si ≠ sj ||; t) = “(h; t).
The ordinary kriging predictor of the function on a site s0 is defined as (Giraldo et al., 2011)

‚Xt(s0) =
nÿ

i=1
⁄iXt(si), ⁄1, . . . , ⁄n œ . (2.4)

Optimal ⁄ in Equation (2.4) that guarantee E( ‚Xt(s0)) = Xt(s0) are obtained by solving the
system

Q

ccca

s
T “ (||s1 ≠ s1||, t) dt · · ·

s
T “ (||s1 ≠ sn||, t) dt 1

... . . . ...
...s

T “ (||s1 ≠ sn||, t) dt · · ·
s

T “ (||sn ≠ sn||, t) dt 1
1 · · · 1 0

R

dddb

Q

ccca

⁄1
...

⁄n

‹

R

dddb =

Q

ccca

s
T “ (||s0 ≠ s1||, t) dt

...s
T “ (||s0 ≠ sn||, t) dt

1

R

dddb .

(2.5)
The function “(h) =

s
T “ (h, t) dt = (1/2)E(

s
T (Xt(si) ≠ Xt(sj))2dt) is called the trace-

variogram. A review on its estimation based on the observed data is provided in Giraldo
et al. (2011). Note that ‹ in Equation (2.5) is the Lagrange multiplier used to consider the
unbiasedness constraint.

3. Multivariate geostatistics based on Andrews curves

We show how ordinary kriging based on Andrews curves is an alternative to perform mul-
tivariate spatial prediction. We assume isotropy and that all variables are recorded in the
same sites.

3.1 From multivariate to functional Kriging

Let {X(s), s œ D µ d} be a p-dimensional random field and [X(s1), X(s2), ..., X(sn)]€ a
sample of the process with

X(si) =

S

WWWU

X1(si)
X2(si)

...
Xp(si)

T

XXXV , i = 1, . . . , n.
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Suppose we want to predict the random field at a site s0. Employing Andrews curves given
in Equation (2.2), the sample of the multivariate random field can be used to define a sample
of a functional random field of Andrews curves {Xt(s), s œ D µ d, t œ [≠fi, fi] µ } with
the transformation

Xt(si) =
pÿ

k=1
Xk(si)„k(t), (3.6)

with „k(t) the k-th coe�cient of a Fourier series as defined in Equation (2.2). Likewise,
from the multivariate observed sample of the random process [x(s1), x(s2), ..., x(sn)], we
have that

xt(si) =
pÿ

k=1
xk(si)„k(t). (3.7)

Assuming that the curves defined in Equation (3.6) are a sample of a functional random
field, we can use functional geostatistical methods (Giraldo et al., 2011, 2017) for carrying
spatial prediction of all variables. Particularly, using ordinary kriging for functional data
given in Equation (2.4) and taking as input the observed curves in Equation (3.7) we can
predict the Andrews curves on unsampled sites. Note that the coe�cients in Equation (2.2)
are known and correspond to the data recorded from the p variables in the n sites s1, . . . , sn.

3.2 Functional random field of Andrews curves

Assume the multivariate random field of interest is second order stationary. Consequently,
we have the following properties for the random field of Andrews curves {Xt(s), s œ D µ

d, t œ [≠fi, fi] µ }:
(i)

µ(t) = E
Ë
Xt(s)

È
= E

C pÿ

k=1
Xk(s)„k(t)

D

=
pÿ

k=1
E [Xk(s)„k(t)]

=
pÿ

k=1
„k(t)E [Xk(si)]

=
pÿ

k=1
„k(t)µk,

with µk = E [Xk(si)] being the mean of the k-th random field.
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(ii)

V [Xt(s)] = ‡2
t

= V
C pÿ

k=1
Xk(s)„k(t)

D

=
pÿ

k=1

pÿ

l=1
„k(t)„l(t)Cov [Xk(s), Xl(s)]

=
pÿ

k=1

pÿ

l=1
„k(t)„l(t)Ckl(0),

with Ckl(0) being the covariance between the variables k and l.
(iii)

C
Ë
Xt(si), Xt(sj)

È
= C(h, t)

= C
C pÿ

k=1
Xk(si)„k(t),

kÿ

k=1
Xk(sj)„k(t)

D

=
pÿ

k=1

pÿ

l=1
„k(t)„l(t)C [Xk(si), Xl(sj)]

=
pÿ

k=1

pÿ

l=1
„k(t)„l(t)Ckl(||si ≠ sj ||)

=
pÿ

k=1

pÿ

l=1
„k(t)„l(t)Ckl(h).

Note that the functional covariance depends only on the distance between sites si and sj .

3.3 Spatial prediction of Andrews curves

Let Xt(si), for i = 1, . . . , n, be the sample of a functional random field of Andrews curves.
Then the ordinary kriging predictor of an Andrews curve on a site s0 is given by

‚Xt(s0) =
nÿ

i=1
⁄iXt(si)

=
nÿ

i=1
⁄i

pÿ

k=1
Xk(si)„k(t)

=
pÿ

k=1

nÿ

i=1
⁄iXk(si)„k(t). (3.8)

In Equation (3.8), each term
qn

i=1 ⁄iXk(si) is an scalar corresponding to the predictor
‚Xk(s0). This is an unbiased and minimum variance predictor if ⁄1, . . . , ⁄n are such that

⁄

T
V

1
‚Xt(s0) ≠ Xt(s0)

2
dt,

is minimum subject to
qn

i=1 ⁄i = 1.
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3.4 Relationship between the trace-variogram function and univariate
variograms

Note that

⁄

t

1
Xt(si) ≠ Xt(sj)

22
dt =

⁄

t

A pÿ

k=1
Xk(si)„k(t) ≠

pÿ

k=1
Xk(sj)„k(t)

B2

dt

=
⁄

t

C pÿ

k=1
(Xk(si) ≠ Xk(sj)) „k(t)

D2

dt,

with T = [≠fi, fi]. In matrix notation, we get

⁄

t
(Xt(si) ≠ Xt(sj))2 dt =

⁄

t

Ë
(X(si) ≠ X(sj))€ �(t)

È2
dt

=
⁄

t
(X(si) ≠ X(sj))€

1
�(t)�(t)€

2
(X(si) ≠ X(sj)) dt

= (X(si) ≠ X(sj))€
⁄

t

1
�(t)�(t)€

2
dt (X(si) ≠ X(sj))

= (X(si) ≠ X(sj))€ W (X(si) ≠ X(sj)) ,

with W being the matrix of inner products of �(t). Taking into account that �(t) is an
orthonormal basis, we have that W = In. Thus, we reach

“(h) = 1
2E

C pÿ

k=1
(Xk(si) ≠ Xk(sj))2

D

.

Under second order stationarity, we have that

“k(h) = 1
2E

Ë
(Xk(si) ≠ Xk(sj))2

È
. (3.9)

From Equation (3.9), the trace-variogram can be expressed as

“(h) = 1
2E

C pÿ

k=1
(Xk(si) ≠ Xk(sj))2

D

= 1
2

pÿ

k=1
E

Ë
(Xk(si) ≠ Xk(sj))2

È

=
pÿ

k=1
“k(h). (3.10)

Therefore, the theoretical trace-variogram corresponds to the sum of the univariate semivar-
iograms associated to the variables used to define the Andrews curves. This sum can be mod-
eled with a single model once the empirical trace-variogram has been calculated. To carry out
the spatial prediction we need to estimate the trace-variogram function

s
“t (||si ≠ sj ||) dt,
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for all i = 1, . . . , n. The corresponding estimator is given by

‚“(h) = 1
2|N(h)|

ÿ

i,jœN(h)
(X(si) ≠ X(sj))€ W (X(si) ≠ X(sj)) ,

where N(h) is the number of pairs (si, sj) such that h = ||si ≠ sj || and |N(h)| is the number
of sites separated by a distance h. Hence, the moment estimator of the trace-variogram
function is stated as

‚“(h) = 1
2|N(h)|

ÿ

i,jœN(h)

pÿ

k=1
(Xk(si) ≠ Xk(sj))2 . (3.11)

From Equation (3.10), the total prediction variance can be defined as

‡2(s0) =
nÿ

i=1
⁄i“(Îsi ≠ s0Î) + µ =

nÿ

i=1
⁄i

pÿ

k=1
“k(h) + µ,

and its estimation is formulated by

‚‡2(s0) =
nÿ

i=1
⁄i‚“(Îsi ≠ s0Î) + µ

=
nÿ

i=1
⁄i

3 1
2|N(h)|

ÿ

i,jœN(h)

pÿ

k=1

1
xk(si) ≠ xk(sj)

224
+ µ.

4. Numerical Applications

This section initially compares kriging, cokriging and functional kriging using a small simu-
lated dataset. Posteriorly, an application to a real dataset is presented. The computational
routines were developed using the R software (R, 2022) version 4.1.3 for Windows platform.

4.1 Simulated Data

Suppose we have data of a stationary bivariate Gaussian random field {X(s) =
(X1(s), X2(s)) : s œ [0, 1] ◊ [0, 1]} with means µ1(s) = 2 and µ2(s) = 90 and spatial
dependence defined by the following variogram models:

“X1(h) = 0.30“1(h) + 0.26“2(h)
“X2(h) = 11“1(h) + 71“2(h)

“X1X2(h) = 1.2“1(h) + 3.8“2(h),

with “1(h) = (1 ≠ exp((≠h/0.7)) and “2(h) = (1.5(h/0.95) ≠ 0.5(h/0.95)2). In both models,
the parameter „ is relatively high („ = 0.7 for the exponential model and „ = 0.95 in the case
of the spherical model), which is an indicator of high spatial simple and cross correlation.
Note that „ is the parameter that defines the spatial correlation. The values assigned to this
parameter correspond respectively to 70% and 95% of the maximum distance between sites
of the simulation region.
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Table 1. Four simulated data sets of a bivariate Gaussian random field defined on the square [0, 1] ◊ [0, 1].
s Coordinates X1(s) X2(s)
s1 (1.00, 0.22) 1.51 80.83
s2 (0.00, 0.33) 2.88 80.49
s3 (0.67, 0.00) 2.94 102.29
s4 (0.22, 0.78) 1.84 79.22

The corresponding covariance matrix is given by

� =

S

WWWWWWWWWWWU

0.56 0.07 0.27 0.08 5.00 0.29 2.22 0.31
0.07 0.56 0.12 0.22 0.29 5.00 0.66 1.68
0.27 0.12 0.56 0.08 2.22 0.66 5.00 0.35
0.08 0.22 0.08 0.56 0.31 1.68 0.35 5.00
5.00 0.29 2.22 0.31 82.00 2.61 34.96 2.81
0.29 5.00 0.66 1.68 2.61 82.00 8.38 25.78
2.22 0.66 5.00 0.35 34.96 8.38 82.00 3.40
0.31 1.68 0.35 5.00 2.81 25.78 3.40 82.00

T

XXXXXXXXXXXV

.

Assume that we want to predict the variables X1(s0) and X2(s0), s0 = (0.22, 0.00), using
four observations of the process; see Table 1. Based on the covariance matrix and employing
univariate ordinary Kriging, ordinary Cokriging, and Functional Kriging predictions are
obtained for X1(s0) and X2(s0).

Table 2. Predictions using the three methods. ‚‡2
T correspond to the total prediction variance (sum of the

prediction variances).

Method ‚X1(s0) ‚X2(s0) ‚‡2
T

Kriging 2.199 93.708 68.269
Cokriging 2.707 93.602 68.163
Functional kriging 2.819 93.789 68.278

Table 2 shows that we obtain reasonable predictions with the three methods (values
around the means µ1(s) and µ2(s) of the processes) with variances of the predictions that
only di�er slightly. A more intensive simulation study was conducted posteriorly. Considering
the same spatial dependence structure defined above by “X1(h), “X2(h), and “X1X2(h), a
realization of size 100 of the bivariate process was generated. A cross-validation analysis
was carried out with these data, that is, each simulated datum was partially deleted and
predicted based on the remaining 99 observations through the three methods (Kriging,
Cokriging, and Functional Kriging). We do not present the results in detail. The means of
the prediction errors were in all cases (three methods) close to zero and the means prediction
variances were also very similar (around 11.71). A detailed review of the results can be seen
in Dueñas (2017). Here, we consider only two processes to show that even when the number
of variables is small the methodology based on functional kriging can be applied. If the
number of processes increases, there is more significant di�erences between the methods,
but cokriging also is more complex. In these cases, the approach based on functional kriging
may be more appropriate.

4.2 Real Data

The lagoon-estuarine system Ciénaga Grande de Santa Marta (CGSM) located at the north
coast of Colombia (Figure 1) is of interest for its ecological and hydrological characteristics
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and its richness in fish, mollusks, and crustaceans (Rodŕıguez-Rodŕıguez et al., 2021). Mon-
itoring its physicochemical and biological conditions is essential due to its environmental
and economic impact on the region.

Barranquilla

CiénagaCaribbean sea

CGSM

Figure 1. The lagoon-estuarine ecosystem Ciénaga Grande de Santa Marta (CGSM) is located at the north coast of
Colombia between the cities of Barranquilla and Ciénaga. A narrow, continuous sandbar borders the entire CGSM
complex to the north. Source: Google Maps 2021.

This work shows how to use functional kriging based on Andrews curves to jointly predict
the spatial distribution of some of these variables. Specifically, we analyze data of six vari-
ables (salinity, dissolved oxygen (mg O2/L), temperature (�), chlorophyll-a (µg/l), total
suspended solids (mg/l), and depth (cm)) collected in 95 sampling sites of the system. The
spatial distribution of these variables according to the quartiles of the recorded values is
shown in Figure 2. These plots suggest that is reasonable assuming stationarity, because
there is not a defined spatial trend in any case. There are three alternatives for doing pre-
diction in this case. We can apply ordinary kriging (without considering the dependency
between the variables), ordinary cokriging which require the estimation of a LMC (a com-
plex procedure in this scenario because we must to take into account data of six random
processes simultaneously), or ordinary kriging based on Andrews curves. Below, we show
the results considering this last option. We also do a comparison with the results obtained
using ordinary kriging.

In Table 3, we report the variation coe�cients calculated with the 95 observations from
each one of the six variables considered in the study. These values are ordered from highest
to lowest. Following Andrews (1972), we employ this order to define the coe�cients xij from
Equation (2.2) of the Andrews curves for the dataset of interest (top panel of Figure 3). We
note that the curves have a similar behavior. Only two curves have a di�erent pattern (see
curves with the lowest values for t œ (0, 1.7)). These correspond to places in the north of
the Ciénaga that have di�erent conditions of salinity and depth.

Using Equation (3.11), we calculate the empirical trace-variogram function (white circles
in bottom panel of Figure 3). An exponential semivariogram model with ‚„ = 6460m y
‚‡2 = 19224.08 was fitted to this scatterplot (red curve in bottom panel of Figure 3). The
value of ‚„ indicates that the Andrews curves are correlated up to a distance of about 6.4 km.
Using this model, we can estimate the weights ⁄i, for i = 1, . . . , 95 in Equation (3.8) and
predict the six variables on unsampled sites of the region utilizing functional kriging based
on Andres curves. To evaluate the performance of the predictor we do a cross-validation
analysis comparing the results with the ones obtained with ordinary kriging. In Table 4
we show the sum of squares of prediction errors for each one of the six variables based on
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CAPÍTULO 4. APLICACIÓN 40

hacia alguna zona del área de interés) (Figura 4.3, izquierda). Este patrón también puede
apreciarse en el gráfico tridimensional (Figura 4.3, derecha). Se identifican los sitios
con valores at́ıpicos descritos en el diagrama de caja y bigotes y se encuentra que estos
están localizados en la parte nororiental del sistema. En el resto de la zona no aparecen
tendencias fuertes que puedan sugerir no estacionariedad en la variable.

Figura 4.2. Diagrama de caja y bigotes de datos de salinidad obtenidos en 95 localizaciones de
la Ciénaga Grande de Santa Marta.

950000 960000 970000 980000

16
80
00
0

16
90
00
0

17
00
00
0

Salinity

Longitude

La
tit
ud
e

●

● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ●

● ● ●

Figura 4.3. Distribución espacial según cuartiles (izquierda) y dispersograma tridimensional (de-
recha) de salinidad en 95 localizaciones de la Ciénaga Grande de Santa Marta.

La Figura 4.4 se muestra el ajuste de una regresión kernel entre la variables salinidad y las
coordenadas de ubicación geográfica (longitud y latitud). La ĺınea de regresión permanece
dentro de las bandas de no efecto practicamente en todo el rango de coordenadas, lo cuál
indica que no hay una tendencia espacial clara. En esta figura, nuevamente se nota la
presencia de algunos valores at́ıpicos ubicados en las coordenadas del extremo nororiental
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Figura 4.7. Distribución espacial según cuartiles (izquierda) y dispersogramas tridimensionales
(derecha) de ox́ıgeno y tempertura en las 95 localizaciones de la Ciénaga Grande de
Santa Marta.

Figura 4.8. Regresión kernel de valores de ox́ıgeno y temperatura contra longitud (izquierda) y
latitud (derecha) en 95 localizaciones de la Ciénaga Grande de Santa Marta. En azul
se presentan bandas de confianza de ”no relación”.
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Figura 4.7. Distribución espacial según cuartiles (izquierda) y dispersogramas tridimensionales
(derecha) de ox́ıgeno y tempertura en las 95 localizaciones de la Ciénaga Grande de
Santa Marta.

Figura 4.8. Regresión kernel de valores de ox́ıgeno y temperatura contra longitud (izquierda) y
latitud (derecha) en 95 localizaciones de la Ciénaga Grande de Santa Marta. En azul
se presentan bandas de confianza de ”no relación”.
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Figura 4.10. Diagrama de caja y bigotes de clorofila en las 95 localizaciones de la Ciénaga Grande
de Santa Marta.
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Figura 4.11. Distribución espacial según cuartiles (izquierda) y dispersograma tridimensional
(derecha) de valores de clorofila medidas en 95 localizaciones de la Ciénaga Grande
de Santa Marta.

Figura 4.12. Regresión kernel de valores de clorofila contra longitud (izquierda) y latitud (dere-
cha) en 95 localizaciones de la Ciénaga Grande de Santa Marta. En azul se presentan
las bandas de confianza de ”no relación”.
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de las bandas de confianza en los ĺımites, nunca se distancia significativamente de ellas,
por lo que no se considera una señal fuerte de no estacionariedad.
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Figura 4.15. Distribución espacial según cuartiles (izquierda) y el dispersograma tridimensional
(derecha) de los valores de seston en los 95 sitios de la Ciénaga Grande de Santa
Marta.

Figura 4.16. Regresión kernel de valores de salinidad contra longitud (izquierda) y latitud (dere-
cha) en 95 localizaciones de la Ciénaga Grande de Santa Marta. En azul se presentan
bandas de confianza de ”no relación”.
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paramétrica que esta tendencia no es importante, por lo que no se considera que hayan
indicios suficientes para pensar que la variable no es estacionaria. Por su parte, la Figura
4.21 muestra el semivariograma emṕırico en este caso y el modelo de semivarianza teórico
ajustado de tipo exponencial con �̂ = 10232 km y �̂

2 = 0.21.
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Figura 4.19. Distribución espacial según cuartiles (izquierda) y dispersograma tridimensional
(derecha) de los valores de profundidad en 95 localizaciones de la Ciénaga Grande
de Santa Marta.

Figura 4.20. Regresión kernel de valores de profundidad contra longitud (izquierda) y latitud
(derecha) en 95 localizaciones de la Ciénaga Grande de Santa Marta. En azul se
presentan las bandas de confianza de ”no relación”.

Figure 2. Spatial distribution of data for each one of the six variables considered. The values are, in each case,
divided according to the quartiles.

Table 3. Coe�cients of variation calculated with data recorded in 95 sites of the lagoon-estuarine system
Ciénaga Grande de Santa Marta.

Variable Coe�cient of variation (%)
Oxygen 36.5

Depth 24.5
Chlorophyll 23.8

Suspended solids 19.3
Salinity 17.1

Temperature 7.2
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Figura 4.22. Vectores transformados en curvas de Andrews y curva media para los datos de la
Ciénaga Grande de Santa Marta

A partir de las nuevas observaciones funcionales, se calculó la traza-variograma emṕırica
basada en la distancia funcional L2 y se ajustó un modelo de semivarianza exponencial
con �̂ = 6460 km y �̂

2 = 19224.08. El resultado se presenta en la Figura 4.23.

Las curvas de Andrews obtenidas se consideran estacionarias al haber sido constrúıdas a
partir de variables que no mostraron evidencias fuertes de no estacionariedad.

4.4. Predicción multivariada

En esta sección se aplicará la metodoloǵıa de predicción propuesta en este trabajo y
kriging ordinario univariado en cada una de las variables. Debido a las dificultades que
presenta el cokriging ordinario al aumentar el número de variables a predecir, este no es
considerado.
Para comparar el rendimiento del kriging ordinario funcional y el kriging ordinario uni-
variado, se realiza validación cruzada. A partir de estos resultados, se calculan las sumas
de errores de predicción al cuadrado, se hacen pruebas de Wilcoxon (Gibbons & Chakra-
borti, 2003) para la diferencia de las medianas de los errores al cuadrado, y se utilizarán
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Figura 4.23. Traza-variograma emṕırica y modelo de semivarianza teórico ajustado para las cur-
vas de Andrews asociadas a las 95 localizaciones de la Ciénaga Grande de Santa
Marta.

diferentes herramientas gráficas para comparar el comportamiento de las predicciones ob-
tenidas.
Con el objetivo de realizar las predicciones multivariadas, la Tabla 4.2 presenta un resu-
men de los modelos de semivarianza ajustados que se van a utilizar. En todos los casos el
efecto nugget se fija en cero.

Variable Modelo Rango Meseta
Salinidad Exponencial 11684 12.59
Ox́ıgeno Exponencial 10096 20.74
Clorofila Exponencial 5436 899
Seston Exponencial 7789 2355 0

Profundidad Exponencial 10232 0.21
Temperatura Exponencial 10386 7.34

Curvas de Andrews Exponencial 6460 19224

Tabla 4.2. Modelos de semivarianza teóricos ajustados para las seis variables medidas en 95 loca-
lizaciones de la Ciénaga Grande de Santa Marta y las curvas de Andrews constrúıdas
a partir de ellas.

4.4.1. Resultados de la validación cruzada

Para la comparación de las metodoloǵıas, se llevó a cabo un proceso de validación
cruzada, en el cual en cada etapa se elimina uno de los sitios y se predice su valor usando
la información de los sitios restantes. Posteriormente, se calcula con cada variable y cada
método la suma de cuadrados de los errores

P
n

i=1
e
2

i
con e

2

i
= (xk(si)� x̂k(si))

2. La Tabla
4.3 muestra los resultados obtenidos.

Figure 3. Andrews curve calculated for each one of 95 sites of the lagoon-estuarine system Ciénaga Grande de
Santa Marta, based on the values of six physicochemical variables (top); and variogram model (red line) fitted to
the empirical trace-variogram function (bottom).

the two approaches considered. In general the results look similar. To test for significant
di�erences we use Wilcoxon tests based on the cross-validation residuals. These indicate
that the method based on functional kriging using Andrews curves is better than ordinary
kriging in the case of the variables depth and suspended solids. In the other cases there are
not significant di�erences between the two strategies.

Table 4. Sum of squares errors of cross-validation (using the data of 95 sites) obtained by functional
kriging based on Andrews curves and ordinary univariate kriging.

Functional kriging Univariate kriging
Oxygen 218.8 216.9

Depth 12.3 12.5
Chlorophyll 46335.9 46457.2

Suspended solids 169397.1 170136.2
Salinity 223.2 229.9

Temperature 46.9 46.4
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5. Conclusions, limitations, and future research

In the paper, we have proposed the predictor ordinary kriging for functional data (Giraldo
et al., 2011) based on Andrews curves (Andrews, 1972) as a method for making spatial pre-
diction in multivariate geostatistics (Smith et al., 1962). The results based on a simulation
study and an analysis of real-world data have indicated that this strategy has a good per-
formance. Obviously, if the geostatistical analysis is carried out with two or three variables,
it is more convenient to use cokriging, since the prediction variance is reduced. However,
when the number of variables increases, this option is limited and the proposed technique
emerges as a very appropriate alternative, because it only requires the estimation of just
one variogram and does not have the limitations of the linear coregionalization model.

The proposed methodology could be adapted to the case of optimal sampling (Bohorquez
et al., 2016), regression, and analysis of variance of multivariate spatial data. Other research
alternatives are the extension to the case of non-stationary processes and the treatment of
outliers (Borssoi et al., 2011).
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Abstract

In this paper, the strengths and weaknesses of two Chilean political polls and the Na-

tional Socioeconomic Characterisation Survey are analyzed from a statistical modelling

point of view. The rationale of the analytical strategy is based on a distinction between

identified parameters and parameters of interest. This is equivalent to make a distinction

between what we can learn from the data provided by a survey and what we want to

learn from those data. Using partial identification techniques, each survey is analyzed

at di�erent levels according to specific subpopulations. Based on these analyses, we em-

phasize not only the way in which the results should be reported, but also the necessity

to make explicit the uncertainty induced by the non-response rates at the survey report.

Keywords: Ignorability condition · Missing data · Non-response · Partial

identifiability · Quantile function
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1. Introduction

Broadly speaking, public surveys are applied either to get a better gauge of citizens’ political
opinions (Berinsky, 2017) or to collect information that is useful for policy makers. These
surveys are perceived as reliable tools as it is argued that they are applied to “representative
samples”. If this were the case, the analysis of the strength of a survey would be reduced
to indicating how a sample design ensures access to a “representative sample”. However, it
is necessary to emphasize that the expression “representative sample” is not a statistical
concept because it is logically contradictory. As a matter fact, a survey is applied to know
the behavior of a population in relation to an outcome of interest. Doing so means that
we have no idea about this outcome: how then can we ensure the representativeness of the
survey? In addition, if we know this outcome at the population level, why do we need to
conduct a survey?
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A question then arises: how can we assess a survey? This paper intends to answer this
question in a specific but quite typical case, namely when some surveyed individuals do not
answer a specific question. Our approach is based on two questions: what can be learned
from the data provided by a survey? And what do we want to learn from those data? The
di�erence between these two question relies on the statistical concept of identifiablity.

As a matter of fact, a statistical model is a family of probability distributions indexed
by a parameter and defined on a sample space. From a modelling point of view, a set of
data is fully represented by a probability distribution that generates them. Consequently,
a parameter of this distribution represents a specific characteristic of the set of data under
analysis; see Fisher (1922). Technically speaking, these correspond to the identified param-
eter. However, if we attribute a characteristic to a set of data that cannot be represented by
a parameter (it is not a functional of the probability distribution generating the data), then
we face an identification problem. Technically speaking, these correspond to a parameter
of interest. Thus, the identified parameters summarize what can be learned from the data,
whereas the parameters of interest represent what we want to learn from the data. When an
injective relationship is established between them, the identification problem is solved. For
details and references, see Koopmans and Reiersol (1950); San Mart́ın (2018), San Mart́ın
et al. (2015) and San Mart́ın and González (2022).

In this paper, we use this conceptual distinction to assess both the strengths and weak-
nesses of three Chilean surveys: two of political opinion (CADEM survey and the Araucańıa
citizen consultation), and one related to the income distribution of employees (National
Socioeconomic Characterization Survey, CASEN in Spanish). We analyze the identification
problem raised by missing outcomes. To do that, we employ Manski’s technique of partial
identification, which allows us to evaluate how strong are the ignorability conditions (also
known as missing at random condition) typically used to impute missing data. Based on
this discussion, we emphasize the way in which these survey should report their results.

Let us remark the type of conclusion that can be done from a partial identification analysis.
Typically, an identification analysis allows a parameter of interest to be point identified.
For instance, in a fixed e�ect ANOVA model, the mean of the observations nested into
a same group (for example, scores of students of a specific school) is parameterized as
an addition of two parameters, namely E(Yij) = – + ◊j , where j labels the groups and i
labels the statistical units. Let us call ◊j , parameter of group j, and –, global parameter.
The group parameters are point identified if, for instance, the parameter of the first group
is assumed to be equal to 0. In this case, the parameter of a specific group is equal to
the di�erence between the means of that group and of the first group (this explains why
this identification constraint is known as deviation from the mean). However, a partial
identification analysis provides an identification region to which the parameter of interest
belongs, rather than identifying it pointwise. This is due to the fact that an identification
analysis makes explicit certain assumptions (identification restrictions) under which the
parameter of interest is point identified, but, in the context of application, such a restriction
is incredible (Manski, 2011, 2020). Therefore, the analysis strategy consists of relaxing such
assumptions to establish a region to which this parameter belongs. The reader may ask
where is the disadvantage of accepting incredible identification constrains to point identify
the parameters of interest. The drawback lies in the fact that scientific conclusions and/or
policy recommendations depend more on such constrains than on the data and, consequently,
an illusion of scientific certainty is created based only on incredible certainty.

These considerations are illustrated through the dissection of three Chilean surveys. This
paper is accordingly organized as follows. In Section 2, the political opinion survey CADEM
is analyzed. Section 3 focuses its attention on the National Socioeconomic Characterisation
Survey CASEN. Section 4 analyzes a recent citizen consultation applied in the Araucańıa
region in the south of Chile. In each of these sections, we provide the corresponding method-
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ological information of each survey and also the political and/or economical context in which
the survey is used. The paper ends with concluding remarks in Section 5.

2. CADEM survey

We begin by dissecting the CADEM political opinion survey. After describing the purpose
of the survey and summarizing the methodology used to deal with missing data, we perform
a conditional identification analysis of di�erent sub-populations of interest.

2.1 General objective and methodological information

According to the information provided on its website, the CADEM survey is one of the
many services o�ered by the market research company CADEM Research & Estrategia.
Specifically, it is related to the service called Plaza Pública, which describes itself as “the
first and only polling platform that measures public opinion on a weekly basis to provide
data and analysis on a wide range of topics of interest”1. This particular aspect is related to
one of the general objectives of this marketing company: “We want to connect people with
decision makers, through data and not from intuition, providing strategies and action plans
to achieve the expected results based on a deep knowledge of the new consumer/citizen”2.

CADEM survey delivers “reliable, timely and contingent information on the political,
economic and social debate in Chile on a weekly basis”. The study published by CADEM
“contemplates a probabilistic survey of 700 weekly cases (with a monthly consolidation
that goes from 2,800 surveys to 3,500 depending on whether the month has 4 or 5 weeks),
applied 100% through cell phones, using CADEM’s own database that contains more than
18 million cell phones considering both prepaid and postpaid numbers, all obtained through
Random Digit Dialing and consolidated during the last four years”. Its target group is,
therefore, all individuals living in the national territory, Chileans and immigrants, men and
women over 18 years old, inhabitants of the 15 regions of the country. This led to perform a
previous stratification of the total population based on the population projections made by
the National Institute of Statistics (NIS) of the Chilean Government for the year 2017 at the
national level. Table 1 presents the estimated population aged 18 and over for each region
of the country as of 2017 and the number of surveys proposed for each region to comply
with the national proportionality. In addition to the distribution by region, the previous
stratification considers, only as a control, the combination of sex and age variables; for more
details, see CADEM (2018).

It is important to emphasize that this general information is not published week by week,
except for the total number of people selected and the total number of people who agreed
to answer the survey.

2.2 How are the missing responses treated?

Taking into account that the survey is conducted by telephone, the main issue is the non-
response rate. CADEM is not only aware of this problem, but distinguishes three cases of
non-response: cases of no contact, namely no one answers the call either because the phone
is busy or out of service; cases of a non-eligible person, namely a person who answers the
call, but does not satisfy the requirements of the target group; and a person who is correctly
selected but refuses to answer the survey. The impact of the non-response rate is assessed
in the following terms:

1Retrieved from https://cadem.cl/sobre-cadem/ on December 30, 2021.
2Retrieved from https://cadem.cl/plaza-publica/ on December 30, 2021.

https://cadem.cl/sobre-cadem/
https://cadem.cl/plaza-publica/
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Table 1. NIS population projections for 2017 and number of surveyed

Region Population Theoretical
over 18 years old sample

XV 182,301 9
I 252,814 13
II 471,980 24
III 234,933 12
IV 595,594 30
V 1,430,182 72
VI 706,014 35
VII 804,214 40
VIII 1,634,325 82
IX 756,349 38

XIV 313,112 16
X 636,432 32
XI 80,797 4
XII 126,772 6
RM 5,713,842 287

Total 13,939,661 700

Estimating the magnitude of non-response is critical because of the direct relationship it may

have with self-selection biases in public opinion polls. The calculation of the non-response

rate is also used as a measure of validation of the results. Under the assumption that those

who rejects to answer the survey are equal to those who answers it, the magnitude of the

non-response rate does not o�er major disadvantages, but when there is evidence that the two

groups are not equivalent, the non-response can introduce serious distortions in the results

(CADEM, 2018).

CADEM accordingly reports the rate of non-response. Three types of results are reported by
the survey: those that make explicit the number of cases surveyed, which is approximately
equal to 700; those that use a subset of these cases; and trends over time, using previous
survey results. However, the impact of the non-response rate on both the results of the
survey and their report are not discussed. For an example, see the survey published on the
fourth week of December 2021 (CADEM, 2022).

2.3 Dissecting the CADEM survey

The objective of this section is to answer the following questions: What can be learned
from the data collected by the CADEM survey? How reliable is the CADEM survey? To be
consistent with a certain degree of reliability, how should its results be communicated?

Example Let us consider the collected results during the fifth week of December 2021
(CADEM, 2022). As mentioned above, each study contains a methodological sheet, which
indicates that the sampling is a probability sample with random selection of individuals and
previously stratified by region; that the sample consists of 705 cases, which required making
6,401 telephone calls, so the response rate is equal to 11%. Let us focus our attention on
the first question of the study:

Do you have a very positive, positive, negative or very negative image of Gabriel Boric?
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The results are the following: 63% have a very positive or positive (denoted by a) image
of Gabriel Boric; 27% have a negative or very negative (denoted by b) image; and 10% do
not know or non-response (denoted by c).

What we can learn from the data? Let M be the sample space whose components are
the numbers of cellular phones. On this space we define the vector of random variables
(E, R, S, C, G): M æ {0, 1}4 ◊ {1, . . . , 15}, where for each m œ M

• E(m) = 1 if the person associated with cell phone m is eligible, and E(m) = 0 if not.
• R(m) = 1 if the cell phone m answers the call, and R(m) = 0 if not.
• S(m) = 1 if the person associated with cell phone m is selected, and S(m) = 0 if not.
• C(m) = 1 if the person associated with cell phone m answers the survey, and C(m) = 0

if not.
• G(m) = g with g œ {1, . . . , 15} if the person associated with cell phone m belongs to

region g.
From these definitions, it follows that

{m œ M : S(m) = 1} µ {m œ M : E(m) = 1} fl {m œ M : R(m) = 1}; (2.1)
{m œ M : S(m) = 1} = {m œ M : C(m) = 0} fi {m œ M : C(m) = 1}.

Let Y be the outcome of interest, taking values in the set {a, b, c}. The data inform about
the conditional distribution of Y given (E = 1, R = 1, S = 1, C = 1); that is,

P (Y = a | E = 1, R = 1, S = 1, C = 1) = 0.63;
P (Y = b | E = 1, R = 1, S = 1, C = 1) = 0.27;
P (Y = c | E = 1, R = 1, S = 1, C = 1) = 0.10;
P (C = 1 | E = 1, R = 1, S = 1) = 0.11.

Both P (Y = y | E = 1, R = 1, S = 1, C = 1) for y œ {a, b, c}, and P (C = c | E = 1, R =
1, S = 1) for c œ {0, 1} correspond to the identified parameter, and therefore they represent
all that can be learned from the data.

What we want to learn from the data? The results of the CADEM survey can be
interpreted conditionally to di�erent sub-populations.

First level of analysis The first level corresponds to what we can learn from the data and
it is captured by the identified parameter P (Y = y | E = 1, R = 1, S = 1, C = 1) for
y œ {a, b, c}.

Second level of analysis A second level corresponds to focus the attention on the surveyed
persons, namely {m œ M : S(m) = 1}, which by Equation (2.1) is equivalent to {m œ
M : E(m) = 1, S(m) = 1, R(m) = 1}. In this case, it is not longer possible to identified
P (Y = y | E = 1, S = 1, R = 1). As a matter of fact, by the law of total probability
(Kolmogorov, 1950),

P (Y = y | E = 1, S = 1, R = 1) = P (Y = y | S = 1) by Equation (2.1)
(2.2)

= P (Y = y | S = 1, C = 1)P (C = 1 | S = 1) + P (Y = y | S = 1, C = 0)P (C = 0 | S = 1)

for each y œ {a, b, c}. In this decomposition, P (Y = y | S = 1, C = 1) and P (C = 1 | S = 1)
are identified, whereas P (Y = y | S = 1, C = 0) is not identified because it depends of those
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persons who refuse to answer the survey. Taking into account that such a probability takes
values between 0 and 1, we can provide an interval of all plausible values for P (Y = y | E =
1, S = 1, R = 1) which are compatible with the observed information: for each y œ {a, b, c},

P (Y = y | S = 1, C = 1)P (C = 1 | S = 1) Æ P (Y = y | S = 1) (2.3)
Æ P (Y = y | S = 1, C = 1)P (C = 1 | S = 1) + P (C = 0 | S = 1).

Following Manski (2007), this interval corresponds to the region where P (Y = y | S = 1) is
partially identified. Such an interval deserves the comments:

(i) Considering the example of Subsection 2.3, we have that P (C = 1 | S = 1) = 0.11
and P (Y = a | S = 1) = 0.63. Therefore,

0.0693 Æ P (Y = a | S = 1) Æ 0.9593. (2.4)

Thus, the survey report should be phrased in the following terms: at least 6.93% of
the surveyed people have a positive or very positive image of Gabriel Boric, and at
most 95.93% of the surveyed people have such positive or very positive image.

(ii) This interval provides information about the uncertainty inherent to the non-
response rate. In fact, the width of Equation (2.4) is equal to P (C = 0 | S = 1),
which in this example is equal to 89%. This means that the interval is close to be
uninformative.

(iii) Di�erent scenarios should be considered when reporting P (Y = a | S = 1), P (Y =
b | S = 1) and P (Y = c | S = 1) because these three probabilities belongs to
the 2-dimensional simplex S3 = {(p1, p2, p3) œ [0, 1]3: p1 + p2 + p3 = 1}. Thus,
for instance, it can be said that 95.93% of surveyed people have a positive or very
positive image of Gabriel Boric and, consequently, a 4.07% have a poor or very poor
image or Gabriel Boric, or do not known or non-response, that is,

1 ≠ [P (Y = a, C = 1 | S = 1) + P (C = 0 | S = 1)]
=P (C = 1 | S = 1) + P (C = 0 | S = 1)

≠ P (Y = a, C = 1 | S = 1) ≠ P (C = 0 | S = 1)
=P (C = 1 | S = 1) ≠ P (Y = a, C = 1 | S = 1)
=P (Y ”= a, C = 1 | S = 1)
=P (Y œ {b, c}, C = 1 | S = 1)
=P (Y = b, C = 1 | S = 1) + P (Y = c, C = 1 | S = 1),

which is the lower bound of P (Y œ {b, c} | S = 1). In the example, P (Y = b, C =
1 | S = 1) = 0.0297 and P (Y = c, C = 1 | S = 1) = 0.011.

Once the partial identification of P (Y = y | S = 1) (y œ {a, b, c}) is established, it is
possible to qualify CADEM’s claims about non-responses. As it was mentioned in Subsection
2.2, CADEM considers that, “under the assumption that those who rejects to answer the
survey are equal to those who answers it, the magnitude of the non-response rate does
not o�er major disadvantages, but when there is evidence that the two groups are not
equivalent, the non-response can introduce serious distortions in the results”. If we consider
the decomposition of Equation (2.2), the assumption advanced by CADEM corresponds to
the equality P (Y = y | S = 1, C = 1) = P (Y = y | S = 1, C = 0), for all y œ {a, b, c},
which, by definition of conditional independence, is equivalent to Y ‹‹ C | {S = 1}; where
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V ‹‹ W | Z corresponds to the conditional independence between V and W given Z; for
details and properties on conditional independence, see Florens et al. (1990, Ch. 2). This
condition, typically known as missing at random (Rubin, 1976; Little and Rubin, 2019), is
not empirically refutable because it depends on the component P (Y = y | S = 1, C = 0)
which in turn is not based on actual observations. Consequently, it is impossible to find out
evidence establishing that “the two groups are not equivalent”.

Correctly stated, condition in Equation (2.6) is an identification restriction (San Mart́ın
and González, 2022) under which P (Y = y | S = 1) is point identified in the sense that
P (Y = y | S = 1) = P (Y = y | S = 1, C = 1), for all y œ {a, b, c}.

In other words, under assumption of Equation (2.6), the uncertainty induced by the non-
response decreases from an interval of width P (C = 0 | S = 1) to the singleton {P (Y = y |
S = 1, C = 1)}. Thus, what we want to learn from the data coincides with what we can learn
from the data. In passing, let us mention that condition in Equation (2.6) should be viewed
as a characterization of absence of (self-)biased and, consequently, the identification problem
induced by the non-response is exactly the same as the identification problem induced by
self-selection.

Third level of analysis A third level of analysis corresponds to focus the attention on the
eligible persons, namely {m œ E(m) = 1}. In this case, the parameter of interest is given
by P (Y = y | E = 1) for y œ {a, b, c}. Let us analyze its identifiability using only the
information available at the CADEM survey as published.

Using the law of total probability, we have

P (Y = y | E = 1) = P (Y = y | E = 1, R = 1)P (R = 1 | E = 1)
+P (Y = y | E = 1, R = 0)P (R = 0 | E = 1),

for y œ {a, b, c}. In this decomposition, “
.= P (Y = y | E = 1, R = 0) is not identified

because it is impossible to know whether a person associated with a cell phone that does
not answer a call is eligible or not. Also, P (Y = y | E = 1, R = 1) can be decomposed as

P (Y = y | E = 1, R = 1) = P (Y = y | E = 1, R = 1, S = 1)P (S = 1 | R = 1, E = 1)
+P (Y = y | E = 1, R = 1, S = 0)P (S = 0 | R = 1, E = 1)

= P (Y = y | S = 1)P (S = 1 | R = 1, E = 1)
+P (Y = y | E = 1, R = 1, S = 0)P (S = 0 | R = 1, E = 1),

where the last equality follows from Equation (2.1).
Note that {m œ M : E(m) = 1, R(m) = 1, S(m) = 0} = ÿ, because there are no el-

igible persons associated with a cell phone that answered the call who are not selected.
Consequently, P (S = 0 | R = 1, E = 1) = P (S = 0, R = 1, E = 1)/P (R = 1, E = 1) = 0.
Moreover, P (Y = y | E = 1, R = 1, S = 0) is a probability conditional on an event of
probability 0 and, therefore, takes an arbitrary value in [0, 1] (see Remark 2.1). It follows
that P (Y = y | E = 1, R = 1) = P (Y = y | S = 1)P (S = 1 | R = 1, E = 1). Thus, for each
y œ {a, b, c},

P (Y = y | E = 1) = P (Y = y | S = 1)P (S = 1 | R = 1, E = 1)P (R = 1 | E = 1)
+“ P (R = 0 | E = 1)

= P (Y = y | S = 1)P (S = 1 | E = 1) + “ P (R = 0 | E = 1),

for all “ œ [0, 1]. In this decomposition, P (Y = y | S = 1) is partially identified by
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the interval in Equation (2.3); by Equation (2.1), P (S = 1 | E = 1) corresponds to the
ratio ˘{selected persons}/˘{eligible persons}, which is identified; and P (R = 0 | E = 1)
corresponds to the proportion of eligible persons who did not respond to the telephone call.
Taking into account that a person can be classified as eligible once he/she has answered the
telephone call (see Section 2.1), then it is impossible to identify this parameter. Nevertheless,
Equation (2.1) implies that {m œ M : R(m) = 0} µ {m œ M : S(m) = 0} and, therefore,

P (R = 0 | E = 1) Æ P (S = 0 | E = 1) = 1 ≠ P (S = 1 | E = 1) = ˘{non-selected persons}
˘{eligible persons} ,

which is identified. Hence, P (Y = y | E = 1) is partially identified, where the lower bound
of the identification region is given by

P (Y = y | S = 1, C = 1)P (C = 1 | S = 1)P (S = 1 | E = 1),

which by Equation (2.1) reduces to P (Y = y, S = 1, C = 1 | E = 1); and its upper bound
is expressed as

[ P (Y = y | S = 1, C = 1)P (C = 1 | S = 1) + P (C = 0 | S = 1) ]◊
P (S = 1 | E = 1) + P (S = 0 | E = 1),

which by Equation (2.1) reduces to

P (Y = y, S = 1, C = 1 | E = 1) + P (C = 0, S = 1 | E = 1) + P (S = 0 | E = 1).

Using the data of the example, P (S = 1 | E = 1) ≥ 6, 401/14 ◊ 106 and 0.00003198 Æ
P (Y = a | E = 1) Æ 0.9999814, clearly this interval is non-informative.

Remark 2.1 Let (M, M, P ) be a finite probability space. Let C = (C1, . . . , Cn} µ M be
a partition of M such that P (C1) = 0 and P (Cj) > 0 for j = 2, . . . , n. Therefore, let
A œ M. In this case, the conditional probability P (A | C) is a random variable defined
as P (A | C) =

qn
j=1 P (A | Cj)11Cj , where 11Cj is the indicator function of the event Cj

(Kolmogorov, 1950, §6). Here, the numbers P (A | Cj) are computed using a rule stated as

P (A | Cj) =

Y
]

[

P (A fl Cj)
P (Cj)

, if P (Cj) > 0;

÷ œ [0, 1], if P (Cj) = 0;
(2.5)

with ÷ arbitrary. This rule is a correct rule (that is, it avoids paradoxes) because it satisfies
the equality P (A) = E[P (A | C)], which ensures the existence of the conditional probability.
As a matter of fact, under rule in Equation (2.5), this equality reduces to the law of total
probability –in the general case, it corresponds to the Radon-Nikodym theorem. Moreover,
the number P (A | Ca) can be arbitrarily chosen because the random variable P (A | C) does
not change since P (C1) = 0. For more details, see Rao (2005, Ch. 2).

Fourth level of analysis The non-informativity of the above identification region is pri-
marily due to the fact that P (S = 1 | E = 1) is extremely small, so P (S = 0 | E = 1)
is extremely large. This undesired e�ect could be counteracted by taking into account the
information provided by the CADEM survey regarding how persons are selected: “Proba-
bilistic sampling with random selection of individuals and previously stratified by region”
(CADEM, 2022).
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By the CADEM sampling design, the reasoning should be done conditionally on {m œ
M : E(m) = 1, R(m) = 1}: it is impossible to know whether a person is eligible if he/she
has not answered the phone call. Thus, the statement “random selection of individuals and
previously stratified by region” corresponds to the condition

P (Y = y | E = 1, R = 1, G, S = 1) = P (Y = y | E = 1, R = 1, G, S = 0),

which, by definition of conditional independence, is equivalent to

Y ‹‹ C | {S = 1}; (2.6)

By the law of total probability, this condition implies by Equation (2.1) that

P (Y = y | E = 1, R = 1, G) = P (Y = y | S = 1, E = 1, R = 1, G) (2.7)
= P (Y = y | S = 1, G).

Thus, to identify P (Y = y | E = 1, R = 1), we marginalize with respect to G, namely

P (Y = y | E = 1, R = 1) =
15ÿ

g=1
P (Y = y | E = 1, R = 1, G = g)P (G = g | E = 1, R = 1)

=
15ÿ

g=1
P (Y = y | S = 1, G = g)P (G = g | E = 1, R = 1),

where the last equality follows from Equation (2.7).
In this decomposition, the conditional probability P (G = g | E = 1, R = 1) is in principle

identified, although the current information provided by CADEM does not allow to identify
it. Moreover, the conditional probability P (Y = y | S = 1, G = g) has the same identification
problem that was discussed in the second level of analysis and, therefore, it is partially
identified: for each y œ {a, b, c} and g œ {1, . . . , 15},

P (Y = y | S = 1, C = 1, G = g)P (C = 1 | S = 1, G = g)
Æ P (Y = y | S = 1, G = g)
Æ P (Y = y | S = 1, C = 1, G = g)P (C = 1 | S = 1, G = g) + P (C = 0 | S = 1, G = g).

Therefore, the random selection of each individual in each stratum is far from helping to
identify P (Y = y | E = 1, R = 1). Furthermore, it does not help to identify P (Y = y | E =
1) either, since P (Y = y | E = 1, R = 0) is still unidentified.

2.4 Discussion

CADEM research & estrategia o�ers services that “connect people with decision makers,
through data and not from intuition”. Nevertheless, after dissecting the CADEM survey, we
can say that this motto is far from being fulfilled. In fact, the dissection of the CADEM
survey shows how weak its reliability is whatever the level of analysis.

The first level of analysis corresponds to a description of the collected data. For the sake
of transparency, CADEM must not only remember for each question of the survey the
total number of people who answered it, but also indicate, together with the percentages of
preference for each option, the absolute frequencies. This warn the readers and especially the
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press that the results reflect the opinion of a very small number of people. The second level
of analysis makes explicit the uncertainty induced by the non-response. CADEM should be
made explicit such uncertainty by reporting both the lower and the upper bound of the
identification region of P (Y = y | S = 1). In the example, the impact of the non-response
rate is dramatic, which prevents the reader from a false illusion of certainty. It should be
emphasized that condition in Equation (2.6) is a plausible way to treat the non-responses.
A transparent treatment of non-response should show the impact of such a condition on
the conclusions of the study. As we have seen in the example, the conclusion depends much
more on Equation (2.6) than on the data itself. The third level of analysis focuses on the
eligible population. Once again, for the sake of transparency, it is necessary to report both
the lower and the upper bound of the identification region. The example we have used shows
how uninformative the survey results are. This information is more than relevant, showing
the intrinsic limits of this type of public opinion instruments.

3. CASEN survey

The National Socioeconomic Characterisation Survey (CASEN, for their initials in Spanish)
is a Chilean household survey that has been applied since 1987. It is used to assess the
impact of social programs on the living conditions of the population1. According to the
Technical data sheet, the target population is the population residing in private households
throughout the national territory. The units of analysis are families and individuals living
in a household. A suitable respondent is the head of household or, alternatively, a man or
woman over 18 years old.

The sampling process of the CASEN survey consists on two steps. First, blocks are chosen
that correspond to sets of households; second, a household is chosen in which individuals
are surveyed. Due to the pandemic by COVID19, the last version of the survey, called
2020 CASEN survey in pandemic, was carried out in two steps: first, from the households
selected in the previously mentioned sampling process, a face-to-face pre-contact was applied
to obtain a contact telephone number. Second, the survey was administered by telephone.

In the 2020 CASEN in pandemic survey, 97,848 households were pre-contacted. Of these,
only 86,189 households provided at least a telephone number to be contacted. Of these,
62,540 households had individuals who answered the survey, which amounted to 185,437
individuals2. It should be remarked that the available CASEN data set contains information
of these individuals3.

3.1 Treatment of missing outcomes in the CASEN survey

One of the objectives of the CASEN survey is to obtain an overview of the income distri-
bution in Chile, and in particular to have an overview of poverty in the country in terms of
income. However, some of the selected individuals did not answer the question on income.
CASEN considers appropriate to impute these missing data, so that researchers and policy
makers can use a database without missing data. The chosen imputation procedure is called
conditional mean imputation. The rationale of this technique can be summarized as follows:
first, observed covariates are used to define classes. Second, individuals who did not report
their income and individuals who reported it are classified in the same class if they share the

1Retrieved from http://casenpandemia2020.cl/ on December 30, 2021.
2For details, see Nota técnica N7: Desempeño del Trabajo de Campo, Casen en Pandemia en sección Notas Técnicas
2020: http://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-en-pandemia-2020.
3The data base can be downloaded from http://observatorio.ministeriodesarrollosocial.gob.cl/
encuesta-casen-en-pandemia-2020.

http://casenpandemia2020.cl/
http://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-en-pandemia-2020
http://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-en-pandemia-2020
http://observatorio.ministeriodesarrollosocial.gob.cl/encuesta-casen-en-pandemia-2020
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characteristics of that class. For example, those people from city A, with an age range 30-35
years old who do not report the income, are classified in the same class as those people from
the same city in the same age range that report the income. Third, it is computed the mean
of the observed incomes conditionally on a class: the missing incomes are imputed through
this mean (Little and Rubin, 2019).

More precisely, let Y be an outcome of interest, and let X be a set of fully observed
covariates which are used to define the classes. Let Z be a binary random variable such
that Z = 1 if the outcome is observed, and Z = 0 if not. The conditional mean of both
respondents and non-respondents in the same class are given by E(Y | X = x, Z = 1) and
E(Y | X = x, Z = 0), respectively. The conditional mean imputation assumes that, for each
x,

E(Y | X = x, Z = 0) = E(Y | X = x, Z = 1). (3.1)

This assumption is also known as Mean Missing at Random (Manski, 2007), Weak Ig-
norability (Imbens, 2000; Hirano and Imbens, 2004), and is equivalent to the conditional
orthogonality between Y and Z given X.

Remark 3.1 Equation (3.1) is equivalent to E(Y | X = x, Z) = E(Y | X = x) for all x,
which in turn is equivalent to the conditional orthogonality of Y and Z given X. In fact, in
the Hilbert space L2(M, M, P ), Y and Z are conditionally orthogonal given X if and only
if

Y ≠ E(Y | X) ‹ Z ≠ E(Z | X);

that is, if the correlation between both residual is equal to 0. Florens and Mouchart (1982)
prove that this last condition is equivalent to E(Y | X = x, Z) = E(Y | X = x). It should
be remarked that this condition is implied by Y ‹‹ Z | X.

3.2 Dissecting the CASEN survey
Example Let us focus our attention on the incomes of the salaried employees. According
to the technical report Measuring income and poverty in Chile, 2020 Casen Survey in Pan-
demic1, 45,642 individuals were considered in this category. These individuals were exposed
to the following question:

The last month, what was your net income at your main job?

The non-response rate was approximately 11.4% (40,418 valid responses); only 5,062 re-
sponses were imputed; the remaining responses (namely, 162) were kept as missing. The
following covariates were used to define the classes to impute the missing incomes: X1 =
geographic location, X2 = range age, X3 = sex, X4 = educational level, X5 = category
of the occupation, X6 = class of activity of the company where the individual works, and
X7 = type of occupation into the company2.

If we consider the original data (that is, the people who reported their income), the
average income is equal to 653,891.6 Chilean pesos, while the average income considering
the imputed data also was equal to 653,327 Chilean pesos. The quantiles of the income
distributions for both data sets are given in Table 2. Considering the original data, it can
be seen that the 5% of the surveyed individuals have an income at most equal to 150,000

1Retrieved from http://observatorio.ministeriodesarrollosocial.gob.cl on January 11, 2022.
2For details on the imputation procedure, see the technical report: Measuring income and poverty in Chile, Casen
Survey in Pandemic 2020.

http://observatorio.ministeriodesarrollosocial.gob.cl
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Table 2. Quantiles of the income distribution for both original and imputed incomes

Percentage Quantile of Quantile of
the original data the imputed data

5% 150,000 160,000
10% 230,000 242,000
25% 320,000 320,000
50% 400,000 420,000
75% 750,000 750,000
90% 1,300,000 1,300,000
95% 1,800,000 1,800,000
99% 3,500,000 3,500,000

Chilean pesos, while the 10% of the salaried surveyed people have an income at most equal
to 230,000 Chilean pesos. When the imputed incomes are considered, these values change.

Remark 3.2 Let Y be a real random variable. The quantile function is defined as

qX(–) = inf{t œ R : P (Y Æ t) Ø –}, – œ [0, 1].

This corresponds to the generalized inverse of the cumulative distribution function of Y ;
see Embrechts and Hofert (2013). The quantiles reported in Table 2, as in other part of
this paper, were calculated using this definition (for a code, see Alarcón-Bustamante, 2022),
which respects the nature of the data (the income is a discrete random variable), and not
using the Hyndman and Fan (1996)’s recommendations which is used, for instance, in R
Core Team (2020).

Table 2 shows the impact of the imputation procedure on the quantiles of the income
distribution. How relevant is this impact on a global view of income distribution and poverty?
Could we say that it is negligible? These questions can be answered by addressing the
following one: what can we learn about the income by using the empirical evidence only?
The remaining of this section is devoted to answer this question.

What can we learn from the data? It was previously mentioned that the CASEN data
set contains information of 185,437 individuals, that is, those individuals who answered the
survey in the application step. For this reason, we consider the sample space M as the set
of these individuals. Let us define the coordinates of following random vector (C, S, Z, Y ) :
M æ {0, 1}3 ◊ R+ fi {0}: for each m œ M :

• C(m) = 1 if the individual m answers the survey at the application step, and C(m) = 0
if not.

• S(m) = 1 if the individual is classified as a salaried employee in the application step, and
S(m) = 0 if not.

• Z(m) = 1 if the individual m reports the income, and Z(m) = 0 if not.
• Let Y (m) be the income of individual m.
From these definitions it follows that

(i) {m œ M : S(m) = 1} µ {m œ M : C(m) = 1};

(ii) {m œ M : Z(m) = 1} µ {m œ M : S(m) = 1} fl {m œ M : C(m) = 1}.
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From the CASEN survey, the information summarized in Table 3 is available. This shows
that the following conditional probabilities are identified:

P (S = 1 | C = 1) = 0.246; P (Z = 1 | S = 1, C = 1) = 0.885544.

Furthermore, the conditional distribution of the income P (Y Æ y | Z = 1, C = 1, S = 1)
is identified, which is depicted in Figure 1. In particular, the average income E(Y | Z =
1, C = 1, S = 1) is identified, and it is equal to 653,891.6 Chilean pesos.

Table 3. Total of individuals by random variable – 2020 CASEN survey

Event Cardinality
{m œ M : C(m) = 1} 185,437
{m œ M : S(m) = 1} 45,642
{m œ M : Z(m) = 1} 40,418

0.00

0.25

0.50

0.75

1.00

0 1000000 2000000 3000000

Incomes

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

Figure 1. The observed income distribution P (Y Æ y | Z = 1, C = 1, S = 1)

What we want to learn from the data Analogous to the analysis of the CADEM sur-
vey, the results of the CASEN survey can be interpreted conditionally to di�erent sub-
populations. This is the content of this section.

First level of analysis The first level corresponds to what we can learn from the data. This
level is accordingly captured by the identified parameters above described. Regarding the
distribution of the reported incomes, Figure 1 shows that the slope of the curve rapidly
increases for lower incomes. As a matter of fact, until 75% of the salaried employees, there
are non-dramatic changes in the income, so there is a low variability. In contrast, in the 25%
of employees with highest incomes this slope increase slowly, which means that there is a
great variability among the incomes.

Second level of analysis: Surveyed salaried employees The second level of analysis is fo-
cused on the parameter of interest P (Y Æ y | C = 1, S = 1), that is, the income distribution
of the salaried employees who answered the survey. The objective of this section is to make
explicit the impact of the non-response rate on the income distribution, the average income
and the corresponding quantiles. By doing so, it is appreciated how strong is the conditional
mean imputation implemented by the CASEN survey.
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Income distribution: Let us start by the income distribution. Using the law of total proba-
bility, we have that

P (Y Æ y | C = 1, S = 1) = P (Y Æ y | C = 1, S = 1, Z = 1)P (Z = 1 | C = 1, S = 1) +

P (Y Æ y | C = 1, S = 1, Z = 0)P (Z = 0 | C = 1, S = 1).

In this decomposition, both P (Y Æ y | C = 1, S = 1, Z = 1) and P (Z = z | C = 1, S = 1),
z œ {0, 1}, are identified, whereas P (Y Æ y | C = 1, S = 1, Z = 0) is not identified
because it depends on the employees who did not report their income. Instead of using an
ignorability condition (as the conditional mean imputation), the relevant question is what
can be learned about P (Y Æ y | C = 1, S = 1) without introducing additional assumptions.
Taking into account that P (Y Æ y | C = 1, S = 1, Z = 0) œ [0, 1], it is possible to bound
P (Y Æ y | C = 1, S = 1) as

P (Y Æ y | C = 1, S = 1, Z = 1)P (Z = 1 | C = 1, S = 1)
Æ P (Y Æ y | C = 1, S = 1) (3.2)
Æ P (Y Æ y | C = 1, S = 1, Z = 1)P (Z = 1 | C = 1, S = 1) + P (Z = 0 | C = 1, S = 1),

where P (Z = 1 | C = 1, S = 1) = 0.866. This identification region, depicted in Figure 2,
includes an infinite number of income distributions that are compatible with the observa-
tions. Moreover, it reflects the uncertainty induced by the non-response rate: in fact, the
width of this interval is equal to the non-response rate, namely P (Z = 0 | C = 1, S = 1).
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Figure 2. Identification region for P (Y Æ y | C = 1, S = 1)

Average income At the second level, the average income corresponds to the conditional ex-
pectation E(Y | C = 1, S = 1), which is decomposed as

E(Y | C = 1, S = 1) = E(Y | C = 1, S = 1, Z = 1)P (Z = 1 | C = 1, S = 1) +
E(Y | C = 1, S = 1, Z = 0)P (Z = 0 | C = 1, S = 1).

In this decomposition, E(Y | C = 1, S = 1, Z = 1) and P (Z = z | C = 1, S = 1), for
z œ {0, 1}, are identified, whereas E(Y | C = 1, S = 1, Z = 0) is not identified because it
depends on the employees who did not report their income. However, this last conditional
expectation could be partially identified provided the support of Y is bounded. Although
theoretically the support of Y is bounded, in practice the lower bound is known, whereas
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the upper bound is finite but unknown: how large is it? 5,000,000 Chilean pesos? 25,000,000
Chilean pesos? There is no way to answer this question and, therefore, there is no way to
provide a partial identification region for E(Y | C = 1, S = 1). For additional discussion on
partial identifiability of a conditional expectation, see Alarcón-Bustamante et al. (2020).

Quantiles of P (Y Æ y | C = 1, S = 1): Although the first moment of the income distribution
P (Y Æ y | C = 1, S = 1) is not even partially identified, it is possible to learn from the
respective quantiles, and to appreciate the impact of the non-response rate on them. The
quantiles of the income distribution P (Y Æ y | C = 1, S = 1) are given by

qY |C=1,S=1(–) = inf{t œ R: P (Y Æ t | S = 1, C = 1) Ø –} for – œ [0, 1].

This quantile function is non identified because it is defined in terms of a non identified
probability distribution, namely P (Y Æ t | S = 1, C = 1). However, using the bounds in
Equation (3.2), it is possible to partially identified the quantile function qY |C=1,S=1 by using
the quantiles of the income distribution P (Y Æ y | S = 1, C = 1, Z = 1): for – œ (0, 1),

qY |C=1,S=1,Z=1

3
– ≠ P (Z = 0 | C = 1, S = 1)

P (Z = 1 | C = 1, S = 1)

4
Æ

Æ qY |C=1,S=1(–) Æ (3.3)

Æ qY |C=1,S=1,Z=1

3
–

P (Z = 1 | C = 1, S = 1)

4
.

For a proof, details and reference, see San Mart́ın and González (2022, Section 4).
The identification region given in Equation (3.3) shows the impact of the non-response

rate on the quantile function of P (Y Æ y | C = 1, S = 1) in the sense that one of the bounds
of the quantile function is non-informative for some values of –. As a matter of fact,

• If – Æ P (Z = 0 | C = 1, S = 1), then the lower bound in Equation (3.3) is equal to the
minimum of the support of the conditional distribution P (Y Æ y | C = 1, S = 1, Z = 1)
and, therefore, it is non-informative.

• If – Ø P (Z = 1 | C = 1, S = 1), then the upper bound in Equation (3.3) is equal to the
maximum of the support of the conditional distribution P (Y Æ y | C = 1, S = 1, Z = 1)
and, therefore, it is non-informative.

Therefore, the quantile function of P (Y Æ y | C = 1, S = 1) is informative (that is, provides
values in the interior of the support of P (Y Æ y | S = 1, C = 1, Z = 1)) in the following
two cases:

(i) If P (Z = 0 | S = 1, C = 1) < P (Z = 1 | S = 1, C = 1) or, equivalently, the
non-response rate among the employees individuals is smaller than 50%, then the
quantile function qY |C=1,S=1 is informative for all

– œ [ P (Z = 0 | S = 1, C = 1), P (Z = 1 | S = 1, C = 1) ].

(ii) If P (Z = 0 | S = 1, C = 1) > P (Z = 1 | S = 1, C = 1) or, equivalently, the
non-response rate among the employees individuals is greater than 50%, then the
quantile function qY |C=1,S=1 is informative for all

– œ [0, P (Z = 1 | C = 1, S = 1) ] fi [ P (Z = 0 | C = 1, S = 1), 1].
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Let us illustrate this result with the data of the Example. In this case, P (Z = 0 | C =
1, S = 1) = 0.114456; the corresponding identification regions of the quantile qY |C=1,S=1(–)
for some values of – are summarized in Table 4. We also summarize the quantiles of the
income distribution with imputations, thereafter called CASEN income distribution and
denoted as ÂqY |C=1,S=1(–). It should be noted that the CASEN income distribution almost
overlapped with the distribution of observed incomes. Furthermore, the CASEN income
distribution is in the interior of the identification region in Equation (3.2), as theoretically
expected; see Figure 3.
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Figure 3. Identification region for P (Y Æ y | C = 1, S = 1) and CASEN income distribution

Table 4 deserves the following comments:
(i) For – smaller than the non-response rate, the income of employees can be much

lower than the income that can be deduced from the CASEN income distribution.
In other words, the non-response rate has such an impact that it is not possible to
know how poor the “poorest of the income of employees” are.

(ii) For – greater that the response rate, the income of employees can be much higher
than the income that can be deduced from the CASEN income distribution. In other
words, the response rate has such an impact that it is not possible to know how rich
the “richer of the income of employees” are.

(iii) It can be remarked that for (some) –1 Æ –2, the identification region of
qY |C=1,S=1(–1) at least intersects the identification region of qY |C=1,S=1(–2). This
clearly increases the uncertainty of the conclusions that can be drawn using the
partially identified income distribution and which is rendered invisible when using
the CASEN income distribution.

The previous conclusions allow us to understand the meaning of ignorability conditions,
such as the conditional mean imputation technique or, more generally, Missing at Random
conditions. These conditions come from the identification restriction

Y ‹‹ Z | C = 1, S = 1, X

which, by definition of conditional independence, is equivalent to

P (Y Æ y | C = 1, S = 1, X) = P (Y Æ y | C = 1, S = 1, Z = 1, X)
= P (Y Æ y | C = 1, S = 1, Z = 0, X).

These equalities means that the missing observations do not provide more relevant
information about the output Y , being the only “statistical job” to carefully estimate
P (Y Æ y | C = 1, S = 1, Z = 1, X) –this is the standard procedure.
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Table 4. Quantiles of both the partial identified income distribution and the CASEN income distribution

qY |C=1,S=1(–)
– LB UB ÂqY |C=1,S=1(–)

0.05 1,200 170,000 160,000
0.10 1,200 250,000 242,000

P (Z = 0 | C = 1, S = 1) 1,200 265,000 250,000
0.25 300,000 320,000 320,000
0.50 400,000 480,000 420,000
0.75 700,000 1,000,000 750,000
0.80 800,000 1,300,000 865,172

P (Z = 1 | C = 1, S = 1) 1,100,000 25,000,000 1,200,000
0.90 1,200,000 25,000,000 1,300,000
0.95 1,800,000 25,000,000 1,800,000
0.99 3,500,000 25,000,000 3,500,000
1.00 25,000,000 25,000,000 25,000,000

3.3 Discussion

One of the objectives of the CASEN survey is to obtain an overview of the income distri-
bution of employees and, in particular, to have a look at the incomes of the lowest paid
employees as well as those of the highest paid. For this purpose, the self-reported income
of survey respondents who fall into the category of salaried employees is used. However,
individuals who are exposed to the survey are not required to report their income. As a
consequence, the survey includes a non-response rate which, for the 2020 CASEN survey in
pandemic, is equal to 11.4456%. Before providing an overview of the distribution of incomes,
CASEN applies statistical techniques designed to impute missing income, specifically the
conditional mean imputation technique.

Our dissection of the CASEN survey aims to make explicit the policy meaning of this
imputation technique. To this end, a partial identification analysis was developed to show
the impact of the non-response rate on both the mean of the distribution of the income
distribution of employees and on the respective quantiles. One of the main conclusions
is that “the poor may be poorer” than what can be asserted from the CASEN income
distribution, and that “the rich may be richer” than what can be stated from it.

With this conclusion in mind, it is possible to assess the sense of the imputation technique
used by CASEN: the conditional mean imputation technique corresponds to an assumption
of income homogeneity. As a matter of fact, it is assumed that, among individuals with
characteristics X = x who did not report their income, there is no relevant income in-
formation that was not accessed: all the e�ectively relevant information has already been
observed in those who did report their income. Consequently, the income of an employee
who did not report it should be related to the average income of all employees sharing the
same characteristics X = x. The partial identification shows how heterogenous could be the
income distributions of employees. Policy decisions should be aware on this uncertainties.

4. The Araucańıa citizen consultation

The Araucańıa citizen consultation is of special political interest given the ongoing violent
conflicts in the region. This is the main motivation for having chosen to analyze it. But there
is also a relevant methodological aspect: the information provided by the consultation can
be related to the national referendum held in 2020. We study how plausible this relationship
is, and how it a�ects the conclusions that can be drawn.
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4.1 Historical and economical context

The capital of the Araucańıa region, Temuco, is located 620 kilometers to south of Santiago,
the capital of Chile. The Araucańıa Region is known for being the original area of the
Mapuche People (in the 16th century called “Araucanos”), possibly the only indigenous
people with whom the Crown of Spain made a Capitulation of Peace, known as the Paces
de Quiĺın, made on January 5 and 6, 1614. This treaty established the Biob́ıo River as the
border, south of which “the Mapuches lived independently for two hundred and forty years,
until 1881” (Bengoa, 2007). In 1881, “Manuel Recabarren, Minister of the Interior [at the
time], led Chilean troops to the south and, together with General Gregorio Urrutia, advanced
hundreds of kilometers along the border and militarily occupied the area” (Bengoa, 2016).
This completed the occupation of Araucańıa by the Chilean government.

The Araucańıa Region, in addition to the Biob́ıo, Los Ŕıos and Maule regions, develop
the country’s forestry industry: “the forestry sector represents 1.9% of the domestic GDP,
reaching in 2017 USD 5,196 million (3,373 billion of Chilean pesos). Biob́ıo region represents
60.0% of the forestry GDP, followed by La Araucańıa region with 10.5%, and Los Ŕıos, and
Maule regions with 10.1% each. Regarding the participation of the three forestry subsectors
included in the sectorial GDP, the paper, and pulp industry, as well as products derived
from paper represents 44.3%, forestry participates with 29.4%, and the wood products, and
wood industry represent 26.3%” (Instituto Forestal, 2021).

Many of the conflicts in the area are due to the presence of forestry companies, whose
worldview on nature and its resources is not entirely shared by the Mapuche people’s world-
view. In addition, part of the forestry exploitation takes place on what were once Mapuche
lands, which has triggered a series of territorial claims (Andrade, 2019).

4.2 Recent political context

On October 12, 2021, the President of the Chilean Republic declared a state of emergency
for the provinces of Biob́ıo and Arauco, in the Biob́ıo region, and in the provinces of Caut́ın
and Malleco, in the Araucańıa Region, for a 15 days period (Diario Oficial de la República
de Chile, 2021). According to the Chilean Constitution, this is one of its prerogatives, and it
may declare such state of emergency for no more than 15 days. Once a state of emergency is
declared, the respective zones are under the immediate dependence of the Chief of National
Defense appointed by the President of the Republic, who assume the direction and super-
vision of his jurisdiction with the powers and obligations established by law (Constitución
de la República de Chile, 2005, Art.42). By declaring a state of emergency, the President
of the Republic may restrict the freedom of locomotion and assembly (Constitución de la
República de Chile, 2005, Art.43).

Among the reasons that led to this decision, the Diario Oficial de la República de Chile
(2021) mentions the following ones:

(i) An increase of violence acts linked to drug tra�cking, terrorism and organized crime,
committed by armed groups that have not only made attempts on the lives of mem-
bers of the Law Enforcement and Security Forces, but have also attacked people and
destroyed facilities and machinery used in industrial, agricultural and commercial
activities.

(ii) Since 2018, there has been an increase in crimes and o�enses against persons and
against property; against public order, including attacks against authority, attacks
and threats against prosecutors of the Public Prosecutor’s O�ce and the Judiciary.

(iii) There has been a 116% increase in reported incidents related to crimes contem-
plated in Law No. 17,798 on Arms Control, including the seizure of weapons and
ammunition.
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(iv) The number, magnitude and seriousness of the crimes and facts indicated, committed
in the provinces of the regions of Biob́ıo and Araucańıa, imply a serious alteration
of public order –understood as the “situation that allows the peaceful exercise of
rights and the fulfillment of obligations, ensuring peaceful coexistence”– in the terms
established in Article 42 of the Constitution of the Chilean Republic, which allows
the enactment of the state of emergency constitutional exception with respect to
such areas of the national territory, provided for in said article.

As it was mentioned above, the state of emergency may not be extended for more than
fifteen days, notwithstanding that the President of the Republic may extend it for the same
period. However, for successive extensions, the President always requires the consent of the
National Congress, specifically the Senate (Constitución de la República de Chile, 2005,
Art.42). Until January 2022, the National Congress has approved the extension of the state
of emergency for 6 consecutive times1. It should be mentioned that the o�cial account of
the recent conflicts in La Araucańıa does not relate these conflicts to the territorial claims
of the Mapuche people.

4.3 Organization of the Araucańıa consultation and results

To know the opinion of the citizens of the 32 communes of La Araucańıa regarding the
renewal of the state of emergency in the region, the Regional Intendancy and the Association
of Municipalities of La Araucańıa organized a citizen consultation, which took place on
November 5, 6 and 7, 2021. The consultation was carried out electronically, and all persons
over 18 years old registered in the electoral registry in any of the 32 municipalities may
participate from a computer, cell phone or another device connected to the internet2.

The citizen consultation was limited to the following question:
Do you agree with Congress extending the state of emergency in the Araucańıa Region?

The results of the consultation are summarized in Table 5.
Table 5. Results of the Araucańıa consultation

Option Votes % wrt the consultation % wrt electoral roll
Yes 118,258 81.56 13.34
No 26,655 18.38 3.01

Blank votes 54 0.04 0.01
Null votes 27 0.02 0.00

Total 144,994 100 16.36
where “wrt” denotes “with respect to”.

4.4 How these results were used?

Subsections 4.1 and 4.2 attempt to illustrate the complexity of the political situation in
the Araucańıa region. This complex context may explain why successive extensions of the
state of emergency have been subject to lively debate. In fact, those extensions did not
achieve unanimity in the Senate: they were approved not more than 2 or 3 votes in favor.
Let us mention the Senate session of November 24, 2021, where the extension of the state

1For details, see https://www.senado.cl/senado/site/cache/search/pags/search164185188127928.html on January
10, 2021.
2Retrieved from https://www.consultaaraucania.cl/ on January 10, 2022.

https://www.senado.cl/senado/site/cache/search/pags/search164185188127928.html
https://www.consultaaraucania.cl/
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of emergency was approved by 16 votes in favor, 14 against, and one abstention. Among
the reasons that were mentioned for approving the extension, the Araucańıa consultation
was explicitly mentioned as an important factor. This was stated by Senator Francisco
Chahuán, from the right coalition Chile Vamos, who a�rmed that “the state of exception
has generated greater tranquility. Attacks against property and arson crimes have decreased.
We must listen actively and in La Araucańıa there was a citizen consultation that supported
this measure”3. These expressions are in line with the assessment made by the Governor of
La Araucańıa, Luciano Rivas, independent, near to the Chile Vamos coalition, at the end
of the consultation: “With great respect, but also with great strength, we ask politicians,
especially all the deputies and senators of Chile, that our voice be heard, do not turn a deaf
ear”4.

As mentioned by Governor Rivas1, the Araucańıa citizen consultation was one of the first,
if not the first, non-binding consultations to be held in Chile. This, added to the complex
political situation in the Araucańıa region, could explain the interest that this consultation
aroused, especially in the relationship that its results have with recent elections, namely
the 2020 national referendum on the possibility of a new constitution and the 2021 gover-
nor elections. One of these studies is the one conducted by Cayul et al. (2021), which was
initially published in the electronic journal CIPER2. This study analyzes the representa-
tiveness at the municipality level of the Araucańıa Consultation on three axes: Mapuche
population, rurality, and population that voted for the non-approval option in the 2020
national referendum. According to the authors, “these axes are fundamental to establish
whether or not there is a bias in the results, since it analyzes the cultural, socioeconomic
and political dimension”. To achieve this objective, the authors analyze, on the one hand,
the participation in the second round of the election of Regional Governors in Araucańıa
with the percentage of Mapuche population, the percentage of rural population and the per-
centage of non-approval in the 2020 referendum; and, on the other hand, the participation
in the citizen consultation in Araucańıa with the same percentages already mentioned. The
choice of the regional governors is due to the fact that in that election “a similar universe
of approximately 125,000 people participated”. We are able to reproduce the third analysis
by considering the data summarized at Table 6.

Figures 4 (a)-(b) reproduce their analysis. Cayul et al. (2021) conclude that “those mu-
nicipalities with a higher percentage of votes for the non-approval to a new Constitution
also had a higher participation in both the citizen consultation and in the second round of
governors’ elections, but the e�ect is significantly lower in the latter. That is, there would
be a political bias of those who participate in the consultation”.

The final conclusion of the study is the following:
We observe then that, when comparing two elections with a similar participation rate, the

people who participate in them are very di�erent. While participation in the consultation was

higher in urban, non-Mapuche municipalities that voted for non-approval, these same biases

are not observed in the second round of governors election.

Electors, then, are not representative at the municipal level, and this suggests that the

consultation is not necessarily representative of the population of Araucańıa. This implies

that the interpretation of the results should be done with caution, and without extrapolating

conclusions for the entire region, especially given the relevance that has been sought to give

to the consultation.

3Retrieved from https://www.senado.cl/estado-de-excepcion-constitucional on January 10, 2021.
4Retrieved from https://assets.eldesconcierto.cl/2021/11/Copia-de-Copia-de-Discurso-Consulta-Araucani%CC%
81a.pdf on January 11, 2022.
1See his speech of November 7, 2021 in https://assets.eldesconcierto.cl/2021/11/
Copia-de-Copia-de-Discurso-Consulta-Araucani%CC%81a.pdf.
2At https://www.ciperchile.cl/2021/11/10/consulta-ciudadana-en-la-araucania.

https://www.senado.cl/estado-de-excepcion-constitucional
https://assets.eldesconcierto.cl/2021/11/Copia-de-Copia-de-Discurso-Consulta-Araucani%CC%81a.pdf
https://assets.eldesconcierto.cl/2021/11/Copia-de-Copia-de-Discurso-Consulta-Araucani%CC%81a.pdf
https://assets.eldesconcierto.cl/2021/11/Copia-de-Copia-de-Discurso-Consulta-Araucani%CC%81a.pdf
https://assets.eldesconcierto.cl/2021/11/Copia-de-Copia-de-Discurso-Consulta-Araucani%CC%81a.pdf
https://www.ciperchile.cl/2021/11/10/consulta-ciudadana-en-la-araucania
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Figure 4. Relationship between 2020 referendum and 2021 (a); and between 2021 governor election and 2021 (b)
Araucańıa consultation participation

4.5 Dissecting the use of Araucańıa citizen consultation
Statement of the problem The previous analysis consists in comparing two or more
elections that share a common electoral roll. Now, for each election, there are specific prob-
ability distributions that are identified, namely (i) the distributions of participation and
non-participation, and (ii) the distribution of preferences conditionally on the electors par-
ticipating in the election. More precisely, let M be the sample space composed of the electors,
and define the following random variables on M :

• V1(m) = 1 if the elector m participated at the 2020 referendum, and V1(m) = if not.
• V2(m) = 1 if the elector m participated at the 2021 governor election, and V2(m) = if

not.
• V3(m) = 1 if the elector m participated at the 2021 citizen consultation, and V3(m) = if

not.
• Let Y1 be the preference at the 2020 referendum, namely Y1 =

{approve, non-approve, blank vote, null vote}.
• Let Y2 be the preference at the 2021 governor election, namely Y2 =

{Tuma, Rivas, blank vote, null vote}.
• Let Y3 be the preference at the 2021 citizen consultation, namely Y3 =

{yes, no, blank vote, null vote}.
• Let C be the municipality in which each elector is registered. C takes 32 di�erent values

because there are 32 municipalities; see Table 6.
If we consider each election separately, then the identified parameters are the following:

P (Yi = yi | Vi = 1, C = c) (yi, c) œ Yi◊{1, . . . , 32}; P (Vi = 1 | C = c); c œ {1, . . . , 32},

for i œ {1, 2, 3}.
If these elections are jointly used, it should be verified if the set of electors is the same,

that is, if the following equality holds:

{m œ M : V1(m) = 1} fi {m œ M : V1(m) = 0}

= {m œ M : V2(m) = 1} fi {m œ M : V2(m) = 0}

= {m œ M : V3(m) = 1} fi {m œ M : V3(m) = 0}.
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Certainly, the Chilean Electoral Service (SERVEL in Spanish) has access to this information
and it can verify such equality. In what follows, we assume that this equality is fulfilled.

The analysis described in Subsection 4.4 consists in comparing

{P (Y1 = non-aproval | V1 = 1, C = c): c œ {1, . . . , 32}},

with

{P (V3 = 1 | C = c): c œ {1, . . . , 32}}.

However, for each c œ {1, . . . , 32}, {m œ M : V1(m) = 1, C(m) = v} is not necessarily equal
to {m œ M : V3(m) = 1, C(m) = c}.

A fair comparison needs to use the same electors, which in turn lead to consider

{P (Y1 = non-aproval | V1 = 1, V3 = 1, C = c): c œ {1, . . . , 32}}

and

{P (V3 = 1 | V1 = 1, C = c): c œ {1, . . . , 32}}.

This is due to the fact that the political behavior of those who participate in both elections
is not necessarily the same as the political behavior of those who participate in one, or the
other, or both. It is, therefore, necessary to identify P (Y1 = non-aproval | V1 = 1, V3 =
1, C = c) and P (V3 = 1 | V1 = 1, C = c) for each c.

Partial identification of P (V1 = v1, V3 = v3 | C = c): Both P (Y1 = non-aproval | V1 = 1, V3 =
1, C = c) and P (V3 = 1 | V1 = 1, C = c) require the identifiability of P (V1 = v1, V3 =
v3 | C = c) for (v1, v3) œ {0, 1}2. Taking into account that P (V1 = v1 | C = c) and
P (V3 = v3 | C = c) are identified, the way to relate them to the joint distribution P (V1 =
v1, V3 = v3 | C = c) is through the Fréchet inequality (Fréchet, 1960a,b), namely for each
c œ {1, . . . , 32}, by means of

max{1, P (V1 = v1 | C = c) + P (V3 = v3 | C = c) ≠ 1} Æ

Æ P (V1 = v1, V3 = v3 | C = c) Æ

Æ min{P (V1 = v1 | C = c), P (V3 = v3 | C = c)}, ’ (v1, v3) œ {0, 1}2.

It should be emphasized that these bounds are the best ones; see the constructive proof in
Fréchet (1960a). Thus, for (v1, v3) = (1, 1), it follows that

max{0, P (V1 = 1 | C = c) ≠ P (V3 = 0 | C = c)} Æ (4.1)
Æ P (V1 = 1, V3 = 1 | C = c) Æ min{P (V1 = 1 | C = c), P (V3 = 1 | C = c)}.

For municipality c the lower bound is informative (that is, greater than 0) if P (V1 = 1 | C =
c) > P (V3 = 0 | C = c), that is, if the rate of participation at the 2020 referendum is greater
than the rate of non-participation at the 2021 citizen consultation; or, equivalently, if the
rate of non-participation at the 2020 referendum is smaller than the rate of participation
at the 2021 citizen participation. Table 7 summarizes the results, where LB13 is the lower
bound of Equation (4.1) and UB13 is the corresponding upper bound. It can be seen that,
for each municipality, the lower bound is always 0, which means that a plausible assumption
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is that none of those who participated in one election participated in the other. Another
plausible assumption is that

P (V1 = 1, V3 = 1 | C = c) = P (V3 = 1 | C = c), (4.2)

that is, the rate of joint participation is equal to the rate of participation at the 2021
citizen consultation. In this case, P (V1 = 0, V3 = 1 | C = c) = 0, that is, no elector did
not participate at the 2020 referendum and participated at the 2021 citizen consultation.
Certainly this conclusion may seem implausible, which in turn would imply that Equation
(4.2) is implausible as an assumption.

Table 7. Bounds of joint participation ratios

c Municipality P (V1 = 1 | C = c) P (V2 = 1 | C = c) P (V3 = 1 | C = c) LB13 UB13 LB23 UB23

1 Angol 0.42 0.13 0.20 0.00 0.20 0.00 0.13
2 Carahue 0.29 0.13 0.15 0.00 0.15 0.00 0.13
3 Cholchol 0.38 0.15 0.09 0.00 0.09 0.00 0.09
4 Collipulli 0.38 0.12 0.21 0.00 0.21 0.00 0.12
5 Cunco 0.30 0.11 0.10 0.00 0.10 0.00 0.10
6 Curacaut́ın 0.28 0.07 0.17 0.00 0.17 0.00 0.07
7 Curarrehue 0.31 0.09 0.07 0.00 0.07 0.00 0.07
8 Ercilla 0.32 0.12 0.19 0.00 0.19 0.00 0.12
9 Freire 0.34 0.14 0.10 0.00 0.10 0.00 0.10

10 Galvaino 0.29 0.13 0.11 0.00 0.11 0.00 0.11
11 Gorbea 0.35 0.19 0.13 0.00 0.13 0.00 0.13
12 Lautaro 0.37 0.11 0.16 0.00 0.16 0.00 0.11
13 Loncoche 0.35 0.12 0.08 0.00 0.08 0.00 0.08
14 Lonquimay 0.28 0.12 0.01 0.00 0.01 0.00 0.01
15 Los Sauces 0.33 0.14 0.02 0.00 0.02 0.00 0.02
16 Lumaco 0.32 0.17 0.26 0.00 0.26 0.00 0.17
17 Melipeuco 0.28 0.08 0.08 0.00 0.08 0.00 0.08
18 Nueva Imperia 0.39 0.14 0.17 0.00 0.17 0.00 0.14
19 Padres las Casas 0.41 0.11 0.13 0.00 0.13 0.00 0.11
20 Perquenco 0.37 0.17 0.15 0.00 0.15 0.00 0.15
21 Pitrufquén 0.37 0.17 0.14 0.00 0.14 0.00 0.14
22 Pucón 0.38 0.10 0.11 0.00 0.11 0.00 0.10
23 Purén 0.35 0.12 0.20 0.00 0.20 0.00 0.12
24 Renaico 0.38 0.10 0.09 0.00 0.09 0.00 0.09
25 Saavedra 0.30 0.14 0.09 0.00 0.09 0.00 0.09
26 Temuco 0.49 0.18 0.21 0.00 0.21 0.00 0.18
27 Teodoro Scmidt 0.34 0.21 0.10 0.00 0.10 0.00 0.10
28 Toltén 0.32 0.15 0.13 0.00 0.13 0.00 0.13
29 Traiguén 0.34 0.14 0.19 0.00 0.19 0.00 0.14
30 Victoria 0.38 0.12 0.26 0.00 0.26 0.00 0.12
31 Vilcún 0.37 0.17 0.13 0.00 0.13 0.00 0.13
32 Villarrica 0.39 0.11 0.11 0.00 0.11 0.00 0.11

Partial identification of P (V3 = 1 | V1 = 1, C = c): From Equation (4.1) it can be deduced the
identification region for P (V3 = 1 | V1 = 1, C = c), namely

max
;

0,
P (V1 = 1 | C = c) ≠ P (V3 = 0 | C = c)

P (V1 = 1 | C = c)

<
Æ (4.3)

Æ P (V3 = 1 | V1 = 1, C = c) Æ min
;

1,
P (V3 = 1 | C = c)
P (V1 = 1 | C = c)

<
.

For each municipality c, the lower bound is informative if P (V1 = 1 | C = c) >
P (V3 = 0 | C = c), whereas the upper bound is informative (that is, smaller than 1) if
P (V3 = 1 | C = c) < P (V1 = 1 | C = c), that is, if the rate of participation at the citizen
consultation is smaller than the rate of participation at the 2020 referendum. Table 8 shows
the corresponding lower and upper bound. It can be seen that the lower bound is uninfor-
mative, whereas the upper bound is informative: it corresponds to the ratio of participation
at the citizen consultation given that electors participated at the 2020 referendum.
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Table 8. Partial identification of P (V3 = 1 | V1 = 1, C = c) and P (Y1 = non-approve | V1 = 1, V3 =
1, C = c)

P (V3 = 1 | V1 = 1, C = c) P (Y1 = non-approve | V1 = 1, V3 = 1, C = c)

c Municipality LB UB LB UB

1 Angol 0.00 0.48 0.00 0.72
2 Carahue 0.00 0.50 0.00 0.61
3 Cholchol 0.00 0.25 0.05 0.38
4 Collipulli 0.00 0.57 0.00 0.85
5 Cunco 0.00 0.33 0.00 0.47
6 Curacaut́ın 0.00 0.60 0.00 0.99
7 Curarrehue 0.00 0.23 0.14 0.44
8 Ercilla 0.00 0.58 0.00 0.94
9 Freire 0.00 0.31 0.00 0.46

10 Galvaino 0.00 0.36 0.00 0.44
11 Gorbea 0.00 0.37 0.02 0.61
12 Lautaro 0.00 0.44 0.00 0.66
13 Loncoche 0.00 0.24 0.02 0.33
14 Lonquimay 0.00 0.04 0.37 0.41
15 Los Sauces 0.00 0.06 0.39 0.45
16 Lumaco 0.00 0.81 0.00 1.00
17 Melipeuco 0.00 0.28 0.00 0.38
18 Nueva Imperia 0.00 0.44 0.00 0.47
19 Padres las Casas 0.00 0.31 0.00 0.42
20 Perquenco 0.00 0.39 0.00 0.49
21 Pitrufquén 0.00 0.37 0.00 0.54
22 Pucón 0.00 0.28 0.00 0.38
23 Purén 0.00 0.58 0.00 0.89
24 Renaico 0.00 0.24 0.06 0.38
25 Saavedra 0.00 0.29 0.00 0.35
26 Temuco 0.00 0.44 0.00 0.58
27 Teodoro Scmidt 0.00 0.30 0.08 0.52
28 Toltén 0.00 0.39 0.00 0.59
29 Traiguén 0.00 0.54 0.00 0.75
30 Victoria 0.00 0.68 0.00 1.00
31 Vilcún 0.00 0.36 0.00 0.52
32 Villarrica 0.00 0.27 0.04 0.41

Partial identification of P (V2 = 1, V3 = 1 | C = c): Following the arguments developed in Sub-
section 4.5, it follows that

max{0, P (V2 = 1 | C = c) ≠ P (V3 = 0 | C = c)} Æ (4.4)
Æ P (V2 = 1, V3 = 1 | C = c) Æ min{P (V2 = 1 | C = c), P (V3 = v3 | C = c)}.

Table 7 shows the corresponding lower and upper bounds. Lower bounds are always unin-
formative because, for each municipality, the rate of participation at the 2021 governor elec-
tion is smaller than the rate of non-participation at the 2021 citizen consultation. This means
that, although the overall participation rates in both elections are very similar (16% for the
citizen consultation, 14% for the governor election), a plausible assumption is that there are
no electors who participated in both elections. In addition, sometimes the upper bound is
equal to P (V2 = 1 | C = c), sometimes to P (V3 = 1 | C = c). In the first case, namely when
it is assumed that P (V2 = 1, V3 = 1 | C = c) = P (V2 = 1 | C = c), then there are no electors
who participated in the 2021 governors election and did not participate in the 2021 citizen
consultation. In the second case, namely P (V2 = 1, V3 = 1 | C = c) = P (V3 = 1 | C = c),
then there are no electors who did not participate in the 2021 governors election and who
participated in the 2021 citizen consultation. Again, it can be stated that these assumptions
may not seem entirely plausible, which in turn shows that it is possible to have turnout
rates in both elections lower than the upper bound. By passing, this jeopardizes the argu-
ment according to which the governor election and the citizen consultation can be compared
because their rate of participation are similar.

Partial identification of P (Y1 = y | V1 = 1, V2 = 1, C = c): For each municipality c, the condi-
tional probability P (Y1 = y | V1 = 1, V2 = 1, C = c) can not vary arbitrarily because it
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is related to the identified conditional probability P (Y1 = y | V1 = 1, C = c) through the
following decomposition:

P (Y1 = y | V1 = 1, C = c) = P (Y1 = y | V1 = 1, V3 = 1, C = c)P (V3 = 1 | V1 = 1, C = c) +
P (Y1 = y | V1 = 1, V3 = 0, C = c)P (V3 = 0 | V1 = 1, C = c).

In this decomposition, “c
.= P (Y1 = y | V1 = 1, V3 = 0, C = c) is non identified, whereas

P (V3 = 1 | V1 = 1, C = c) and P (V3 = 0 | V1 = 1, C = c) are partially identified by
Equation (4.4).

Let C œ {1, . . . , 32} and pc
.= P (V3 = 0 | V1 = 1, C = c) be fixed. It follows that

P (Y1 = y | V1 = 1, V3 = 1, C = c) belongs to the set
;

P (Y1 = y | V1 = 1, C = c) ≠ “cpc

1 ≠ pc
: “c œ [0, 1]

<
,

which reduces to the interval

Apc

.=
5

P (Y1 = y | V1 = 1, C = c) ≠ pc

1 ≠ pc
,

P (Y1 = y | V1 = 1, C = c)
1 ≠ pc

6
.

Now, if p1,c < p2,c, then

Ap1,c µ Ap2,c .

Therefore, for each c œ {1, . . . , 32}, we have that

P (Y1 = y | V1 = 1, V3 = 1, C = c) œ
€

pcœ[lc, uc]
Apc

= Auc ,

where [lc, uc] is given by Equation (4.3). It follows that, for each c œ {1, . . . , 32}, P (Y1 =
y | V1 = 1, V3 = 1, C = c) œ belongs to an identification region where the lower bound is
given by

max

Y
]

[0,
P (Y1 = y | V1 = 1, C = c) ≠ min

Ó
1, P (V3=1|C=c)

P (V1=1|C=c)

Ô

1 ≠ min
Ó

1, P (V3=1|C=c)
P (V1=1|C=c)

Ô

Z
^

\ ,

and the upper bound is given by

min

Y
]

[1,
P (Y1 = y | V1 = 1, C = c)
1 ≠ min

Ó
1, P (V3=1|C=c)

P (V1=1|C=c)

Ô

Z
^

\ .

Table 8 shows the corresponding lower and upper bound of P (V3 = 1 | V1 = 1, C = c)
and P (Y1 = non-approve | V1 = 1, V3 = 1, C = c). It can be observed the uncertainty
induced by the joint participation in both elections. In particular, four municipalities have
an extreme uncertainty because the width of their identification regions is at least equal
to 0.9: Curacaut́ın, Ercilla, Lumaco and Victoria. In these municipalities, the proportion of
non-approval conditionally on the participation at both the 2020 referendum and the 2021
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consultation is any value. Moreover, the conditional probability to participate at the citizen
referendum given that electors participated at the 2020 referendum is, respectively, 0.6
0.58, 0.81 and 0.68. Also, two municipalities, Lonquimay and Los Sauces, have the smaller
uncertainty and, consequently, the rate of approval conditionally on the joint participation
is less uncertainty: between 0.37 and 0.41 for Lonquimay; and between 0.39 and 0.45 for Los
Sauces. Nevertheless, the rate of participation at the 2021 consultation given participation
at the 2020 referendum are quite small: 0.04 and 0.06, respectively.

4.6 Discussion

The partial identification analysis shows the impact of the uncertainty due to the joint
participation in both elections, namely 2020 referendum and 2021 consultation, on the pro-
portion of electors who chose the non-approve option at the 2020 referendum. This impact
can be diminished if, for each municipality, the joint distribution P (V1 = v1, V3 = v3 | C = c)
with (v1, v3) œ {0, 1}2 were known. This seems to be feasible for the Chilean Electoral Ser-
vice, without having to transgress elector identity protection. If this were the case, then
P (V3 = 1 | V1 = 1, C = c) would be identified. However, this fact does not ensure that
P (Y1 = y | V1, = 1, V3 = 1, C = c) is point identified because P (Y1 = y | V1 = 1, V3 = 0, C =
c) is not identified given the secrecy of the vote. Consequently, following the arguments
developed in Subsection 4.5, P (Y1 = y | V1, = 1, V3 = 1, C = c) belongs to an identification
interval with a lower bound given by

max
;

0,
P (Y1 = y | V1 = 1, C = c) ≠ P (V3 = 1 | V1 = 1, C = c)

P (V3 = 0 | V1 = 1, C = c)

<

and an upper one given by

min
;

1,
P (Y1 = y | V1 = 1, C = c)
P (V3 = 0 | V1 = 1, C = c)

<
.

It can be deduced that this interval is informative (that is, strictly included in [0, 1]) if

P (V3 = 1 | V1 = 1, C = c) < P (V3 = 0 | V1 = 1, C = c),

which is a surprising result.
It could be argued that, under “mild conditions”, it is possible to ignore joint participation,

and thus argue for the reliability of studies such as the one reported in Subsection 4.4.
The partial identification analysis developed in Subsection 4.5 shows that there are two
possible assumptions that could be made: the first one would be to assume that P (Y1 =
non-approve | V1 = 1, V3 = 0) = 0, that is, that no elector who participated in the 2020
referendum and did not participate in the 2021 citizen consultation chose the option non-
approve. It should be mentioned that this assumption is quite strong and hard to believe.
A second assumption would be Y1 ‹‹ V3 | {V1 = 1}, C, which is equivalent to the following
two equivalent conditions:

P (Y1 = y | V1 = 1, V3 = 1, C = c) = P (Y1 = y | V1 = 1, C = c);
P (V3 = v3 | Y = y, V1 = 1, C = c) = P (V3 = v3 | V1 = 1, C = c) v3 œ {0, 1}.

The last condition means that, once an elector of a specific municipality participated at
the 2020 referendum, the participation at the 2021 consultation does not depend on the
preference at the 2020 referendum: again hard to believe.
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Therefore, it should be emphasized that the previous analysis of partial identification is
applicable to critically assess the comparisons over time of political surveys as they would
be correctly done if made conditionally on joint participation.

5. Concluding remarks
This paper illustrates a traditional service that Applied Statistics can render to society. In
fact, during the XIX century, statistics was considered as “the science of social facts, ex-
pressed in numerical terms”, as indicated by Moreau de Jones (1847), or as the prospectus
of the Statistical Society of London stated, “Statistics [. . . ] may be said [. . . ] to be ascer-
taining and bringing together of those πfacts which are calculated to illustrate the condition
and prospects of society;∫and the objective of Statistical Science is to consider the results
which they produce, with the view to determine those principles upon which the well-being
of society depends” (Journal of the Statistical Society of London, 1838). As it is well known,
these considerations go back to Süßmilch (1998) and his idea of seeking order in the figures
that summarize the profile of a state – hence the term Statistics.

These original ideas show clearly the need of every statesman for statistics to “illustrate,
with new or more accurate data, a multitude of issues that arise every day, stimulating
public opinion, being the subject of parliamentary discussions, and forming problems whose
solution can only be o�ered by Statistics” Moreau de Jones (1847). The two surveys analyzed
in this paper, as well as the citizen consultation, are examples of the scenario described
by Moreau de Jones. As a matter of fact, the socioeconomic survey CASEN is used by
policy makers either to assess social policies or to have a global view of poverty or income
distribution. Stake-holders, as the press or politicians, use the two political opinion polls
(CADEM and Araucańıa citizen consultation) either to influence citizens’ political opinion
or to justify political arguments at the parliament.

We complement Moreau de Jones’ scenario by making explicit new frontiers of what
statisticians and social scientists call data of good quality. From a statistical point of view,
we focus our assessment of the surveys on the correct way of communicating their results, so
that the uncertainty induced by non-responses is made explicit. The results can be reported
at di�erent levels depending on the population of interest to which the results are to be
generalized. The advantage of this strategy is that it makes explicit how this uncertainty
could be reduced, which part of it can not be reduced unless very strong assumptions are
introduced. The price to be paid in the face of these strong assumptions is the drawing
of non-credible conclusions –that is, Law of Decreasing Credibility (Manski, 2013). For
instance, in the Araucańıa citizen consultation, the uncertainty of the option at the 2020
referendum conditionally on the joint participation at both the 2020 referendum and 2021
consultation can decreased whether the Chilean Electoral Service provides information on
such joint participation. However, the uncertainty can not decrease to a point value because
of the secrecy of the vote.

At the methodological level, the assessment or dissection of the Chilean surveys was
performed making a distinction between identified parameters and parameters of interest:
what we can learn from the data is represented by the identified parameters, while what
we want to learn from the data is represented by the parameters of interest. In (almost)
all empirical research there is a gap between both types of parameters; it is quite relevant
to highlight the di�erence and to study their possible relationships –which is equivalent to
solving an identification problem. The way Cli�ord (1982) expresses himself is illuminating
and perhaps summarizes the perspective developed in this paper:

Anyone who has tried to make sense to real data will, sooner or later, have come across the

problem of non-identifiability. Broadly speaking this means that their first explanation of the

data is not the only one. The existence of alternative explanations becomes important when

decisions have to be made and particularly so when di�erent explanations suggest completely

di�erent courses of action.
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The identification regions we established for each of the Chilean survey contain such di�erent
substantive explanations.
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cette Science, et un Aperu̧ Historiques de ses Progrès. Guillaumn et Cie, Paris.
R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing. Vienna, Austria.
Rao, M., 2005. Conditional Measures and Applications. Second Edition. Chapman Hall,

New Yok.
Rubin, D.B., 1976. Inference and missing data. Biometrika, 63, 581–592.
San Mart́ın, E., 2018. Identifiability of structural characteristics: How relevant is it for the

Bayesian approach? Brazilian Journal of Probability and Statistics, 32, 346–373.
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Abstract

This study investigates a Bayesian detection of a change in any parameter, or in any
collection of parameters of the autoregressive time series model of known order p. An
unconditional Bayesian test based on the highest posterior density credible sets is deter-
mined. Using the Gibbs sampler algorithm, some simulated results are given to approx-
imate the posterior densities of the change point and other parameters of the model.
The performance of our proposed method has been investigated on simulated and real
data sets.

Keywords: Bayesian analysis· Change point· Gibbs sampler· HPD credible
set· p-value.

Mathematics Subject Classification: Primary 62M10 · Secondary 62F15.

1. Introduction

Change point detection is an important element in time series analysis that arises in many
fields such as quality control procedures (Basseville and Nikiforov (1993)), anomaly de-
tection in internet tra�c data (Lévy-Leduc and Roue�, 2009; Tartakovsky et al., 2006),
metrology (Jandhyala et al., 2014), economics and financial analysis (Georgescu, 2012), and
biology (Fan et al., 2015), among others. Change point detection is the problem of detecting
abrupt changes in the parameters of temporal or other sequential data. Since the papers of
Page (1954) and Page (1955), who proposed a sequential scheme for identifying changes in
the mean of a sequence of independent random variables, the problem of detecting changes
has been an important issue between statisticians and considerable attention has been given
to this problem in a variety of settings. For example, changes in a sequence of random vari-
ables have been considered by Eastwood (1993), Gombay and Horvath (1999) and Guo and
Modarres (2020) from the nonparametric viewpoint. Montoril and da Silva Ferreira (2018)
proposed a method based on the coe�cient of determination, to estimate the change points
in the Beer-Lambert law problems. Among the approach based on likelihood ratio, Worsley
(1983, 1986) proposed a numerical method for computing the p-value of the generalized
likelihood ratio test to detect a change in the binomial probability and in the location of an

ú
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exponential family distribution. Kim (1996) considered a likelihood ratio test for a change in
the mean when observations are correlated. Kim and Siegmund (1989) considered likelihood
ratio tests to detect a change-point in simple linear regression. Wang et al. (2020) used the
likelihood ratio test to detect changes in the parameters of the skew slash distribution.

From a Bayesian point of view, the problem of detecting a change has received much
attention and has been studied by many authors like Cherno� and Zacks (1964), Kander
and Zacks (1966), Sen and Srivastava (1975), Jani and Pandya (1999), Fan and Chen (2005)
and Shah and Patel (2007). Ming Ng (1990) analyzed a linear model in which both the mean
and the precision change once at an unknown time point, the posterior distributions of the
change point, and the ratio of the precisions are derived.

Kim (1991) proposed a Bayesian significance test for the stationarity of a regression equa-
tion using the highest posterior density (HPD) credible set. From a Monte Carlo simulation
study, he showed that the Bayesian significance test has a stronger power than the Cusum
and the Cusum of squares tests suggested by Brown et al. (1975). Sáfadi and Morettin
(2000) considered a Bayesian analysis for threshold autoregressive moving average models.
Pan et al. (2017) considered a Bayesian analysis of threshold autoregressive (TAR) model
with various possible thresholds. Recently, Hahn et al. (2020) introduced a computation-
ally inexpensive Bayesian approach (BayesProject) for detecting changes in mean within
multivariate data sequences.

For autoregressive time series models, many papers about detecting and estimating
changes in autoregressive time series of known order p (AR(p)) processes have been pub-
lished. For example, Davis et al. (1995) studied the asymptotic behavior of a Gaussian-type
likelihood ratio statistic for testing a change in the parameters of an AR(p) model. Husková
et al. (2007, 2008) used an approach based on partial sums of weighted residuals (asymptotic
and bootstrapping methods). Venkatesan and Arumugam (2007) considered the problem of
gradual changes in the parameters of an autoregressive time series model. Gombay (2008)
used the e�cient score vector to detect change in the parameter(s) of autoregressive time
series. Berkes et al. (2011) developed the likelihood ratio test for the structural change of
an AR model to a threshold AR model. Slama (2014) examined the e�ect of correlation on
the performance of the Bayesian significance test derived under the assumption of no cor-
relation. By numerical studies, he showed that the Bayesian significance test based on the
HPD region is sensitive to the correlation in the data. Kezim and Abdelli (2004) proposed
a Bayesian analysis of a first order autoregressive process subject to one change in both the
variance of the error terms and the autocorrelation coe�cients at an unknown time point.
The detection of possible changes in the parameters of autoregressive models for binary time
series can be found in Hudecová (2013). Cheon and Kim (2014) proposed a general solution
to detect the Bayesian estimation in Bayesian autoregressive structural-change time series
models. A Bayesian approach to estimate the multiple structural change-points in a level
and the trend when the number of change-points is unknown was proposed. Slama and Sag-
gou (2017) investigated the Bayesian approach using HPD credibles sets and p-values for
detecting an abrupt change in the parameters of an AR(p). In a recent work, Gamage and
Ning (2021) proposed a nonparametric method based on the empirical likelihood is proposed
to detect the structural changes in the autoregressive parameters of autoregressive models.
In the last three works, the mean is assumed constant and equal to 0.

Bauwens et al. (2014) solved the problem of the computation of the marginal likelihood
for a Markov-switching GARCH or change-point GARCH models by applying a particle
Markov chain Monte Carlo (PMCMC) method. Recently, Romano et al. (2021) proposed a
principled approach to detect abrupt changes in mean in univariate time-series that models
local fluctuations as a random walk process and autocorrelated noise via an AR(1) process.
For a review of methods of inference for single and multiple change-points in time series, we
refer the reader to Jandhyala et al. (2013) and Truong et al. (2020).
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In this paper, we investigate a Bayesian detection of a change in any parameter, or in
any collection of parameters of an AR(p). We consider a Bayesian significance test for an
abrupt change at an unknown time point in the mean, the autocorrelation coe�cients and
the variance of the error terms of an AR(p). This work is an extension of the paper by Slama
and Saggou (2017) to the case where the mean is unknown and changes at an unknown time.

The rest of the paper is organized as follows. Section 2 presents the model AR(p) with
change in the parameters at an unknown time point and some notations used along this
paper. In Section 3 we give the conditional posterior distributions of the parameters of
change and Bayesian significance test of change in AR(p) model. In Section 4 we present a
simulation results with the application of the Gibbs sampler algorithm. A real data analysis
is provided in Section 5. Finally, our conclusion is presented in Section 6.

2. Definition of the Model and notations

Assume that we observe a real time series, y1, . . . , yn namely, generated from an AR(p)
model, with a change in the mean µ, the autocorrelation coe�cients „i and in the variance
‡

2 at an unknown time point m. The AR(p) model with structural change is given by

Yt ≠ µ1 =
pÿ

i=1

„i (Yt≠i ≠ µ1) + ‘t, t = 1, . . . , m, (1)

Yt ≠ µ2 =
pÿ

i=1

Âi (Yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)µ2) + ‘t, t = m + 1, . . . , m + p,

Yt ≠ µ2 =
pÿ

i=1

Âi(Yt≠1 ≠ µ2) + ‘t, t = m + p + 1, . . . , n,

where “t is the indicator function such that “t≠i = 1 if t ≠ i Æ m and “t≠i = 0 if t ≠ i > m.
‘t ≥ N(0, ‡

2

1
), for t = 1, . . . , m and ‘t ≥ N(0, ‡

2

2
), for t = m + 1, . . . , n. The parameters

µi œ R, ‡i > 0), for i = 1, 2, and „i, Âi, for i = 1, . . . , p, are assumed to be unknown, and m =
1, . . . , n ≠ 2 is the change point assumed also unknown. If „i ”= Âi for some i = 1, . . . , p, the
structure of the series has changed from an AR(p) model with coe�cient „i to another AR(p)
model with coe�cient Âi. We assume that the autoregressive parameters correspond to
stationary processes in the sense that the parameter vector „

(p) = („1, „2, . . . , „p) lies in the
stationary region �(p)

1
= {z/1≠„1z≠„2z

2≠· · ·≠„pz
p = 0}, which implies |z|> 1, and likewise

Â
(p) = (Â1, Â2, . . . , Âp) lies in the stationary region �(p)

2
= {z/1≠Â1z≠Â2z

2≠· · ·≠Âpz
p = 0},

which implies |z|> 1. The quantities y1≠p, . . . , y≠1, y0 are the initial observations assumed
to be stated.

The model given in Equation (1) is more general than the model considered in Slama and
Saggou (2017). In Slama and Saggou (2017), the mean µ is assumed to be constant and equal
to 0. Whereas, in Equation (1) the mean is assumed unknown and changes at an unknown
time point m, which increases the size of the parameter space. The parameter space for the
model given in Equation (1) is � = {◊ = (m, µ1, µ2, „1, „2, . . . , „p, Â1, . . . , Âp, r1, r2)}, where
ri = 1/‡

2

i , i = 1, 2, with m = 1, . . . , n ≠ 2, µ1, µ2 œ R, r1, r2 œ Rú
+

, and „i, Âi œ �(p), for
i = 1, . . . , p.
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We want to test whether or not a change-point occurs in the autoregressive param-
eters. Thus, we build an inference about testing the hypotheses: H0: ” = µ2 ≠ µ1 =
0 and flj = Âj ≠ „j = 0, ’j = 1, . . . , p and · = ‡

2

2
/‡

2

1
= 1, against H1: ” = µ2 ≠ µ1 ”=

0 or for at least one flj = Âj ≠ „j ”= 0, j = 1, . . . , p, or · = ‡
2

2
/‡

2

1
”= 1. Hence, under the

alternative hypothesis, there is a change in at least one of the 2p + 5 parameters at an
unknown time point. The proposed test is based on the posterior distribution of the shift
” = µ2 ≠ µ1, flj = Âj ≠ „j and of the ratio · = ‡

2

2
/‡

2

1
. The hypothesis meaning “no change”

is equivalent to H
Õ
0
: m = n and H1 is equivalent to H

Õ
1

: m ”= n.
For the rest of the paper, we consider the notations: „

(p) = („1, . . . , „p), Â
(p) =

(Â1, . . . , Âp), fl
(p) = (fl1, . . . , flp), „

(≠j) = („1, . . . , „j≠1, „j+1, . . . , „p) and fl
(≠j) =

(fl1, . . . , flj≠1, flj+1, . . . , flp), where flj = Âj ≠ „j , j = 1, . . . , p. The functional forms fi(·)
and fi(· | ·) represent a prior and a posterior distribution, respectively.

The parameter set ◊ = (m, µ1, µ2, „
(p)

, Â
(p)

, r1, r2), where ri = 1/‡
2

i , for i = 1, 2, is a
vector of dimension (2p + 5). The conditional likelihood function based on the observations
y = (y1, . . . , yn) is given by

l(y|◊) Ã r

m
2

1
r

n≠m
2

2
exp

Y
]

[≠r1

2

C
mÿ

t=1

(yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
D

2
Z
^

\ (2)

exp

Y
]

[≠r2

2

C m+pÿ

t=m+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi

1
yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)µ2

2D2
Z
^

\

exp

Y
]

[≠r2

2

S

U
nÿ

t=m+p+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi(yt≠i ≠ µ2)

T

V
2
Z
^

\ .

The conditional likelihood approach is based on the assumption that the initial observa-
tions y0, y≠1, . . . , y1≠p are also available (Reinsel, 1997). Moreover, if the sample size n is
su�ciently large, the first observation makes a negligible contribution to the total likelihood
(Hamilton, 1994).

3. Bayesian analysis

In this section, the conditional posterior distribution of the shift in the mean ”, in the
autocorrelation coe�cients flj , j = 1, . . . , p, of the variance ratio · and of the change point
m are derived. These distributions are used to define an unconditional Bayesian significance
test of change in the parameters of an AR(p).

Since prior knowledge of ◊
Õ = (µ1, µ2, r1, r2) is often vague or di�use, we employ a di�use

prior for ◊
Õ. Assume that the priors of the change-point m, of „

(p) and of Â
(p) are given by

fi(m) Ã 1
n ≠ 2; m = 1, . . . , n ≠ 2,

fi(„(p)) Ã constant in �(p)
,

fi(Â(p)) Ã constant in �(p)
,

where �(p) = �(p)

1
fl �(p)

2
.
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The parameters m, „
(p) and ◊

Õ being assumed independent. The prior distribution of ◊ is,
therefore, stated as

fi(◊) Ã 1
r1r2

, (3)

where m = 1, . . . , n ≠ 2, µ1, µ2 œ R, r1, r2 œ Rú
+

and „i, Âi œ �(p) for i = 1, . . . , p. The
posterior distribution of ◊, obtained by combination of Equations (2) and (3) is formulated
as

fi(◊|y) Ã r

m
2 ≠1

1
r

n≠m
2 ≠1

2
exp

Y
]

[≠r1

2

C
mÿ

t=1

(yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
D

2
Z
^

\

exp

Y
]

[≠r2

2

C m+pÿ

t=m+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi

1
yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)µ2

2D2
Z
^

\

exp

Y
]

[≠r2

2

S

U
nÿ

t=m+p+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi(yt≠i ≠ µ2)

T

V
2
Z
^

\ .

In the following, we give the joint posterior distribution of the parameter � =
(m, µ1, ”, „

(p)
, fl

(p)
, ·). By transforming the parameter set � = (m, µ1, µ2, „

(p)
, Â

(p)
, r1, r2)

into � = (m, µ1, ”, „
(p)

, fl
(p)

, ·), we can form the joint posterior distribution of �, that is, we
have

fi(� | y) =
⁄

r2
fi(m, µ1, ” + µ1, „1, fl

(p) + „
(p)

, r2·, r2/y) | r2 | dr2, (4)

·
m
2 ≠1

Y
]

[·

mÿ

t=1

A

yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
B

2

+
m+pÿ

t=m+1

A

yt ≠ ” ≠ µ1 ≠
pÿ

1

(fli + „i)(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
B

2

+
nÿ

t=m+p+1

A

yt ≠ ” ≠ µ1 ≠
pÿ

1

(fli + „i)(yt≠i ≠ ” ≠ µ1)
B

2
Z
^

\

≠ n
2

.

The posterior conditional distribution of ” is stated as follows. Equation (4) can be written
as

fi(� | y) Ã ·
m
2 ≠1

;
·SS1(m, µ1, „

(p)) + SS2(m, µ1, „
(p)

, fl
(p)) + �1

1
” ≠ ‚”

1
m, µ1, „

(p)
, fl

(p)

22
2
<≠ n

2
,

(5)
where

�1 =
m+pÿ

m+1

A

1 ≠
pÿ

1

(1 ≠ “t≠i)(fli + „i)
B

2

+ (n ≠ m ≠ p)
A

1 ≠
pÿ

1

(fli + „i)
B

2

,
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‚”(m, µ1, „
(p)

, fl
(p)) = �2/�1, with

�2 =
m+pÿ

m+1

(1 ≠ (1 ≠ “t≠i)(fli + „i))
A

yt ≠ µ1 ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ µ1

B

+
A

1 ≠
pÿ

i=1

(fli + „i)
B Q

a
nÿ

m+p+1

(yt ≠ µ1 ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ µ1)

R

b ,

and

SS1(m, µ1, „
(p)) =

mÿ

t=1

A

yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
B

2

, (6)

SS2(m, µ1, „
(p)

, fl
(p)) =

nÿ

t=m+1

A

yt ≠ µ1 ≠
pÿ

1

(fli + „i)(yt≠i ≠ µ)

B
2

≠ �2

2

�1

. (7)

Following the Bayes theorem, the conditional posterior distribution of ” is given by

fi(”|m, µ1, „
(p)

, fl
(p)

, ·, y) Ã

Y
]

[1 +
(” ≠ ‚”

1
m, µ1, „

(p)
, fl

(p)

2
)2

(n ≠ 1)S2
1
(m, µ1, „(p), fl(p), ·)

Z
^

\

≠ n
2

,

where S
2

1
(m, µ1, „

(p)
, fl

(p)
, ·) = (·SS1(m, µ1, „

(p)) + SS2(m, µ1, „
(p)

, fl
(p)))/((n ≠ 1)�1).

Given m, µ1, „
(p), fl

(p) and · , the conditional posterior distribution of ” is dis-
tributed as a Student-t distribution with location parameter ‚”(m, µ1, „

(p)
, fl

(p)), precision
S

2

1
(m, µ1, „

(p)
, fl

(p)
, ·) and (n ≠ 1) degrees of freedom. Equivalently, the quantity

T (”) =
” ≠ ‚”

1
m, µ1, „

(p)
, fl

(p)

2

S1

!
m, µ1, „(p), fl(p), ·

" ,

is distributed a posteriori as a conditional Student-t distribution with (n ≠ 1) degrees of
freedom.

The posterior conditional distributions of flj is formulated as follows. Equation (4) can
also be written as

fi(� | y) Ã ·
m
2 ≠1

I

�5j ≠
�2

4j

�3j
+ �3j

1
flj ≠ ‚flj

1
m, µ1, ”, „

(p)
, fl

(≠j)

22
2

J≠ n
2

,
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where, ‚flj

1
m, µ1, ”, „

(p)
, fl

(≠j)

2
= �4j/�3j , with

�3j =
m+pÿ

t=m+1

(yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1))2 +
nÿ

t=m+p+1

(yt≠j ≠ ” ≠ µ1)2 ;

�4j =
m+pÿ

m+1

Ë
yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1)

È

Ë
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
pÿ

i”=j

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
È

nÿ

m+p+1

[yt≠j ≠ ” ≠ µ1])
Ë
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ ” ≠ µ1) ≠
pÿ

i”=j

fli(yt≠i ≠ ” ≠ µ1)
È
;

�5j = ·

mÿ

t=1

1
yt ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ µ1)
22

+
m+pÿ

m+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

1

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
pÿ

i”=j

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1)
22

+
nÿ

m+p+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ ” ≠ µ1) ≠
pÿ

i”=j

fli(yt≠i ≠ ” ≠ µ1)
22

.

Following the Bayes theorem, the posterior conditional distribution of flj , for j = 1, . . . , p,
is given by

fi(flj |m, µ1, „
(p)

, ”, fl
(≠j)

, ·, y) Ã
I

1 + (flj ≠ ‚flj(m, „
(p)

, µ1, ”, fl
(≠j))2

(n ≠ 1)S2

2j(m, „(p), µ1, ”, fl(≠j), ·)

J≠ n
2

,

where

S
2

2j(m, „
(p)

, µ1, ”, fl
(≠j)

, ·) =
�5j ≠

�2

4j

�3j

(n ≠ 1)�3j
.

For j = 1, . . . , p, given m, µ1, „
(p), ”, fl

(≠j) and · , the conditional posterior distribution of
flj is distributed as a Student-t distribution with location parameter ‚flj(m, „

(p)
, µ1, ”, fl

(≠j)),
precision S2j(m, „

(p)
, µ1, ”, fl

(≠j)
, ·) and (n ≠ 1) degrees of freedom. Thereby, the quantity,

Sj(flj) = flj ≠ ‚flj(m, „
p
, µ1, ”, fl

(≠j))
S2(m, „(p), µ1, ”, fl(≠j), ·) ,

is distributed a posteriori as a conditional Student-t distribution with (n ≠ 1) degrees of
freedom.
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The posterior conditional distributions of · is expressed as follows. The integration of
Equation (5) with respect to ” gives the joint posterior distribution of m, µ1, „

(p), fl
(p) and

· by

fi(m, µ1, „
(p)

, fl
(p)

, · |y) Ã ·
m
2 ≠1�≠1/2

1

Ó
·SS1

1
m, µ1, „

(p)

2
+ SS2

1
m, µ1, „

(p)
, fl

(p)

2Ô≠ (n≠1)
2

,

(8)
by application of the Bayes theorem, the conditional posterior distributions of · is given by

fi (· |m, µ1, „1, fl, y) Ã ·
m
2 ≠1

Ó
·SS1(m, µ1, „

(p)) + SS2(m, µ1, „
(p)

, fl
(p))

Ô≠ (n≠1)
2

,

where SS1(m, µ1, „
(p)) and SS2(m, µ1, „

(p),fl(p)) are given in Equations (6) and (7), respec-
tively. Given m, µ1, „

(p), fl
(p), the quantity

F (·) = ·

SS1

1
m, µ1, „

(p)

2
/m

SS2(m, µ1, „(p), fl(p))/ (n ≠ m ≠ 1) ,

is distributed a posteriori as a conditional F distribution with (m, n ≠ m ≠ 1) degrees of
freedom.

The posterior conditional distribution of „j , for j = 1, . . . , p, is considered as follows. Still,
the formula in Equation (4) can be written as

fi(� | y) Ã ·
m
2 ≠1

I

�8j ≠
�2

7j

�6j
+ �6

1
„j ≠ ‚„j

1
m, µ1, ”, „

(≠j)
, fl

(p)

22
2

J≠ n
2

,

where

�6j = ·

mÿ

1

(yt≠j ≠ µ1)2 +
m+pÿ

m+1

(yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1))2

+
nÿ

m+p+1

(yt≠j ≠ ” ≠ µ1)2;

�7j = ·

mÿ

1

(yt≠j ≠ µ1)(yt ≠ µ1 ≠
ÿ

i”=j

„i(yt≠i ≠ µ1))

+
m+pÿ

m+1

(yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1))

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
ÿ

i”=j

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
2

+
nÿ

m+p+1

(yt≠j ≠ ” ≠ µ1)(yt ≠ ” ≠ µ1 ≠
pÿ

i=1

fli(yt≠i ≠ ” ≠ µ1) ≠
ÿ

i”=j

„i(yt≠i ≠ ” ≠ µ1));
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�8j = ·

mÿ

1

(yt ≠ µ1 ≠
ÿ

i”=j

„i(yt≠i ≠ µ1)2

+
m+pÿ

m+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
ÿ

i”=j

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
22

+
nÿ

m+p+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

fli(yt≠i ≠ ” ≠ µ1) ≠
ÿ

i”=j

„i(yt≠i ≠ ” ≠ µ1)
22

;

and ‚„j(m, µ1, ”, „
(j)

, fl
(p)) = �7/�6. Following the Bayes theorem, the posterior conditional

distribution of „j , for j = 1, . . . , p, is given by

fi(„j |m, fl
(p)

, µ1, „
(≠j)

, ”, ·, y) Ã
I

1 + („j ≠ ‚„j(m, fl
(p)

, µ1, „
(≠j)

, ”, ·))2

(n ≠ 1)S2

3j(m, fl(p), µ1, „(≠j), ”, ·)

J≠
n

2
,

where S
2

3j(m, fl
(p)

, µ1, „
(≠j)

, ”, ·) = (�8j ≠ �2

7j/�6j)/((n ≠ 1)�6j). For j = 1, . . . , p, given
m, µ1, „

(≠j), fl
(p), ”, and · , the conditional posterior distribution of „j is distributed

as a Student-t distribution with location parameter ‚„j(m, fl
(p)

, µ1, „
(≠j)

, ”, ·), precision
S3j(m, fl

(p)
, µ1, „

(≠j)
, ”, ·) and (n ≠ 1) degrees of freedom.

The posterior conditional distribution of µ1 is given next. We can write Equation (4) as

fi(� | y) Ã ·
m
2 ≠1

I

�11 ≠ �2

10

�9

+ �9

1
µ1 ≠ ‚µ1

1
m, „

(p)
, fl

(p)
, ”, ·

22
2

J≠ n
2

,

where

�9 = m·

A

1 ≠
pÿ

i=1

„i

B
2

+ (n ≠ m)
A

1 ≠
pÿ

i=1

(fli + „i)
B

2

;

�10 = ·(1 ≠
pÿ

i=1

„i)
mÿ

1

A

yt ≠
pÿ

i=1

„iyt≠i

B

+(1 ≠
pÿ

i=1

(fli + „i)
m+pÿ

m+1

A

yt ≠ ” ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ (1 ≠ “t≠i)”
B

(1 ≠
pÿ

i=1

(fli + „i))
nÿ

m+p+1

A

yt ≠ ” ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ ”)
B

;

�11 = ·

mÿ

1

A

yt ≠
pÿ

i=1

„iyt≠i

B
2

+
m+pÿ

m+1

A

yt ≠ ” ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ (1 ≠ “t≠i)”)
B

2

nÿ

m+p+1

A

yt ≠ ” ≠
pÿ

i=1

(fl + „i)(yt≠i ≠ ”)
B

2

;

and ‚µ1(m, „
(p)

, fl
(p)

, ”, ·) = �10/�9. By the Bayes theorem, the posterior conditional distri-
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bution of µ1 is given by

fi(µ1|m, „
(p)

, fl
(p)

, ”, ·, y) Ã
I

1 + (µ1 ≠ ‚µ1(m, „
(p)

, fl
(p)

, ”, ·))2

(n ≠ 1)S2
4
(m, fl(p), „(p), ”, ·)

J≠
n

2
,

where S
2

4
(m, fl

(p)
, „

(p)
, ”, ·) = (�11 ≠ �2

10
/�9)/((n ≠ 1)�9). Given m, „

(p), fl
(p), ” and · ,

the conditional posterior distribution of µ1 is distributed as a Student-t distribution with
location parameter ‚µ1(m, fl

(p)
, „

(p)
, ”, ·), precision S4(m, fl

(p)
, „

(p)
, ”, ·) and (n ≠ 1) degrees

of freedom.
The posterior conditional distributions of m is stated next. From the joint posterior distri-

bution of m, µ1, „
(p), fl

(p) and · given in Equation (8), the conditional posterior distributions
of m is given by

fi(m|µ1, „
(p)

, fl
(p)

, ·, y) Ã ·
m
2 ≠1�≠1/2

1

Ó
·SS1

1
m, µ1, „

(p)

2
+ SS2

1
m, µ1, „

(p)
, fl

(p)

2Ô≠ (n≠1)
2

,

where SS1(m, µ1, „
(p)) and SS2(m, µ1, „

(p),fl(p)) are given in Equations (6) and (7), respec-
tively.

Remark 1 As the degrees of freedom m and n ≠m ≠1 of F distribution are greater or equal
to 1, this implies that the change point m belongs to {1, n ≠ 2}.

The unconditional posterior distributions of T (”), Sj(flj), for j = 1, . . . , p, and F (·) are
given, respectively, by

fi(T (”)|y) =
ÿ

m

⁄

·

⁄

fl(p)

⁄

„(p)

⁄

µ1
fi(T (”)|m, µ1, „

(p)
, fl

(p)
, ·, y)fi(µ1|m, „

(p)
, fl

(p)
, ·, y) (9)

fi(„(p)|m, fl, „
(p)

, ·, y)fi(fl(p)|m, fl
(p≠1)

, ·, y)fi(· |m, y)fi(m|y)dµ1d„
(p)dfl

(p)d·,

fi(Sj(flj)|y) =
ÿ

m

⁄

·

⁄

”

⁄

fl(j)

⁄

„(p)

⁄

µ1
fi(Sj(flj)|m, µ1, „

(p)
, ”, ·, y)fi(µ1|m, „

(p)
, ”, ·, y) (10)

fi(„(p)|m, ”, ·, y)fi(fl(≠j)|m, fl
(p≠j)

, ”, ·, m)fi(”|m, ·, y)

fi(· |m, y)fi(m|y)dµ1d„
(p)dfl

(≠j)d”d·, j = 1, . . . , p,

fi(F (·)|y) =
ÿ

m

⁄

”

⁄

fl(p)

⁄

„(p)

⁄

µ1
fi(F (·)|m, µ1, „

(p)
, fl

(p)
, ”, y)fi(µ1|m, „

(p)
, fl

(p)
, ”, y) (11)

fi(„(p)|m, fl
(p)

, ”, y)fi(”|m, fl
(p)

, y)fi(fl(p)|m, fl
(p≠j)

, y)fi(m|y)dµ1d„
(p)dfl

(p)d”,

where

fi(fl(p)|—, fl
(p≠1)

, y) = fi(fl1|—, fl2, . . . , flp, y)fi(fl2|—, fl1, fl3, . . . , flp, y), . . . , fi(flp|—, fl1, . . . , flp≠1, y),
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and fi(fl(≠j)|—, fl
(p≠j)

, y) =

Y
___]

___[

fi(fl2|—, fl3, . . . , flp, y)fi(fl3|—, fl2, fl4, . . . , flp, y), . . . , fi(flp|—, fl2, . . . , flp≠1, y), j = 1;
fi(fl1|—, fl3, . . . , flp, y)fi(fl3|—, fl1, fl4, . . . , flp, y) . . . fi(flp|—, fl1, fl3, . . . , flp≠1, y), j = 2;
...

...
fi(fl1|—, fl2, . . . , flp≠1, y)fi(fl2|—, fl1, fl3, . . . , flp≠1, y), . . . , fi(flp≠1|—, fl1, fl2, . . . , flp≠2, y), j = p.

The null hypothesis H0 can be divided into p + 2 sub-hypotheses H01: ” = µ2 ≠ µ1 = 0,
H02j : flj = „j ≠ Âj = 0, and H03: · = ‡

2

2
/‡

2

1
= 1, and H0 could be rejected if either of these

p + 2 sub-hypotheses is rejected. The separation of the null into several sub-hypotheses
would be helpful to determine which parameters have been changed at time m. One defines
separately the HPD credible sets of T (”), Sj(flj) and F (·) based on conditional distributions.
The credible set are used to define the unconditional p-value and thereby an unconditional
test, the bayesian significance test of change in the parameters of autoregressive time series.

Given m, µ1, „
(p), fl

(p) and · the (1 ≠ –)-credible set for T (”) is defined as

C” =
Ó

T (”) | T (”)| < t–/2 (n ≠ 1)
Ô

,

where t–/2 (n ≠ 1)) is the 100(1 ≠ –/2)th quantile of a Student-t distribution with (n ≠ 1)
degrees of freedom. Hence, given m, µ1, „

(p), fl
(p) and · the decision rule for H01 is to reject

if T (0) œ C”, where C” is the complement of C”.
The unconditional p-value of the hypothesis H01 calculated from Equation (9) yields

P”=0|y = 2
ÿ

m

⁄

·

⁄

fl(p)

⁄

„(p)

⁄

µ1
{1 ≠ Tn≠1 (| T (0) |)} (12)

fi(m, µ1, „
(p)

, ”, fl
(p)

, · |y)dµ1d„
(p)dfl

(p)d·,

= 2EmE· Efl(p)Eµ1E„(p) {1 ≠ Tn≠1 (| t (0) |)} ,

The sub-hypothesis H01 is rejected unconditionally at – significance level if P”=0|y < –.
The unconditional p-value of the hypothesis H02j , for j = 1, . . . , p, calculated from Equa-

tion (10), is given by

Pflj=0|y = 2
ÿ

m

⁄

·

⁄

µ1

⁄

”

⁄

fl(≠j)

⁄

„(p)

⁄

µ1
{1 ≠ Tn≠1 (| Sj (0) |)} (13)

fi(m, µ1, „
(p)

, ”, fl
(≠j)

, · |y)dµ1d„
(p)dfl

(≠j)d”d·,

= 2EmE· Eµ1E”Efl(≠j)E„(p) {1 ≠ Tn≠1 (| t (0) |)} ,

where Tn≠1 is the cumulative distribution function of the Student-t distribution with (n ≠ 1)
degrees of freedom. For j = 1, . . . , p, the sub-hypothesis H02j is rejected unconditionally at
– significance level if Pflj=0|y < –. Where, the sub-hypothesis H02 is rejected unconditionally
at – significance level if

Pfl=0|y := min
1ÆjÆp

{Pflj=0|y} < –.
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Likewise, the unconditional p-value of H03 calculated from Equation (11) is stated as

P·=1|y = 2
ÿ

m

⁄

fl(p)

⁄

„(p)

⁄

µ1
{1 ≠ Fm,n≠m≠1[max (F (1), 1/F (1))]} (14)

fi

1
m, µ1, „

(p)
, fl

(p)|y
2
dµ1d„1dfl,

= 2EmEfl(p)E„(p)Eµ1 {1 ≠ Fm,n≠m≠1[max (F (1), 1/F (1))]} ,

where Fm,n≠m≠1 is the cumulative distribution function of the Fisher F distribution with
(m, n ≠ m ≠ 1) degrees of freedom. The sub-hypothesis H03 is rejected unconditionally
at – significance level if P·=1|y < –. Therefore, the null hypothesis H0 well be rejected
unconditionally at – significance level if min{P”=0|y, Pfl=0|y, P·=0|y} < –, and thus define the
bayesian significance test of change in the parameters of autoregressive time series AR(p)
of known order p. The test allows to test the change in the p + 2 parameters of the AR(p)
model in an individual way.

The notations Eµ1 , E„(p) , Efl(p) , Efl(≠j) , E”, E· and Em are the expectations taken with
respect to µ1, „

(p), fl
(p), fl

(≠j), ”, · , and m, respectively.
The quantities given in Equations (12), (13) and (14) are evaluated numerically by the

Gibbs sampler algorithm using the conditional posterior distributions given in Section 3.
The Gibbs sampler was introduced by Geman and Geman (1984) as a way of simulating

from high-dimensional complex distributions arising in image restoration, is a Markovian
updating scheme enabling one to obtain samples from a joint distribution via iterated sam-
pling from full conditional distributions. Although most applications of Gibbs sampler have
been in Bayesian models, it is also extremely useful in classical (likelihood) calculations
Casella and George (1992). In Bayesian framework, the common objective is to produce
posterior densities for, or estimate of, parameters of interest. The algorithm is also very
useful for the calculation of high dimensional integrals. Therefore, the use of Gibbs sampler
algorithm allows us to reduce in a huge way the calculation of complex high-dimensional
integration in Equations (12), (13) and (14). Detailed investigation of the Gibbs sampler
applied to general Bayesian calculation is given by Gelfand and Smith (1990), Gelfand et
al. (1990) and Gelfand (2000).

4. Simulation results

In this section we conduct a set of controlled simulation studies to evaluate the performance
of the proposed test presented in Section 3. We simulated a sample from the model given
in Equation (1) with p = 1, n = 200, m = 100, µ1 = 0.0, µ2 = 0.5, „1 = 0.3, „2 = ≠0.2,
‡

2

1
= 1.0 and ‡

2

2
= 0.5. The assumed values for y0 is 1. From these observations, by the

application of the Gibbs sampler algorithm with 10,000 repetitions, we approximate the
posterior density of the change point m, the posterior density of ”, the posterior density
of fl, of the variance ratio · and the unconditional p-values for the hypothesis H01: ” = 0,
H012: fl = 0 and H03: · = 1. The results are given in Tables 1-3.

Tables 1 and 2 list the posterior density of the change point at values around the true
value of m and the unconditional p-values for the sub-null-hypotheses H01, H02 and H03.
From Table 1, we can readily see that the posterior mode is equal to the true value of the
change point m. Based on the unconditional p-values given in Table 2 the no change in ”, fl

and · is obviously rejected at 1% significance levels, respectively.
Tables 3 summarize the posterior estimates of the parameters m, ”, fl and · . The estimates

for the parameters of the series in Figure 1 are generally close to the true values. Also, we
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Figure 1. Simulated observations yt.

Table 1. The posterior density of m.
m fi(m|y) m fi(m|y)
89 0.0000 100 0.2321
90 0.0017 101 0.1396
91 0.0040 102 0.0782
92 0.0304 103 0.0541
93 0.0404 104 0.0311
94 0.0368 105 0.0192
95 0.0551 106 0.0120
96 0.0313 107 0.0378
97 0.0214 108 0.0274
98 0.0363 109 0.0154
99 0.0368 110 0.0107

Table 2. The unconditional p-values of the hypothesis H01, H02 and H03.
Sub-null-hypothesis H01 H02 H03

p-values 4.8452 ◊ 10≠5 0.0027 0.0017

clearly see that, all the 95% HPD sets of the parameters contain the true value of all the
parameters.

Table 3. Posterior estimates of the parameters m, ”, fl and · .
Parameters True values Median Mean (SD) 2.5% 97,5%

m 100 100 100.56(4.9418) 92 111
” = µ2 ≠ µ1 0.5 0.4872 0.4869(0.1115) 0.2709 0.7098
fl = „2 ≠ „1 ≠0.5 ≠0.4230 ≠0.4239(0.1368) ≠0.6897 ≠0.1515
· = ‡

2

2
/‡

2

1
0.5 0.5023 0.5138(0.1129) 0.3291 0.7649

Figures 2-5 give the posterior distribution of the parameters m, ”, fl and · . They indicate
that the posterior mode is around the true values of the parameters. Thus, an estimate of
the true values of the parameters is given by the posterior mode of the respective posterior
distributions.
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Figure 2. Posterior density function of the change

point m.
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Figure 3. Histogram of posterior distribution of the

parameter ”.
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Figure 4. Histogram of posterior distribution of the

parameter fl.
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Figure 5. Histogram of posterior distribution of the

parameter · .

Furthermore, Table 4 presents the unconditional p-values of the sub-null-hypotheses H01,
H02 and H03 for n = 200, m = 100 and di�erent values of the parameters µ1, µ2, „1, „2,
‡

2

1
and ‡

2

2
. Several cases are considered, stability in one of the parameters and change in

the other two and in the last case the three parameters are stable (without change). The
results show that the p-values of sub-hypotheses corresponding to the stable parameters do
not allow to reject the corresponding sub-hypothesis. While, for the other sub-hypotheses
where the parameters exhibiting changes, the corresponding p values make it possible to
reject these sub-hypotheses at 5% significance level. For example, with µ1 = 0.0, µ2 = 0.5,
„1 = 0.3, „2 = 0.3 and ‡

2

1
= 1.0, ‡

2

2
= 0.5, the p-values P”=0|y and P·=1|y are respectively

0.0187 and 0.0146. Thus, the sub-hypotheses H01 and H03 are rejected at 5% significance
level. The p-value Pfl=0|y is 0.4134, therefore, the sub-hypothesis H02 cannot be rejected.
Note that the parameter „ is stable, that is, fl = „2 ≠ „1 = 0.

To study the performance of the Bayesian significance test for detecting structural changes
in the parameters of autoregressive AR(p), we simulated 1000 samples from the model given
in Equation (1) with p = 1 and di�erent values of n, m, µ1, µ2, „1, „2, ‡

2

1
and ‡

2

2
and

we computed the rejection rates (the number of times the hypothesis is rejected divided by
the total number of samples) of sub-hypotheses H01, H02 and H03 at 5% significance level.
The results are obtained by Gibbs sampler algorithm with 5000 repetitions and are given in
Table 5.

Table 5 illustrates that, for n = 100 and m = 50, the rejection rates of sub-hypotheses
H01, H02 and H03 are more than 60% at 5% level when the parameter exhibits a change,
while it is only 6.6% when the parameter is stable (without change). For example, for the



Chilean Journal of Statistics 61

set of parameters µ1 = 0.0, µ2 = 0.5, „1 = 0.3, „2 = 0.3 and ‡
2

1
= 1.0, ‡

2

2
= 0.5, the

rejection rate of the sub hypothesis H01 is 0.630, for H02 is 0.004 and for H03 is 0.711. We
note that the parameter „ is stable. For the last set of parameters, µ1 = 0.0, µ2 = 0.0,
„1 = 0.3, „2 = 0.3 and ‡

2

1
= 0.5, ‡

2

2
= 0.5, the three parameters are assumed to be stable,

the rejection rate of sub hypotheses H01, H02 and H03 are respectively 0.006, 0.009 and
0.066. Therefore, the test detects well the autoregressive parameters that are subjects to a
change.

It can be seen that the rejection rates of sub-hypotheses H01, H02 and H03 of AR(1)
model increases with the sample size. For n = 200, m = 100, µ1 = 0.0, µ2 = 0.5, „1 = 0.3,
„2 = 0.3 and ‡

2

1
= 1.0, ‡

2

2
= 0.5, the rejection rate of the sub-hypotheses H01, H02 and H03

of AR(1) are respectively 0.810, 0.018 and 0.877. However, they are respectively only 0.220,
0.007 and 0.516 for n = 50 and m = 25. Therefore, the sample size has a positive impact
on the Bayesian significance test of change in the parameters of autoregressive time series
models.

5. Application

In this section, we illustrate our test procedures using three data sets, which are the monthly
average soybean, corn and wheat prices achieved by farmers in Illinois from one January
1960 to one December 1984. The prices are given in dollars per bushel. The price yt is
observed each month from one January 1960 until one December 1984 with sample of 300
observations. Data used in this analysis cab be found in (https://farmdoc.illinois.edu/
decision-tools/illinois-average-farm-price-received-database). The sample size
is 300. The series are plotted in Figures 6 (a)-(c), Berkes et al. (2011) study two real data
sets. The first sample consists of monthly average corn prices and the second sample consists
of monthly average soybean prices achieved by farmers in Illinois from January 1960 to
November 2008. The results of their statistical test indicate that the changes from an AR(1)
to a threshold AR(1) occurred around July 1971 (Corn) and October 1974 (Soybeans).
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Figure 6. Monthly average for corn prices (a); Soybean prices (b) and wheat prices (c) from 1960 to 1984.

We are interested of wither there is any evidence for the existence of a change in the
parameter of AR(1) model. A visual inspection of this series in Figures 6(a)-(c) seem to
suggest that there might be a change in the parameters of the series. By application of the
Gibbs sampler algorithm with 10,000 repetitions we approximate the unconditional p-values
for the hypothesis H01 : ” = 0, H012 : fl = 0 and H03 : · = 1 and the posterior estimates of
the change point m. The results are given in Tables 6.

https://farmdoc.illinois.edu/decision-tools/illinois-average-farm-price-received-database
https://farmdoc.illinois.edu/decision-tools/illinois-average-farm-price-received-database
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Table 6. Unconditional p-values of the hypothesis H01, H02 and H03 and posterior mode and median of
change point m for monthly average for soybeans, for corn and for wheat prices.

Dataset mode median P”=0|y Pfl=0|y P·=1|y

Soybean 154 155 0.2001 0.0866 0.0220
Corn 155 155 0.3641 0.1066 0.0390

Wheat 163 163 0.2832 0.2809 0.0014

Table 6 shows some numerical results of the series of monthly average soybeans, corn and
wheat prices from one January 1960 to one December 1984. Posterior mode of the change
point m indicates that the changes occurred at time m = 154, that corresponds to around
October 1972 for Soybeans, at time m = 155, that corresponds to November 1972 for Corn
and at time m = 163, that corresponds to around July 1973 for Wheat. As, the smaller the
p-value, more the strength of the evidence against H0 is significant, the values of the p-values
indicate that there is evidence against the equality of the variances of the three series of
observations. Thus, the unconditional p-values P”=0|y, Pfl=0|y and P·=1|y of the hypotheses
H01, H02 and H03, respectively, indicate that the no change in the variance of the series of
Saybeans, Corn and Wheat is rejected at 5% significance level. While, the no change in the
mean cannot be rejected even at 20% significance level for the three crops. For the change
in the autocorrelation coe�cient it can be rejected at 10% significance level for Saybeans
and it can hardly be rejected at 10% significance level for Corn, and cannot be rejected even
at 20% significance level for Wheat. Consequently, the results in Table 6 indicate that the
prices of Soybeans, Corn and wheat have undergone a significant variation in the variance
parameter since October 1972 for Soybeans, since November 1972 for Corn and since July
1973 for Wheat. Period which corresponds to the beginning of the world food crisis of the
1970s (FAO (2009)), a time from mid-1972 to mid-1975 (Gerlach (2015)).

6. Conclusions, limitations, and future research
In this paper, we have investigated a Bayesian detection of change in the parameters of
an autoregressive process of known order p. The model is subjected to a change in p + 2
parameters, the mean, the variance of the error terms and the p autoregressive parameters
at an unknown time point. We derived the conditional posterior distributions of the change
point, of the magnitude of the shift in the mean, of the magnitude of the shift in the
autocorrelation coe�cients and of the variance ratio. An unconditional Bayesian significance
test of change based on the calculation of the p-values is determined. The test detects
separately the autoregressive parameters which are subject to a change at an unknown
time m. The Gibbs sampler algorithm is employed to estimate the model parameters. The
performance of the test has been investigated on simulated and real data sets. We showed
how inferences can be made readily by using the Bayesian significance test based on the
highest posterior density credible sets for detecting a change of an individual parameter of
autoregressive models. Also, we have showed the impact of the sample size on the Bayesian
significance test of change. We have illustrated the application of the methods using three
real datasets available in the literature. The datasets are the monthly average soybean, corn
and wheat prices achieved by farmers in Illinois from one January 1960 to one December
1984. Results obtained report the existence of a change point in all three datasets. The
change points obtained correspond exactly to the beginning of the food crisis which occurred
in the early 1970s. A possible limitation of the adopted approach might be associated with
the estimation of all the parameters of the model, a similar approach could be adopted
to estimate all the parameters to performance residual analysis. Moreover, it would be
interesting to extend the study to examine the problem of multiple structural change points
and to study the case where the order of the autoregressive model is unknown.
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Abstract

In the realm of astronomy, the two-parameter log-normal distribution has ominous im-

plications. In this article, we propose a new version of the two-parameter log-normal

distribution with an application to astronomical data. More precisely, a new modulat-

ing parameter is added to the two-parameter log-normal distribution through the use

of the Topp-Leone generator of distributions. The moments, quantile function, several

reliability measures, and other significant aspects of the proposed distribution are inves-

tigated. The maximum likelihood approach and a Bayesian technique are both utilized

to estimate the unknown parameters. In addition, we present a parametric regression

model and a Bayesian regression method. A simulation study is carried out to assess

the long-term performance of the estimators of the distribution parameters. Two real

datasets are employed to show the applicability of this new distribution. The e�ciency

of the newly added parameter is tested by utilizing the likelihood ratio test. The para-

metric bootstrap approach is also utilized to determine the adequacy of the suggested

model for the datasets.

Keywords: Bayesian estimation · bootstrapping · maximum likelihood estimation

· regression · simulation.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F15.

1. Introduction

In practice, the two-parameter log-normal (LN) distribution can be used to fit empirical
data in a variety of ways. This is especially true in the field of astronomy. Studies and re-
search have established evidence of an LN distributional characteristic for very high energy
emission of light curves from galaxies; for more information, see Abdalla et al. (2017). It
is also worth noting that the distribution of galaxy density contrast, which is a parame-
ter utilized in galaxy formation to indicate where there are local enhancements in matter

ú
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density, is roughly an LN distribution; whether the distribution of mass fluctuation from
the Dark Energy Survey, which is derived from weak lensing convergence in a similar way
to convex glass lenses, is an LN distribution is less clear. It was first identified by Hubble
(1934) that the distribution of galaxies in angular cells on the celestial sphere is well pre-
dicted by an LN distribution. Again, recently, Shah et al. (2018) and Shah et al. (2020)
elaborately highlighted the considered LN distributional behavior of the gamma-ray (“-ray)
flux distribution on the brightest blazars, which are observed by the Fermi-LAT, a space
observatory’s large area telescope (LAT) being used to perform “-ray. For more applications
of the LN distribution in the area of astrophysics and cosmology, one can go through the
articles by Bernardeau and Kofman (1994), Blasi et al. (1999) and Parravano et al. (2012).

Fundamental distributions occasionally fail to adequately characterize and anticipate the
vast majority of real-world datasets resulting from complicated processes. Because the qual-
ity of statistical analysis results is strongly dependent on the assumed model, choosing an
adaptive model for data analysis is critical. Therefore, more allied distributions must be
found in order to obtain better quality and more accurate results. Since the LN distribution
has superior importance in the field of astronomy, it is inevitable to derive new generalized
versions of the LN distribution, not only for modeling astronimocal data but also for the
variety of datasets from other study areas where the LN distribution has the best fit. Note
that the LN distribution has been utilized in a range of domains which includes most of the
applied areas such as economics, sociology, biology, and meteorology, to name just a few;
for more details, see Jobe et al. (1989).

There has recently been a boom in interest in the art of adding parameters to well-known
existing distributions in order to obtain diverse forms of hazard rate functions (HRFs) for
use in various real-life circumstances, as well as for evaluating data with a high degree of
skewness and kurtosis. Several researchers have started to build families of distributions
based on conventional distributions or using di�erent methodologies in order to generalize
any baseline distribution; for example, see Afify (2017). In this article, using a flexible
generalization technique that includes an additional shape parameter, we investigate a novel
lifetime distribution that is also a generalized version of the two-parameter LN distribution.
The aim is to uncover some of the suggested model’s statistical features and apply them
to real-world data. The main motivations for developing this lifetime model are: (i) to
propose a new flexible version of the LN distribution that can be used, particularly to
analyze astronomical data, because the LN distribution has eminent superiority in the field
of astronomy, as well as the ability to be applied to a broader class of reliability problems, (ii)
to extend both the LN and Topp-Leone distributions, and (iii) to investigate some additional
shapes of the HRF.

The remaining sections of the article are structured as follows. Section 2 reveals our dis-
tribution methodology. The specification of the new distribution is presented in Section 3.
In Section 4, its moments are calculated. The quantile function (QF) and some of its asso-
ciated measures are obtained in Section 5. The various functions and moments related to
the reliability measures are discussed in Section 6. In Section 7, the maximum likelihood
(ML) and Bayesian estimation techniques are employed to estimate the unknown param-
eters of the new model. Also, a parametric bootstrap method of simulation using the ML
estimates is presented in Section 8. A parametric regression model associated with the new
distribution is defined in Section 9. Again, a Bayesian regression method is presented in
Section 10. A simulation study is proposed in Section 11 to analyze the performance of
the ML estimators of the parameters. In Section 12, one univariate uncensored real dataset
based on an astronomical study, and one censored real dataset based on a cancer study are
evaluated to depict the potential of the new distribution over competing distributions. The
final concluding remarks are given in Section 13.
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2. Construction of the distribution

A simple bounded J-shaped distribution that has attracted various statisticians as an alter-
native to uniform(0,1) and beta distributions was proposed by Topp and Leone (1955). It is
called the Topp-Leone (TL) distribution. The cumulative distribution function (CDF) and
probability density function (PDF) of the TL distribution are respectively stated as

FTL(x; –) = [x(2 ≠ x)]–,

and

fTL(x; –) = 2–x
–≠1(1 ≠ x)(2 ≠ x)–≠1

, – > 0, x œ (0, 1).

It is worth mentioning that the TL distribution has a bathtub shaped HRF for all – < 1.
Later, Sangsanit and Bodhisuwan (2016) introduced the Topp-Leone generalized exponential
distribution, using the TL distribution as a generator distribution with application to the
maximum stress per cycle and breaking stress of carbon fiber datasets. Now, we consider
the method for generating new distributions, called the TX family, proposed by Alzaatreh
et al. (2013). The essence of the TX family is presented below. Let X be a continuous
baseline random variable with CDF FX , and T be a continuous generator random variable
of a distribution with support on [a, b] and CDF �. Then, the CDF of the TX family is
given by

FTX(x) = �[W (FX(x))], (1)

where W (FX(x)) œ [a, b] is di�erentiable and monotonically non-decreasing.
Considering the immense applicability of the TL and LN distributions, we propose to ap-

ply both the distributions in Equation (1), in which the LN distribution is the baseline and
the TL distribution is a generator distribution, and henceforth, we call the resulting distri-
bution the Topp-Leone log-normal (TLLN) distribution, which provides greater versatility
in modeling skewed datasets.

We also propose an entirely di�erent method to derive the new distribution. Sharma
(2018) proposed a new three-parameter distribution called the Topp-Leone normal (TLN),
which is defined on the entire real line and is ideal for modeling increasing HRF data. The
CDF of the TLN distribution is expressed as

FTLN(y) =
;

�
3

y ≠ µ

‡

4 5
2 ≠ �

3
y ≠ µ

‡

46<–

, y, µ œ , ‡, – > 0,

where � is the CDF of the standard normal distribution. Then, the random variable X = e
Y

follows the TLLN distribution with parameters –, µ and ‡.

3. Definition of the distribution

The definition of the new distribution, as well as several key features, are examined in this
section.
Definition 3.1 Let X be a random variable which follows the TLLN distribution with
parameters –, µ and ‡. Then, its CDF is given by

F (x) =
;

�
3 log(x) ≠ µ

‡

4 5
2 ≠ �

3 log(x) ≠ µ

‡

46<–

, (2)
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and its PDF is defined as

f(x) = 2–

‡x
„

3 log(x) ≠ µ

‡

4 5
1 ≠ �

3 log(x) ≠ µ

‡

46
◊

;
�

3 log(x) ≠ µ

‡

4 5
2 ≠ �

3 log(x) ≠ µ

‡

46<–≠1

,

(3)

where x > 0, µ œ and ‡, – > 0. Also, „ is the PDF of the standard normal distribution.
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Figure 1. Plots of the CDF of the TLLN distribution.

The plots in Figures 1 and 2 depict the corresponding CDF and PDF of the TLLN
distribution. We observe that the PDF may be decreasing and unimodal with a certain
flexibility in the mode and tails. It is, however, mainly right-skewed or almost symmetrical.
Next, some expansions for the CDF and PDF are provided. It is also interesting to note that
the TLLN distribution can be expressed as an infinite sum of exponentiated LN distributions
when – is a non-integer or as a finite sum when – is an integer. Indeed, the CDF of the
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Figure 2. Plots of the PDF of the TLLN distribution.

TLLN distribution in Equation (2) can be simplified as follows:

F (x) =
Œÿ

j=0

A
–

j

B

(≠1)j2–≠j
5
�

3 log(x) ≠ µ

‡

46–+j

because of the identity given by

(2 ≠ b)– =
Œÿ

j=0

A
–

j

B

(≠1)j2–≠j
b

j
,

for |b| < 2.
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Now, note that

[�(.)]–+j = [1 ≠ (1 ≠ �(.))]–+j =
Œÿ

k=0

A
– + j

k

B

(≠1)k[1 ≠ �(.)]k

=
Œÿ

k=0

kÿ

r=0

A
– + j

k

BA
k

r

B

(≠1)k+r[�(.)]r.

As a result, the CDF of the TLLN distribution takes the form

F (x) =
Œÿ

j=0

Œÿ

k=0

kÿ

r=0

Wj,k,r(–)
5
�

3 log(x) ≠ µ

‡

46r

,

where

Wj,k,r(–) =
A

–

j

BA
– + j

k

BA
k

r

B

(≠1)j+k+r2–≠j
.

Thus, the TLLN distribution can be expressed as the infinite sum of exponentiated LN
distributions indexed by the power parameter r. If the parameter – is an integer, the TLLN
distribution can be expressed as the finite sum of exponentiated LN distributions given as

F (x) =
–ÿ

j=0

–+jÿ

k=0

kÿ

r=0

Wj,k,r(–)
5
�

3 log(x) ≠ µ

‡

46r

.

Again, applying the series expansion in Equation (3), the PDF of the TLLN distribution
can be written as

f(x) = 2–

‡x
„

3 log(x) ≠ µ

‡

4 Œÿ

j=0

A
– ≠ 1

j

B

(≠1)j
5
1 ≠ �

3 log(x) ≠ µ

‡

462j+1

,

or

f(x) =
Œÿ

j=0

2j+1ÿ

k=0

b–(j, k)Âk(x), (4)

where

b–(j, k) = 2
A

– ≠ 1
j

BA
2j + 1

k

B
(≠1)j+k

k + 1 (5)

and

Âk(x) = k + 1
‡x

„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

is the PDF of the exponentiated LN distribution with power parameter k + 1.
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Remark 1 If x is fixed, the PDFs of the TLLN and LN distributions correspond when

– =
log

Ë
�

1
log(x)≠µ

‡

2È

log
Ó

�
1

log(x)≠µ
‡

2 Ë
2 ≠ �

1
log(x)≠µ

‡

2ÈÔ .

The proof is straightforward and omitted for the sake of brevity.

Lemma 3.2 For – = 1, the CDF of the TLLN distribution in Equation (2) becomes the
CDF of the transmuted LN distribution with transmuted parameter equals to 1.

Proof : To begin with, a retrospective on the transmuted distributions is necessary. Shaw
and Buckley (2009) introduced a new family of distributions called transmuted distributions,
and the general expression of its CDF is

FT (x) = (1 + ⁄)G(x) ≠ ⁄[G(x)]2, |⁄| Æ 1,

where G is the baseline CDF and ⁄ is called the transmuted parameter. Thus, the CDF of
the TLLN distribution can be written as

F (x) = 2�
3 log(x) ≠ µ

‡

4
≠

5
�

3 log(x) ≠ µ

‡

462

,

which is also the CDF of the transmuted LN distribution with ⁄ = 1. It is worth mentioning
that the transmuted LN distribution is not discussed in the available literature. Hence, one
may study its properties and applications in detail.

4. Moments

In this section, we derive the expression for the raw moments of the TLLN distribution. Let
m be a positive integer and X be a random variable following the TLLN distribution. The
mth raw moment of the TLLN distribution is then calculated using Equation (4) as

µ
Õ
m = E(Xm) =

Œÿ

j=0

2j+1ÿ

k=0

(k + 1)b–(j, k)µÕ
m,k, (6)

where

µ
Õ
m,k =

⁄ Œ

0

x
m≠1

‡
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx

is the probability-weighted moment of the LN distribution. In other words, the raw moments
of the TLLN distribution can be written as the weighted sum of the probability-weighted
moments of the LN distribution.

Remark 1 If – is an integer, then the mth raw moment of the TLLN distribution is directly
derived from Equation (6), and it is stated as

µ
Õ
m = E(Xm) =

–≠1ÿ

j=0

2j+1ÿ

k=0

(k + 1)b–(j, k)µÕ
m,k.
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5. Quantile function and associated measures

In this section, we derive an explicit expression for the QF of the TLLN distribution as well
as several of its associated measures.

Theorem 5.1 Let p œ (0, 1). Then, the pth quantile of the TLLN distribution is given by

Qp = F
≠1(p) = exp

5
µ + ‡�≠1

3
1 ≠

Ò
1 ≠ p1/–

46
, (7)

where �≠1 is the QF of a standard normal distribution.

Proof : For the TLLN distribution, Qp is the solution of the following equation:

;
�

3 log(Qp) ≠ µ

‡

4 5
2 ≠ �

3 log(Qp) ≠ µ

‡

46<–

= p

∆ 2�
3 log(Qp) ≠ µ

‡

4
≠

5
�

3 log(Qp) ≠ µ

‡

462

= p
1/–

. (8)

On simplifications, since p œ (0, 1), Equation (8) reduces to

5
1 ≠ �

3 log(Qp) ≠ µ

‡

462

= 1 ≠ p
1/–

∆ log(Qp) ≠ µ

‡
= �≠1

3
1 ≠

Ò
1 ≠ p1/–

4

∆ Qp = exp
5
µ + ‡�≠1

3
1 ≠

Ò
1 ≠ p1/–

46
.

Remark 1 Since �≠1 is the QF of the standard normal distribution, Qp in Equation (7) also
gets the form

Qp = exp
5
µ + ‡

Ô
2erf≠1

3
1 ≠ 2

Ò
1 ≠ p1/–

46
, (9)

where erf≠1 is the inverse error function.

By putting p = 1/2 in Equation (9), we get the median of the TLLN distribution, and it
is given by

M = Q0.5 = exp

S

Uµ + ‡

Ô
2erf≠1

Q

a1 ≠ 2

Û

1 ≠
31

2

4
1/–

R

b

T

V.

Equation (9) delivers the first and third quartiles of the TLLN distribution (Q0.25 and Q0.75)
for p = 1/4 and p = 3/4, respectively.
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6. Reliability measures

We derive the expressions for various reliability measures in this section. The HRF of the
TLLN distribution is expressed by

h(x) = f(x)
S(x) ,

where S(x) = 1 ≠ F (x) is the survival function of the TLLN distribution given by

S(x) = 1 ≠
;

�
3 log(x) ≠ µ

‡

4 5
2 ≠ �

3 log(x) ≠ µ

‡

46<–

.

Thus, the desired HRF gets the following form:

h(x) =
2–„

1
log(x)≠µ

‡

2 Ë
1 ≠ �

1
log(x)≠µ

‡

2È Ó
�

1
log(x)≠µ

‡

2 Ë
2 ≠ �

1
log(x)≠µ

‡

2ÈÔ–≠1

‡x

Ë
1 ≠

Ó
�

1
log(x)≠µ

‡

2 Ë
2 ≠ �

1
log(x)≠µ

‡

2ÈÔ–È .

Also, plots in Figure 3 refer to the shapes of the HRF and show that the TLLN distribution
possesses increasing, decreasing, and upside-down bathtub shapes. Also, as seen in Figure 3,
the distribution has a new decreasing-increasing-decreasing shape that we call the inverted
N-shaped HRF, as well as a special shape that starts with a flat region and continues with
an increasing-decreasing shape that we call the constant-increasing-decreasing shaped HRF.

Let r be a positive integer and X be a random variable following the TLLN distribution.
Then, the rth conditional moment of the TLLN distribution is stated as

E(Xr|X > t) = 1
S(t)

⁄ Œ

t
x

r
f(x)dx

= 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

3
k + 1

‡

4
b–(j, k)I1(r, k), (10)

where b–(j, k) is given in Equation (5) and I1(r, k) is formulated as

I1(r, k) =
⁄ Œ

t
x

r≠1
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx. (11)

It is worth mentioning that the rapid aging of a component requires low vitality, whereas
high vitality implies relatively slow aging during the given time period.

For r = 1, Equation (10) gives the vitality function of the TLLN distribution, which is

V (t) = E(X|X > t) = 1
S(t)

⁄ Œ

t
xf(x)dx

= 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

3
k + 1

‡

4
b–(j, k)I1(1, k), (12)

where I1(1, k) is obtained by putting r = 1 in Equation (11), and is given by

I1(1, k) =
⁄ Œ

t
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx.
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Figure 3. Plots of the HRF of the TLLN distribution.

If X is a random variable representing a component’s lifetime, then log(G(t)) =
E(log(X)|X > t) represents the ideal geometric mean of the lifetimes of components that
have survived up to time t. The geometric vitality function of the TLLN distribution is
stated as

log(G(t)) = 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

(k + 1)b–(j, k)I2(k),

where I2(k) can be expressed as

I2(k) =
⁄ Œ

t

log(x)
‡x

„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx.

The concept of residual life is of special interest in reliability theory. It measures the amount
of time a unit has left after reaching the age of t. The rth order moment of the residual life
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of the TLLN distribution is defined as

µr(t) = E [(X ≠ t)r|X > t] = 1
S(t)

⁄ Œ

t
(x ≠ t)r

f(x)dx

= 1
S(t)

rÿ

i=0

A
r

i

B

(≠1)r≠i
t
r≠i

I1(i, k),

where I1(i, k) is given in Equation (11). Now, by taking r = 1, we get the expression for the
mean residual life (MRL) function, which also gets the form

µ1(t) = V (t) ≠ t,

where V (t) is given in Equation (12). Similarly, the second moment of the residual lifetime
of the TLLN distribution is stated as

µ2(t) = 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

3
k + 1

‡

4
b–(j, k)I1(2, k) ≠ 2tV (t)

S(t) + t
2
,

where I1(2, k) is defined as

I1(2, k) =
⁄ Œ

t
x„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx.

Thus, the variance of the residual life function of the TLLN distribution can be obtained
using µ1(t) and µ2(t). The rth order moment of the reversed residual life of the TLLN
distribution is formulated as

mr(t) = E [(t ≠ X)r|X Æ t] = 1
F (t)

⁄ t

0

(t ≠ x)r
f(x)dx

= 1
F (t)

rÿ

i=0

A
r

i

B

(≠1)i
t
r≠i [µÕ

i ≠ I1(i, k)] , (13)

where I1(i, k) is given in Equation (11). Now, the mean m1(t) and second moment m2(t)
of the reversed residual life of the TLLN distribution can be obtained by setting r = 1 and
r = 2, respectively, in Equation (13). Again, using m1(t) and m2(t), one can obtain the
variance of the reversed residual life function of the distribution.

7. Estimation of the parameters

In this section, we discuss how to estimate the parameters of the TLLN distribution utilizing
two well-known methods, namely the maximum likelihood (ML) method and the Bayesian
method. Next, we consider the ML estimation for the TLLN model parameters –, µ and
‡. Let X1, . . . , Xn represent a random sample from the TLLN distribution, and x1, . . . , xn

represent the observed values. Then, the log-likelihood function can then be written in the
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following form:

Ln =
nÿ

i=1

log[f(xi)]

= n log(2) + n log(–) ≠ n log(‡) ≠
nÿ

i=1

log(xi) +
nÿ

i=1

log
5
„

3 log(xi) ≠ µ

‡

46

+
nÿ

i=1

log
5
1 ≠ �

3 log(xi) ≠ µ

‡

46
+ (– ≠ 1)

nÿ

i=1

log
5
�

3 log(xi) ≠ µ

‡

46

+ (– ≠ 1)
nÿ

i=1

log
5
2 ≠ �

3 log(xi) ≠ µ

‡

46
.

The ML estimates of (–, µ, ‡) are (‚–, ‚µ, ‚‡) = argmax(–,µ,‡)Ln. We can formulate them
by using nonlinear log-likelihood equations. First, the score function associated with the
log-likelihood function is

U =
3

ˆLn

ˆ–
,
ˆLn

ˆµ
,
ˆLn

ˆ‡

4€
.

The associated nonlinear log-likelihood equations are U = (0, 0, 0)€, that is,

n

–
+

nÿ

i=1

log
5
�

3 log(xi) ≠ µ

‡

46
+

nÿ

i=1

log
5
2 ≠ �

3 log(xi) ≠ µ

‡

46
= 0, (14)

nÿ

i=1

log(xi) ≠ µ

‡2
+ 1

‡

nÿ

i=1

„

1
log(xi)≠µ

‡

2

1 ≠ �
1

log(xi)≠µ
‡

2 ≠ – ≠ 1
‡

nÿ

i=1

„

1
log(xi)≠µ

‡

2

�
1

log(xi)≠µ
‡

2

+ – ≠ 1
‡

nÿ

i=1

„

1
log(xi)≠µ

‡

2

2 ≠ �
1

log(xi)≠µ
‡

2 = 0 (15)

and

≠ n

‡
+

nÿ

i=1

(log(xi) ≠ µ)2

‡3
+
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i=1

1
log(xi)≠µ

‡2

2
„

1
log(xi)≠µ

‡

2

1 ≠ �
1

log(xi)≠µ
‡

2

≠ – ≠ 1
‡2

nÿ

i=1

(log(xi) ≠ µ)„
1

log(xi)≠µ
‡

2

�
1

log(xi)≠µ
‡

2

+ – ≠ 1
‡2

nÿ

i=1

(log(xi) ≠ µ)„
1

log(xi)≠µ
‡

2

2 ≠ �
1

log(xi)≠µ
‡

2 = 0. (16)
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Solving the nonlinear Equations (14), (15) and (16) synergistically, one can obtain the ML
estimates. For known µ and ‡, the ML estimate of – is given by

‚– = ≠ n

qn
i=1

log
Ë
�

1
log(xi)≠µ

‡

2È
+

qn
i=1

log
Ë
2 ≠ �

1
log(xi)≠µ

‡

2È .

The asymptotic confidence intervals (CIs) for the parameters –, µ and ‡ are now executed.
On taking the second partial derivatives of Equations (14), (15) and (16) taken at the ML
estimates, the observed Hessian matrix of the TLLN distribution can be obtained, and it is
given by

‚H =

Q

ccccccccccca

ˆ
2Ln

ˆ–2

ˆ
2Ln

ˆ–ˆµ

ˆ
2Ln

ˆ–ˆ‡

ˆ
2Ln

ˆµˆ–

ˆ
2Ln

ˆµ2

ˆ
2Ln

ˆµˆ‡

ˆ
2Ln

ˆ‡ˆ–

ˆ
2Ln

ˆ‡ˆµ

ˆ
2Ln

ˆ‡2

R

dddddddddddb

-----------------
(–,µ,‡)=(‚–,‚µ,‚‡)

.

Now, the observed Fisher’s information matrix ‚J is obtained as ‚J = ≠ ‚H. The inverse of this
matrix provides the variance-covariance matrix of the ML estimators, which can be written
as

‚� = ‚J≠1 =

Q

ca

‚�11
‚�12

‚�13

‚�21
‚�22

‚�23

‚�31
‚�32

‚�33

R

db ,

and ‚�ij = ‚�ji for i ”= j = 1, 2, 3. The asymptotically normal distribution of the ML
estimators has been thoroughly established. The random version of ‚� = (‚–, ‚µ, ‚‡) follows
the multivariate normal distribution N3(�, ‚�), where � = (–, µ, ‡). Thus, we obtain 100 ◊
(1 ≠ ”)% asymptotic CIs of the parameters using the following formulae:

I– =
5

‚– û ‚”/2

Ò
‚�11

6
, Iµ =

5
‚µ û ‚”/2

Ò
‚�22

6
, I‡ =

5
‚‡ û ‚”/2

Ò
‚�33

6
,

where ‚” is the upper ”th percentile of the standard normal distribution. Next, we perform
the Bayesian analysis for the TLLN model parameters. To do so, each parameter must have
a prior distribution. We employ two types of priors for this: the half-Cauchy (HC) and
the classical normal (N) priors. The PDF of the HC distribution with scale parameter a is
defined as

fHC(x) = 2a

fi(x2 + a2) , x > 0, a > 0. (17)

The HC distribution is known to have no mean or variance. Meanwhile, its mode is equal to
0. Since the PDF of the HC distribution is virtually flat but not totally flat at scale value
equals 25, which verges on acquiring adequate information for the numerical approximation
algorithm to continue looking at the target posterior distribution, the HC distribution with
scale parameter equals 25 is recommended as a non-informative prior. According to Gelman
and Hill (2006), the uniform distribution, or whether more information is required, is a
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superior alternative to the HC distribution. As a result, for the parameters – and ‡, the
HC distribution with a scale parameter equaling 25 was chosen as a non-informative prior
distribution in this study. Thus, we set the prior distributions of the parameters to be

µ ≥ N(0, 1000), –, ‡ ≥ HC(25). (18)

Thus, using Equation (18), we obtain the joint posterior PDF as given by

fi(µ, –, ‡|x) Ã Ln ◊ fi(µ) ◊ fi(–) ◊ fi(‡), (19)

where Ln is the likelihood function of the TLLN distribution. From Equation (19), it is
obvious that there is no analytical solution to find out the Bayesian estimates. Thus, we use
a remarkable method of simulation, namely the Metropolis-Hastings (MH) algorithm of the
Markov Chain Monte Carlo (MCMC) method. Upadhyay et al. (2001) provides a thorough
description of the MCMC approach.

8. Bootstrap confidence intervals

In this section, we utilize the parametric bootstrap method to approximate the distribution
of the ML estimators of the TLLN model parameters. Then, we can employ the bootstrap
distribution to estimate each parameter’s CIs for the fitted TLLN distribution. Let ‚� be
the ML estimate of �, where � œ (–, µ, ‡), using a given dataset {x1, x2, . . . , xn}. The
bootstrap is a method to estimate the distribution of the statistic ‚� by getting a random
sample �ú

1
, �ú

2
, . . . , �ú

B for � based on B random samples that are drawn with replacement
from the original data x1, x2, . . . , xn. Thus, the bootstrap sample �ú

1
, �ú

2
, . . . , �ú

B can be used
to construct bootstrap CIs for –, µ and ‡.

Thus, using the following formulae, we calculate the 100 ◊ (1 ≠ ”)% bootstrap CIs for the
parameters:

I– =
Ë

‚– û z”/2
„SE–,boot

È
, Iµ =

Ë
‚µ û z”/2

„SEµ,boot

È
, I‡ =

Ë
‚‡ û z”/2

„SE‡,boot

È
.

where z” denotes the ”th percentile of the bootstrap sample, SE is the standard error, and,
for � œ {–, µ, ‡},

„SE�,boot =

ı̂ııÙ 1
B

Bÿ

b=1

A

�ú
b ≠ 1

B

Bÿ

b=1

�ú
b

B2

.

9. TLLN regression model

In this section, we define a regression model based on the TLLN distribution, called the
TLLN regression model.

To begin, consider a random variable X following the TLLN distribution with PDF given
in Equation (3), as well as the random variable Y defined by Y = log(X). Then, Y has the
following PDF:

fY (y) = 2–

‡
„

3
y ≠ µ

‡

4 5
1 ≠ �

3
y ≠ µ

‡

46 ;
�

3
y ≠ µ

‡

4 5
2 ≠ �

3
y ≠ µ

‡

46<–≠1

,

y œ , µ œ , –, ‡ > 0. (20)
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We refer to Equation (20) as the log-Topp-Leone log-normal (log-TLLN) distribution, or
otherwise, the Topp-Leone normal (TLN) distribution, which is given by Sharma (2018). In
this setting, the standardized random variable Z = (Y ≠ µ)/‡ has the PDF given by

fZ(z) = 2–„(z) [1 ≠ �(z)] {�(z) [2 ≠ �(z)]}–≠1
. (21)

Now, linear location-scale regression model linking the response variable yi and the explana-
tory variable vector v

€
i = (vi1, . . . , vip), is obtained as

yi = µi + ‡zi, i = 1, . . . , n, (22)

where zi is the random error component that has the PDF in Equation (21), µi = v€
i · is

the location parameter of yi, where · = (·1, . . . , ·p)€, – and ‡ are unknown parameters.
The location parameter vector µ = (µ1, . . . , µn)€ is represented by a linear model µ = V · ,
where V = (V1, . . . , Vn)€ is a known model matrix. Ultimately, in this study, we propose
the TLLN regression model from Equation (22) and it is given by

xi = e
yi = e

µi+‡zi , i = 1, . . . , n. (23)

Consider a sample (x1, v1), . . . , (xn, vn) of n independent observations. Conventional like-
lihood estimation techniques can be applied here. Now, for the vector of parameters
Â = (· €

, –, ‡)€ from model (23), the total log-likelihood function for right censored has
the form

l(Â) =
nÿ

i=1

”i log [f(xi)] +
nÿ

i=1

(1 ≠ ”i) log [S(xi)] ,

with ”i = 1, if survival (uncensored) and ”i = 0, if not (censored). We recall that, for
i = 1, . . . , n, f(xi) and S(xi) are the PDF and survival function of the TLLN distribution
taken at xi, respectively.

10. Bayesian regression method

The Bayesian technique has been shown to be particularly e�ective in analyzing survival
models in many practical circumstances. Hence, in this section, we look at how the Bayesian
approach fits the regression model based on the TLLN distribution when prior pieces of
information about the parameters are taken into account. As a result, we use a simulation
method in this part for Bayesian analysis of this model. Now, to perform a Bayesian analysis,
one should adopt prior distributions for the parameters. Here, as described previously, we
utilize the HC and N priors. The PDF of the HC distribution with a as the scale parameter
is given in Equation (17). Now, we write the right censored likelihood function as

L =
nŸ

i=1

[f(xi)]”i [S(xi)]1≠”i
, (24)

with ”i = 1, if survival (uncensored) and ”i = 0, if not (censored).

µ = V · (25)
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as a linear combination of explanatory variables. Thus, we set the prior distributions of the
parameters to be

·j ≥ N(0, 1000), j = 1, . . . , J, –, ‡ ≥ HC(25). (26)

Now, using Equations (24), (25) and (26), the joint posterior PDF is obtained as

fi(·, –, ‡|x, V ) Ã L(x|V, ·, –, ‡) ◊ fi(·) ◊ fi(–) ◊ fi(‡). (27)

From Equation (27), it is clear that the analytical solution is not possible to find out the
Bayesian estimates. As a result, we employ the simulation approach, specifically the MH
algorithm of the MCMC method.

11. Performance of the estimators using simulations

In this section, we conduct simulation experiments to assess the long-run performance of the
ML estimators of the TLLN model parameters for some finite sample sizes. We simulated
datasets of sizes n = 60, 100, and 250 from the TLLN distribution for the parameter values
– = 0.5, µ = 0.9, ‡ = 0.6 and iterated each sample 500 times. The average bias and MSE
for all replications in the relevant sample sizes are then computed. That is, the analysis
computes the values using the given formulae.

Table 1. Estimates, average bias and MSE values of ML estimators from simulations of the TLLN distri-

bution.

Parameters Sample Size Estimates Bias MSE
– 60 1.7496 1.2496 67.9030

100 1.0114 0.5114 6.3232
250 0.5792 0.0792 0.1677

µ 60 0.8240 -0.0760 0.3754
100 0.8491 -0.0509 0.2180
250 0.8873 -0.0127 0.0504

‡ 60 0.5520 -0.0480 0.1350
100 0.5811 -0.0189 0.0849
250 0.5916 -0.0084 0.0229

• Average bias of the simulated estimates = 1
500

500q
i=1

(‚�i ≠ �),

• Average MSE of the simulated estimates = 1
500

500q
i=1

(‚�i ≠ �)2
,

where ‚�i represents the estimate of � œ {–, µ, ‡} at the ith replication. The results are
reported in Table 1. It can be concluded that the MSEs of all the estimates decrease with
increasing sample size. This shows the consistency of the estimates.

12. Applications and empirical study

This section consists of demonstrating the empirical importance of the TLLN distribution.
We use a real dataset from the area of astronomy to compare the data modeling ability of the
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TLLN distribution with other competitive distributions. We employ the RStudio software
for numerical evaluations of these datasets. The descriptive measures, which include sample
size (n), mean (M), median (Md), variance (Var), skewness (Sk), kurtosis (Ku), minimum
(min) and maximum (max) values of the dataset, are given in Table 2.

Table 2. Descriptive statistics of the astronomical dataset.

Statistic n M Md Var Sk Ku min max
Values 360 14.458 14.54 1.427 -0.395 0.344 10.749 18.052

To show the potential advantage of the TLLN distribution, the following distributions are
considered for comparison.

• The two-parameter LN distribution with PDF

f(x) = 1Ô
2fi‡x

exp
C

≠(log(x) ≠ µ)2

2‡2

D

, x > 0, µ œ , ‡ > 0.

• The exponentiated LN (ELN) distribution with PDF

f(x) = –

x‡
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46–≠1

, x > 0, µ œ , –, ‡ > 0.

• The generalized half-normal (GHN) distribution (see Cooray and Ananda, 2008) with
PDF

f(x) =
Ú

2
fi

3
–

x

4 3
x

‡

4–

exp
I

≠1
2

3
x

‡

4
2–

J

, x, –, ‡ > 0.

• The exponentiated exponential distribution (EED) with PDF

f(x) = –‡
!
1 ≠ e

≠‡x"–≠1
e

≠‡x
, x, –, ‡ > 0.

• The new generalized Lindley distribution (NGLD) (see Elbatal et al., 2013) with PDF

f(x) = e
≠µx

1 + µ

A
µ

–+1
x

–≠1

�(–) + µ
‡
x

‡≠1

�(‡)

B

, x > 0, –, µ, ‡ > 0,

where �(–) denotes the standard gamma function.
• The gamma distribution.
For the numerical optimization, we maximize the log-likelihood function to find the ML
estimates. For fixing a lower and upper bound for each parameter, the numerical opti-
mization technique L-BFGS-B in fitdistrplus package of R is used. For more infor-
mation and detailed examples of this package, one should go through the link https:
//CRAN.R-project.org/package=fitdistrplus.

The following statistical tools are utilized in order to compare the competitive models
with the proposed models: negative log-likelihood (≠ log(L)), Kolmogorov-Smirnov (KS),
Cramér-von Mises (W ú), Anderson-Darling (Aú) statistics, Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values.

We also investigate the empirical HRF for the astronomical dataset using the idea of
a total time on test (TTT) plot. It is a graphical representation being used to distinguish

https://CRAN.R-project.org/package=fitdistrplus
https://CRAN.R-project.org/package=fitdistrplus
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between several types of aging as displayed in the HRF shapes. On the mathematical aspect,
the TTT plot is drawn by plotting

T

3
i

n

4
=

iq
r=1

xr:n + (n ≠ i)xi:n

nq
r=1

xr:n

.

against i/n, where i = 1, . . . , n and x1:n, x2:n, . . . , xn,n are the order statistics of the sample.
We also present other important graphs, which consist of the empirical CDF and quantile-
quantile (Q-Q) plots for the dataset. We utilize the magnitudes of the near-infrared K-band
distribution of 360 globular cluster luminosities in Messier 31 (M31), our nearby Andromeda
Galaxy, as an astronomical dataset. The data are from Nantais et al. (2006), and the samples
are described in detail in Appendix C.3 of Feigelson and Babu (2012), as well as in the
R package astrodatR. Note that, the K-band is an atmospheric transmission window in
infrared astronomy, referring to an area of the infrared spectrum where atmospheric gases
absorb relatively little terrestrial heat radiation. Furthermore, globular clusters are densely
packed groups of 104 to 106 ancient stars packed into a dense, roughly spherical shape that
is structurally unique from the general population of stars. Astronomers can use them to
determine the age of the universe or to locate the Galactic Center by studying them. The
TTT plot in Figure 4 indicates that this dataset has an increasing HRF shape, which is also
a characteristic of the TLLN model.
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Figure 4. The TTT plot of astronomical dataset.

Next, we present results for the univariate dataset.
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Table 3. Astronomical dataset: ML estimates and GOF statistics results.

Model ML estimate -log(L) AIC BIC KS W
ú

A
ú

TLLN ‚– = 0.2694 571.7256 1149.451 1161.110 0.0621 0.2083 1.2120
‚µ = 2.7796
‚‡ = 0.0601

LN ‚µ = 2.6677 582.5224 1169.045 1176.817 0.0774 0.5396 3.2814
‚‡ = 0.0847

ELN ‚– = 0.1070 573.2549 1152.510 1164.168 0.0657 0.2517 1.4640
‚µ = 2.7826
‚‡ = 0.0371

GHN ‚µ = 9.8248 592.761 1189.522 1197.294 0.0753 0.6212 4.1150
‚‡ = 15.2179

EXPPL ‚– = 1.8821 605.6499 1217.300 1228.958 0.1096 1.2230 7.3301
‚µ = 136.4388
‚‡ = 0.0491

EED ‚– = 44847.58 624.776 1253.552 1261.324 0.1293 1.7963 10.8203
‚‡ = 0.7740

NGLD ‚– = 137.9676 579.4283 1164.857 1176.515 0.0754 0.4665 2.8083
‚µ = 9.5441
‚‡ = 138.2696

Gamma ‚– = 142.2090 579.3487 1162.697 1170.470 0.0722 0.4406 2.7088
‚‡ = 9.8355

Table 3 displays the ML estimates and goodness-of-fit (GOF) statistics of the distributions
corresponding to the astronomical dataset. The TLLN distribution’s GOF statistics values
are smaller than those of the other compared distributions. The empirical CDF and Q-
Q plots for the dataset are given in Figure 5. The proposed distribution gives acceptable
shaped curves for those empirical and fitted functions. As a result, we conclude that the
TLLN distribution is superior to the other compared distributions for the astronomical
dataset.
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Figure 5. Empirical plots on the astronomical dataset.
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Now, the Hessian matrix corresponding to the astronomical dataset is obtained as

„H =

Q

a
4960.117 21162.32 ≠35812.03
13376.538 57566.52 ≠72436.86

≠35812.031 ≠72436.86 296223.69

R

b ,

and the corresponding estimated variance-covariance matrix is

‚� =

Q

a
0.0105 ≠0.0012 9.72 ◊ 10≠04

≠0.0012 0.0002 ≠1.07 ◊ 10≠04

0.0009 ≠0.0001 9.49 ◊ 10≠05

R

b .

Table 4 provides the 95% asymptotic CIs for the TLLN model parameters.

Table 4. The 95% asymptotic CIs of the TLLN model parameters based on the astronomical dataset.

Parameter Lower Upper
– 0.0685 0.4703
µ 2.7543 2.8049
‡ 0.0410 0.0792

Here, we focus on estimating the parameters of the TLLN distribution using the Bayesian
procedure based on the above-discussed univariate astronomical dataset. In the context
of Bayesian estimation, the analysis is performed using the MH algorithm of the MCMC
method with 1000 iterations. For comparing Bayes estimates with the ML estimates, both of
them for the TLLN model parameters for the real dataset are given in Table 5. The numerical
computations for Bayesian estimation are done using the LaplacesDemon package of the R
software, which provides a comprehensive environment for Bayesian inference. For more
detailed information and examples regarding this package, one should go through the link
https://cran.r-project.org/package=LaplacesDemon.

Table 5. ML and Bayes estimates of the TLLN model parameters on the astronomical dataset.

Parameter ML Bayes
– 0.2694 0.2811
µ 2.7796 2.7791
‡ 0.0601 0.0602

Using the previously discussed astronomical dataset, we construct the 95% bootstrap
for the parameters –, µ, and ‡ using the computed ML estimates. Based on the TLLN
distribution, we simulate 1001 samples of the same size as the real dataset, with true values
of the parameters chosen as the ML estimate of the respective parameters. For each sample
obtained, we compute the ML estimates ‚–ú

b , ‚µú
b and ‚‡ú

b , for b œ {1, . . . , 1001}. Table 6
displays the median and 95% bootstrap CI for the parameters –, µ and ‡ of the dataset.
Examining the joint distribution of the bootstrapped values in a matrix of scatter plots to
assess the potential structural correlation among the parameters is also noteworthy. Figure 6
displays the matrix scatterplots of the bootstrapped values of the TLLN model parameters,
which depict the joint uncertainty distribution of the fitted parameters.

https://cran.r-project.org/package=LaplacesDemon
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Table 6. The median and 95% bootstrap CI for the TLLN model parameters on the astronomical dataset.

Parameter Median Bootstrap CI
– 0.2695 (0.0878, 0.6941)
µ 2.7792 (2.7415, 2.8087)
‡ 0.0609 (0.0373, 0.0881)

α
2.
72

2.
76

2.
80

0.0 0.4 0.8

2.72 2.76 2.80

µ

0.
0

0.
4

0.
8

0.04 0.06 0.08 0.10

0.
04

0.
08

σ

Astronomical data set

Figure 6. Matrix scatter plot on bootstrapped values of the TLLN model parameters due to the astronomical

dataset.

We also utilize the likelihood ratio (LR) test for comparing the TLLN distribution, which
has an additional parameter – with the LN and ELN distributions based on the above-
discussed univariate astronomical dataset. The LR statistic for comparing the nested models
H0: LN and H0: ELN against H1: TLLN is given by

LR = ≠2 log
3 likelihood under the null hypothesis

likelihood in the whole parameter space

4
.

It is well-known that the random version of this statistic asymptotically follows a chi-square
distribution with d degrees of freedom, d being equal to the number of additional parameters
in the TLLN model. By using this result and standard statistical tables, we can obtain
critical values for the LR test statistics for the given astronomical dataset. Table 7 includes
the LR statistics and corresponding p-values for both the datasets. Given the values of test
statistics and their associated p-values, we reject the null hypothesis for the above-discussed
astronomical dataset and conclude that the TLLN distribution provides a significantly better
representation than the LN and ELN distributions.

Table 7. Likelihood ratio statistics and their p-values on the astronomy dataset.

LR p-value
TLLN versus LN 21.594 3.37 ◊ 10≠06

TLLN versus ELN 3.0586 2.2 ◊ 10≠16

Now, we use a real, censored dataset based on the prognosis for women with breast cancer.
Breast cancer is one of the most common forms of cancer in women. This lifetime dataset
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was carried out at the Middlesex Hospital, and documented in Leathem and Brooks (1987)
and discussed by Collett (2015) which refers to the survival time in months of women who
had received a simple or radical mastectomy to treat a tumor of Grade II, III or IV, between
January 1969 and December 1971.

Table 8 summarizes the TLLN regression model as a result of the censored dataset, in-
cluding estimates of all parameters, negative log-likelihood (≠l(Â)) and value of AIC. Here,
we utilize the optim function of the R software for the numerical evaluations.

Table 8. Summaries for the TLLN regression model from the breast cancer dataset.

Parameter ·0 ·1 – ‡ ≠l(Â) AIC
Estimates 0.6372 -1.2392 40.3536 4.3415 154.2923 316.5846

Table 9 represents the summary of 1000 times iterated simulated results, due to the
censored dataset using the MH algorithm of the MCMC method, which includes the poste-
rior mean, standard deviation (SD), Monte Carlo standard error (MCSE), e�ective sample
size due to autocorrelation (ESS), 95% CI and the posterior median. Next, we use the
LaplacesDemon package of R for the numerical evaluations.

Table 9. Summaries for the TLLN Bayesian regression model from the breast cancer dataset.

Parameter Mean SD MCSE ESS 95% CI Median
·0 2.9068 0.6033 0.2791 9.3047 (1.7993, 3.8864) 3.0101
·1 -1.1779 0.5730 0.1699 17.7204 (-1.9877, -0.2168) -1.2055
– 11.4851 2.6373 1.1827 9.2548 (7.8012, 16.7872) 11.3755
‡ 3.8347 0.6524 0.2513 8.6492 (2.7314, 5.3484) 3.6765

13. Conclusions, limitations, and future research

We suggest a new distribution, which is a generalized version of the log-normal distribution,
mainly to investigate data in the field of astronomy in this research, but it can also be
used to match cancer datasets in biological aspects. We call it the Topp-Leone log-normal
distribution. We explore several of its mathematical and statistical aspects. On the theoret-
ical aspect, we provide specific expressions for the moments, quantile function, and various
reliability measures. The di�erent shapes of the hazard rate function are discussed. In terms
of inference, the model parameters are estimated by using Bayesian estimation and the
method of maximum likelihood, and also, the observed information matrix is presented.
Furthermore, we adopt the parametric bootstrap technique to obtain confidence intervals
for the model parameters. More importantly, we introduce a parametric regression model
and a Bayesian regression method based on the new distribution. The usefulness of our
methodology is illustrated by two applications of real datasets, one related to the astro-
nomical study and the other to censored cancer data, using goodness-of-fit tests. The novel
model consistently outperforms previous models in the literature in terms of fitting. We
anticipate that the proposed model will find a larger range of applications in the model-
ing of positive real-world datasets, including not only astronomy but also biology, physics,
engineering, survival analysis, hydrology, economics, and other fields.

The possible limitations of the proposed distribution include the impossibility of modeling
phenomena with possible negative values or presenting a bimodal nature. The construction
of quantile regression models and bivariate variants of the TLLN distribution are two further
possible directions for this research. Additional significant improvements and investigations
are required for this study, which we will put into future research.
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Abstract

In this paper, the McDonald-Chen distribution is proposed and studied to model dif-

ferent type of data. Its probability density function allows bimodality, thus showing

that the model is very flexible. Its failure or hazard rate function may have increas-

ing, decreasing, bathtub, inverted bathtub and increasing-decreasing-increasing shapes

depending on the parameter values. The new distribution includes at least five major

special cases. Some of its mathematical properties are addressed. The maximum like-

lihood method is adopted to estimate the model parameters. Monte Carlo simulations

evaluate the accuracy of the maximum likelihood estimators. The new distribution is

better than three other popular distributions to model two real data sets.

Keywords: Chen distribution · Family of distributions · Maximum likelihood method

· Moments · Monte Carlo Simulation.

Mathematics Subject Classification: 46N30 · 78M31.

1. Introduction

Several distributions have been proposed to model data in real applications. Lai (2013) de-
tailed the importance of building new survival distributions and the fact that the failure
or hazard rate curves could accommodate di�erent shapes. Thus, there is a need for distri-
butions that are quite flexible to model these shapes. Among the di�erent mechanisms for
proposing new continuous distributions, we have: transformation of the random variable;
random variable convolution; random variable composition (Cordeiro et al., 2018); mixing
distributions between random variables (Nedjar and Zeghdoudi, 2016); distributions that
transform the cumulative distribution (Bourguignon et al., 2014). The choice of generated
distributions can be carried out using transformation in the cumulative distribution. Some
distributions generated using this technique are the beta modified Weibull (Silva et al.,
2010), gamma modified Weibull (Cordeiro et al., 2015), transmuted Dagum (Elbatal and
Aryal, 2015), Harris extended Lindley (Cordeiro et al., 2019).

Eugene et al. (2002) pioneered the beta-generalized (beta-G) family, which includes nearly
all of well-known models as special cases. Further, it can give lighter and heavier tails and be

ú
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applied in several areas such as engineering and biological research, among others. Explicit
expressions are reported in several published papers, which facilitate to find its mathematical
properties for special models. In the last years, several beta-G models have been proposed;
see the list of forty five special models in Table 3 of Tahir et al. (2015). This family has the
major benefit for fitting skewed data that can not be fitted by most well-known continuous
distributions.

In this paper, a flexible extension of the Chen distribution (Chen, 2000) is proposed,
which can be useful in several practical contexts. In particular, adding shape parameters to
a baseline distribution can provide better fits to real data in di�erent settings and extended
Chen distribution has interesting mathematical properties.

The paper is unfolded as follows. In Section 2, a brief introduction to the McDonald-Chen
(MC) distribution is given. In Section 3, the quantile function (QF) of the MC distribution
is determined. In Section 4, the new probability density function (PDF) is expressed as a
linear combination of Chen PDFs. Moments and moments generating function are obtained
in Section 5. In Section 6, its parameters are estimated by the maximum likelihood (ML)
method. In Section 7, some simulation results verify the precision of the parameter estimates.
In Section 8, the MC distribution is proved to outperform some well-known lifetime models.
Finally, Section 9 o�ers some concluding remarks.

2. Background

Based on the beta-G family, Alexander et al. (2012) defined the cumulative distribution
function (CDF) and PDF of the McDonald-generalized (MG) class of distributions as

F (x; a, b, c, ◊) =
BG(x;◊)c(a, b)

B(a, b) = 1
B(a, b)

⁄ G(x)
c

0

w
a≠1(1 ≠ w)b≠1dw (1)

and

f(x; a, b, c, ◊) = c

B(a, b)g(x; ◊) G(x; ◊)ac≠1 [1 ≠ G(x; ◊)c]b≠1
, (2)

respectively, where ◊ is the parameter vector of the baseline distribution G(x; ◊), g(x; ◊) =
d(x; ◊)/dx, a, b and c are three positive additional shape parameters, B(a, b) =

s
1

0
w

a≠1(1 ≠
w)b≠1dw denotes the beta function and Bz(a, b) =

s z
0

w
a≠1(1 ≠ w)b≠1dw denotes the lower

incomplete beta function.
Let X ≥ MG(a, b, c, ◊) be a random variable X having PDF as given in Equation (2).

Although this transformation is simple, the MG family is richer than the corresponding
baseline G(x). For G(x) = x, the MG family reduces to the McDonald distribution pioneered
by Mcdonald (2008). For c = 1 in Equation (1), it follows the beta-G class defined by Eugene
et al. (2002). For a = 1, Equation (1) coincides with the Kumaraswamy-generalized (Kw-
G) class introduced by Cordeiro and de Castro (2011). The MG family is quite important,
since it includes as special cases two of the most well-known classes in the literature, which
generated many published distributions in the last twenty years. According to Cordeiro et
al. (2012a), the MG family allows greater flexibility in its tails and can be widely used in
engineering, biology and other areas.

The hazard rate function (HRF) of X is given by

·(x; a, b, c, ◊) = cg(x; ◊)G(x; ◊)ac≠1[1 ≠ G(x; ◊)c]b≠1

1 ≠ BG(x;◊)c(a, b) . (3)
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The Chen distribution is taken as baseline, since it allows us to model data with bathtub
HRF. The CDF and PDF of the Chen distribution are stated as

G(y; ⁄, —) = 1 ≠ e⁄(1≠ey—
)
, y > 0 (4)

and

g(y; ⁄, —) = ⁄—y
—≠1ey—

+⁄(1≠ey—
)
, y > 0, (5)

respectively, where ⁄ > 0 is the scale parameter and — > 0 is the shape parameter. Hence-
forth, Y ≥ Chen(⁄, —) denotes a random variable with PDF as given in Equation (5).

By taking G and g as the CDF and PDF of the Chen distribution, respectively, and
substituting in Equations (1), (2) and (3), the CDF, PDF and HRF of the MC distribution
are formulated as

F (x; a, b, c, ⁄, —) = 1
B(a, b)

⁄
Ë

1≠e⁄(1≠ex—
)
Èc

0

w
a≠1(1 ≠ w)b≠1dw, (6)

f(x; a, b, c, ⁄, —) = c⁄—

B(a, b)x
—≠1ex—

+⁄(1≠ex—
)

5
1 ≠ e⁄(1≠ex—

)

6ac≠1
;

1 ≠
5
1 ≠ e⁄(1≠ex—

)

6c<b≠1

(7)
and

·(x; a, b, c, ⁄, —) =
c⁄—x

—≠1ex—
+⁄(1≠ex—

)

5
1 ≠ e⁄(1≠ex—

)

6ac≠1
;

1 ≠
5
1 ≠ e⁄(1≠ex—

)

6c<b≠1

1 ≠
s

Ë
1≠e⁄(1≠ex— )

Èc

0
wa≠1(1 ≠ w)b≠1dw

,

respectively.
Henceforth, let X ≥ MC(a, b, c, ⁄, —) have PDF as given in Equation (7). For c = 1,

the MC distribution becomes the beta-Chen (BC), not yet known in the literature. For
a = 1, it follows the (new) Kumaraswamy-Chen (KC). Further, Equation (7) reduces to the
exponentiated-Chen (b = c = 1) (Dey et al., 2017), exponentiated-Chen Lehmann type 2
(a = c = 1) and the Chen itself (a = b = c = 1) distributions.

Figure 1 displays plots of the MC PDFs for selected parameter values, where it is shown
that this distribution is quite flexible having several forms including bimodality.

The HRF curves for some parameter choices are given in Figure 2. The HRF of X can
be increasing, decreasing, unimodal, crescent-descending-crescent and bathtub shape, which
shows once again its great flexibility.

Summing up what was said above, we cite six basic motivations for the MC distribution:
(i) greater flexibility in the PDF and HRF. In fact, its PDF has bimodality, increasing,
decreasing, bathtub and inverted shapes of the HRF, whereas the Chen PDF has only
increasing, decreasing and unimodal shapes. In addition, the rate of the MC distribution can
be increasing, decreasing, bathtub, inverted bathtub, and increasing-decreasing-increasing
shapes. This last form exists for few distributions, but it can be found in many real data
sets; (ii) make the skewness and kurtosis more flexible compared to the Chen distribution.
The parameter c of the new distribution changes substantially the values of its skewness
and kurtosis as shown in the plots of Figures 3 and 4, thus making it very interesting for
real applications; (iii) provide consistently better fits than other lifetime models as proved
empirically in Section 8; (iv) the proposed distribution includes five others sub-models that
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Figure 1. The MC PDF for some parameters values: (a) MC(0.5, 0.8, 3.5, ⁄, —), (b) MC(0.86, 0.32, 0.18, ⁄, —), (c)

MC(0.05, 0.2, 5, ⁄, —) and (d) MC(0.5, 0.5, 0.9, ⁄, —).

can be compared by using likelihood ratio (LR) tests to choose the best model to explain a
data set; (v) the properties of the new distribution are easily obtained from those of Chen
due to a linear representation for its PDF; and (vi) construct heavy–tailed special cases that
are not longer-tailed for modeling real data.

3. Quantile function

The QF of the MG family, say Q(u; a, b, c, ◊) = F
≠1(u; a, b, c, ◊), can be expressed in terms of

the beta QF. Basically, according to Cordeiro et al. (2012b), the QF of the MG distribution
(for 0 < u < 1) has the form

Q(u; a, b, c, ◊) = Qg{Q—(u; a, b)
1
c ; ◊},

where Qg is the QF of the baseline G and Q—(u; a, b) is the beta QF with parameters a and
b; see the Wolfram website at http://functions.wolfram.com/06.23.06.0004.01.

Thus, the QF of the MC distribution can be expressed as

Q(u; a, b, c, ⁄, —) =
;

log
5
1 ≠ 1

⁄
log

1
1 ≠ Q—(u; a, b)

1
c

26< 1
—

, 0 < u < 1.

The simulation of X is very easy. If U is a uniform random variable on the unit interval

http://functions.wolfram.com/06.23.06.0004.01
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Figure 2. The HRF of the MC model for some parameters values: (a) MC(0.6, 0.3, 1.35, ⁄, —), (b)

MC(1.2, 0.7, 15, ⁄, —), (c) MC(0.66, 0.7, 0.35, ⁄, —) and (d) MC(0.07, 0.08, 20, ⁄, —).

(0, 1), then

X =
;

log
5
1 ≠ 1

⁄
log

1
1 ≠ Q—(U ; a, b)

1
c

26< 1
—

,

wis an MC distributed random variable.
Let Q(u) = Q(u; a, b, c, ⁄, —) be the QF of the MC distribution by omitting the arguments.

The baseline parameters are ⁄ = 5 and — = 1.62 and c varies in {0.2, 1, 5, 10} for the
scenarios (a)-(d), respectively, to study the influence of the generator parameters a and b

on the skewness and kurtosis of the MC distribution. The parameters a and b vary in the
interval (0.1, 1). Figure 3 displays the Bowley skewness, as functions of a and b, defined as

B = Q(3/4) + Q(1/4) ≠ 2 Q(2/4)
Q(3/4) ≠ Q(1/4) .

The minimum and maximum values for B are then (≠0.1542, 1.0000), (≠0.1272, 0.8406),
(≠0.0690, 0.3101) and (≠0.0425, 0.2649) for the scenarios (a)-(d), respectively. For the
selected parameter values, the asymmetry becomes increasingly negative when c increases.

Consider the same parameter values for the Moor kurtosis, as functions of a and b, ex-
pressed as

M = Q(7/8) ≠ Q(5/8) ≠ Q(3/8) + Q(1/8)
Q(6/8) ≠ Q(2/8) ,
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Figure 3. Bowley skewness as function of c: (a) c = 0.2, (b) c = 1, (c) c = 5 and (d) c = 10.

Figure 4 displays the Moor kurtosis, where the minimum and maximum values of M

are (≠0.1985, 116.5147), (≠0.1667, 2.4161), (≠0.0744, 0.6191) and (≠0.0260, 0.4811) for the
scenarios (a)-(d), respectively. Small values of c give higher kurtosis. The kurtosis decreases
and stabilizes when c increases.

4. Linear representation

Equations (6) and (7) can be expressed in terms of exponentiated distributions. For a given
CDF G(z; ◊) with parameter vector ◊, the random variable Z is exponentiated-G (exp-G)
distributed, with power parameter a > 0, if its CDF and PDF are

H(z; a, ◊) = G(z; ◊)a
, h(x) = a g(z; ◊)G(z; ◊)a≠1

,

respectively, where g(z; ◊) = dG(z; ◊)/dz. The exp-G model is also called the Lehmann type
I distribution. From now on, we denote it as Z ≥ exp-G(a, ◊).

Following Alexander et al. (2012), Equation (2) can be expressed as

f(x; a, b, c, ◊) =
Œÿ

k=0

bk h(x; c(a + k), ◊), (8)
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Figure 4. Moor kurtosis as function of c: (a) c = 0.2, (b) c = 1, (c) c = 5 and (d) c = 10.

where h(x; c(a + k), ◊) is the exp-G(c(a + k), ◊) PDF, and the coe�cients bk are

bk = (≠1)k �(a + b)
(a + k) k! �(a) �(b ≠ k) ,

where �(p) =
s Œ

0
w

p≠1e≠wdw denotes the gamma function. We can prove that
qŒ

k=0
bk = 1.

Equation (8) reveals that MG PDF is a linear combination of exp-G PDFs. Thus, sev-
eral MG properties can be determined by knowing those corresponding exp-G properties
(Cordeiro et al., 2012a). By integrating Equation (8), the MG CDF follows as

F (x; a, b, c, ◊) =
Œÿ

k=0

bk H(x; c(a + k), ◊),

where H(x; c(a + k), ◊) is the exp-G(c(a + k), ◊) CDF.

Theorem 4.1 Let Y be a random variable having a Chen CDF as given in Equation (4).
Then, the CDF and PDF of the exp-Chen(a, ⁄, —) distribution are stated as

H(y; a, ⁄, —) = 1 +
Œÿ

m=1

(≠1)m

A
a

m

B

[1 ≠ G(y; m⁄, —)]
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and

h(y; a, ⁄, —) =
Œÿ

m=1

wm(a) g(y; m⁄, —),

respectively, where wm(a) = (≠1)m+1
! a

m

"
.

Proof For |x| < 1 and any real a ”= 0, the convergent power series holds by means of

(1 ≠ x)a =
Œÿ

m=0

(≠1)m

A
a

m

B

x
m

.

Thus, the CDF of the exp-Chen distribution is given by

H(y; a, ⁄, —) =
5
1 ≠ e⁄(1≠ey—

)

6a

=
Œÿ

m=0

(≠1)m

A
a

m

B

em⁄(1≠ey—
)

=1 +
Œÿ

m=1

(≠1)m

A
a

m

B

[1 ≠ G(y; m⁄, —)].

By di�erentiating the last equation, we have that

h(y; a, ⁄, —) =
Œÿ

m=1

(≠1)m+1

A
a

m

B

g(y; m⁄, —),

which shows that the exp-Chen PDF is a linear combination of Chen PDFs. ⌅

Based on Equation (8) and Theorem 4.1, the PDF of X can be expressed as

f(x; a, b, c, ⁄, —) =
Œÿ

m=1

dm g(x; m⁄, —), (9)

where

dm = dm(a, b, c) =
Œÿ

k=0

(≠1)k+m+1�(a + b)
(a + k) k! �(a) �(b ≠ k)

A
c(a + k)

m

B

,

and g(x; m⁄, —) is the Chen PDF with scale parameter m⁄ and shape parameter —. Clearly,
the shape parameters of the MC generation are restricted to the coe�cients in Equation
(9).

Some mathematical properties of the MC distribution can be derived from Equation (9)
and those properties of the Chen distribution. For example, the ordinary and incomplete
moments and moment generating function (MGF) of X can be determined from the corre-
sponding quantities of the Chen distribution. Consequently, the beta-Chen and Kw-Chen
PDFs are also linear combinations of Chen PDFs when c = 1 and a = 1, respectively.

By integrating Equation (9), the CDF of the MC distribution is given by

F (x; a, b, c, ⁄, —) =
Œÿ

m=1

dm G(x; m⁄, —),

where G(x; m⁄, —) is the CDF of the Chen(m⁄, —) distribution.
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5. Moments and Moment generating function

Let Ym be a random variable having the Chen PDF with scale parameter m⁄ and shape
parameter —, that is, Ym ≥ Chen(m⁄, —). By using Equation (9), the rth moment of X can
be written as

E[Xr] =
Œÿ

m=1

dm E[Y r
m].

Pogany et al. (2017) demonstrated that the rth moment of Y has the form

E[Y r] = ⁄ e⁄ Dr—≠1

t

5�(t + 1, ⁄)
⁄t+1

6

t=0

. (10)

Here, we have that

Dp
t

5�(t + 1, ⁄)
⁄t+1

6

t=0

= �(p + 1)
ÿ

kØ0

(2)k

k! �(0,1)

µ,1 (≠k, p + 1, 1) 1F1(k + 2; 2; ≠⁄),

where �(0,1)

µ,1 (≠a, p + 1, 1) =
q

nØ0
(≠a)n

/n!(n + 1)p+1 for µ œ C, 1F1(a; b; x) =q
nØ0

(a)nx
n
/(b)nn!, for x, a œ C and b œ C \ Z

≠
0

, is the confluent hypergeometric func-
tion (Kilbas et al., 2006, p. 29, Eq. 1.6.14) and (⁄)÷ = �(⁄ + ÷)/�(⁄), for ⁄ œ C \ {0}, is
the generalized Pochhammer symbol, under the convention (0)0 = 1.

The rth ordinary moment of X follows from Equation (10) as

E[Xr] = ⁄

Œÿ

m=1

m dm em⁄ Dr—≠1

t

5�(t + 1, m⁄)
(m⁄)t+1

6

t=0

.

The incomplete moments of a distribution have great applicability to measure inequality.
The first incomplete moment is used to construct Lorenz and Bonferroni curves.

For z > 0, the rth incomplete moment of Y , say qr(z; ⁄, —) =
s z

0
y

r
g(y; ⁄, —)dy, follows

from Pogany et al. (2017) as

qr(z; ⁄, —) = ⁄e⁄
ÿ

n,kØ0

kÿ

j=1

(2)n+k

(2)n

(≠1)n+j
⁄

n
!k

j

"

n!k!(j + 1)r—≠1+1
“(r—

≠1
, (j + 1)(1 ≠ z

≠1)), (11)

where “(p, z) =
s z

0
w

p≠1 e≠wdw denotes the lower incomplete gamma function.
The rth incomplete moment of X can be expressed from Equation (9) as

mr(z) =
Œÿ

m=1

dm qr(z; m⁄, —),

which depends directly on the rth incomplete moment of the Chen(m⁄, —) distribution.
By using Equation (11), the rth incomplete moment de X can be written as

mr(z) = ⁄

Œÿ

m=1

m em⁄
dm

ÿ

n,kØ0

kÿ

j=1

(2)n+k

(2)n

(≠1)n+j(m⁄)n
!k

j

"

n!k!(j + 1)r—≠1+1
“(r—

≠1
, (1 ≠ z

≠1)(j + 1)).
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The MGF of Y , say MY (t) = E
#
e≠tY

$
, for t > 0, can be determined from Pogany et al.

(2017) as

MY (t) = ⁄ — e⁄
t
≠—

ÿ

nØ0

(≠⁄)n

n! 1�0

5
(—, —); ≠; n + 1

t—

6
, (12)

where

1�0 [(a, b); ≠; z] =
ÿ

nØ0

�(a + bn) z
n

n! , z, a œ C, b > 0,

is the generalized Fox-Wright function. Thus, using Equations (9) and (12), the MGF of X

is stated as

MX(t) = ⁄ — e⁄
t
≠—

Œÿ

m=1

ÿ

nØ0

(≠m⁄)n
dm

n! 1�0

5
(—, —); ≠; n + 1

t—

6
.

6. Estimation

The ML estimators enjoy desirable properties that can be used when constructing confidence
intervals for the model parameters. Let X1, . . . , Xn be a random sample of size n from
X ≥ MC(a, b, c, ⁄, —) with observations x1, . . . , xn. The log-likelihood function for ◊ =
(a, b, c, ⁄, —)€ from this sample is formulated as

L(◊) =n[log c⁄— ≠ log B(a, b) + ⁄] + (— ≠ 1)
nÿ

i=1

log xi +
nÿ

i=1

x
—
i ≠ ⁄

nÿ

i=1

ex—
i

+ (ac ≠ 1)
nÿ

i=1

log t(xi) + (b ≠ 1)
nÿ

i=1

log{1 ≠ t(xi)c},

(13)

where t(xi) = 1 ≠ exp{⁄(1 ≠ ex—
i )}.

The function L(◊) can be maximized either directly by using well-known platforms such
as the R (optim function), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine) or by
solving the nonlinear likelihood equations of the score vector obtained by di�erentiating
Equation (13).

The components of the score vector U(◊) are given by

Ua(◊) = nÂ(a + b) ≠ nÂ(a) + c

nÿ

i=1

log t(xi),

Ub(◊) = nÂ(a + b) ≠ nÂ(b) +
nÿ

i=1

log{1 ≠ t(xi)c},

Uc(◊) = n

c
+ a

nÿ

i=1

log t(xi) ≠ (b ≠ 1)
nÿ

i=1

t(xi)c log t(xi)
1 ≠ t(xi)c

,

U⁄(◊) = n

⁄
+ n ≠

nÿ

i=1

ex—
i ≠ (ac ≠ 1)

nÿ

i=1

r(xi)
t(xi)

+ c(b ≠ 1)
nÿ

i=1

r(xi)t(xi)c≠1

1 ≠ t(xi)c
,
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U—(◊) = n

—
+

nÿ

i=1

log xi +
nÿ

i=1

x
—
i log xi ≠ ⁄

nÿ

i=1

x
—
i ex—

i log xi

+⁄(ac ≠ 1)
nÿ

i=1

s(xi)
t(xi)

≠ c⁄(b ≠ 1)
nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c
,

where Â(q) = d log �(q)/dq is the digamma function, r(xi) = (1 ≠ ex—
i )e⁄(1≠e

x
—
i ) and s(xi) =

x
—
i e⁄(1≠e

x
—
i )+x—

i log xi.
The ML estimate ‚◊ = (‚a,‚b, ‚c, ‚⁄, ‚—)€ of ◊ = (a, b, c, ⁄, —)€ is determined by the simultane-

ous solutions of the equations U(◊) = 0. These solutions are those ‚◊ values that maximize
Equation (13). The estimates of the unknown parameters can not be obtained analytically,
and then interactive methods such as the quasi-Newton BFGS and Newton-Raphson algo-
rithms are required.

The estimated observed information matrix is given by

J(◊) = ≠

S

WWWWU

Uaa(◊) Uab(◊) Uac(◊) Ua⁄(◊) Ua—(◊)
Uba(◊) Ubb(◊) Ubc(◊) Ub⁄(◊) Ub—(◊)
Uca(◊) Ucb(◊) Ucc(◊) Uc⁄(◊) Uc—(◊)
U⁄a(◊) U⁄b(◊) U⁄c(◊) U⁄⁄(◊) Ua—(◊)
U—a(◊) U—b(◊) U—c(◊) U—⁄(◊) U——(◊)

T

XXXXV

◊=‚◊

,

where Upq(◊) = ˆ
2L(◊)/(ˆ„pˆ„q), and Upq(◊) = Uqp(◊). Thus, we get

Uaa(◊) = nÂ
Õ(a + b) ≠ nÂ

Õ(a), Uab(◊) = nÂ
Õ(a + b), Uac(◊) =

nÿ

i=1

log t(xi),

Ua⁄(◊) = ≠c

nÿ

i=1

r(xi)
t(xi)

, Ua—(◊) = c⁄

nÿ

i=1

s(xi)
t(xi)

, Ubb(◊) = nÂ
Õ(a + b) ≠ nÂ

Õ(b),

Ubc(◊) = ≠
nÿ

i=1

t(xi)c log t(xi)
1 ≠ t(xi)c

, Ub⁄(◊) = c

nÿ

i=1

r(xi)t(xi)c≠1

1 ≠ t(xi)c
,

Ub—(◊) = ≠c⁄

nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c
,

Ucc(◊) = ≠ n

c2
≠ (b ≠ 1)

nÿ

i=1

t(xi)c[log t(xi)]2
[1 ≠ t(xi)c]2 ,

Uc⁄(◊) = ≠a

nÿ

i=1

r(xi)
t(xi)

+ (b ≠ 1)
nÿ

i=1

r(xi)t(xi)c≠1

1 ≠ t(xi)c
+ c(b ≠ 1)

nÿ

i=1

r(xi)t(xi)c≠1 log t(xi)
[1 ≠ t(xi)c]2 ,

Uc—(◊) = a⁄

nÿ

i=1

s(xi)
t(xi)

≠ ⁄(b ≠ 1)
nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c
≠ c⁄(b ≠ 1)

nÿ

i=1

s(xi)t(xi)c≠1 log t(xi)
[1 ≠ t(xi)c]2 ,

U⁄⁄(◊) = ≠ n

⁄2
≠ (ac ≠ 1)

nÿ

i=1

(1 ≠ ex—
i )r(xi)t(xi) + r(xi)2

t(xi)2
≠ c

2(b ≠ 1)
nÿ

i=1

[r(xi)t(xi)c≠1]2
[1 ≠ t(xi)c]2

+c(b ≠ 1)
nÿ

i=1

(1 ≠ ex—
i )r(xi)t(xi)c≠1 ≠ (c ≠ 1)r(xi)2

t(xi)c≠2

1 ≠ t(xi)c
,
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U⁄—(◊) = ≠
nÿ

i=1

x
—
i ex—

i log xi + (ac ≠ 1)
nÿ

i=1

s(xi)
t(xi)

+c
2
⁄(b ≠ 1)

nÿ

i=1

s(xi)r(xi)t(xi)2c≠2

[1 ≠ t(xi)c]2

+⁄(ac ≠ 1)
nÿ

i=1

(1 ≠ ex—
i )s(xi)t(xi) + s(xi)r(xi)

t(xi)2

≠c(b ≠ 1)
nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c

≠c⁄(b ≠ 1)
nÿ

i=1

(1 ≠ ex—
i )s(xi)t(xi)c≠1 ≠ (c ≠ 1)s(xi)r(xi)t(xi)c≠2

1 ≠ t(xi)c
,

U——(◊) = ≠ n

—2
+

nÿ

i=1

x
—
i (log xi)2 ≠ ⁄

nÿ

i=1

x
—
i ex—

i (log xi)2[1 + x
—
i ]

+⁄(ac ≠ 1)
nÿ

i=1

v(xi)t(xi) ≠ ⁄s(xi)2

t(xi)2

≠c⁄(b ≠ 1)
nÿ

i=1

v(xi)t(xi)c≠1 + ⁄(c ≠ 1)s(xi)2
t(xi)c≠2

1 ≠ t(xi)c

≠(c⁄)2(b ≠ 1)
nÿ

i=1

[s(xi)t(xi)c≠1]2
[1 ≠ t(xi)c]2 ,

where Â
Õ(q) = d2 log �(q)/dq

2 is the trigamma function and v(xi) = s(xi)[log xi ≠
⁄x

—
i e

x—
i log xi + x

—
i log xi]

The normal approximation for ‚◊ in distribution theory is easily handled numerically.
Under general regularity conditions, we have the result ( ‚◊ ≠ ◊) a≥ N5(0, K(◊)≠1), where
K(◊) is the 5 ◊ 5 expected information matrix and a≥ denotes asymptotic distribution. For
n large, K(◊) can be approximated by the estimated observed information matrix J(‚◊). This
multivariate normal approximation for ‚◊ can be used for construing approximate confidence
intervals for the model parameters. The LR statistics can be used for testing hypotheses on
these parameters.

7. Simulation study

A Monte Carlo simulation is performed to empirically evaluate some asymptotic properties
of the ML estimators for the parameters of the MC distribution. The MC observations
are generated from three di�erent combinations of a, b, c, ⁄ and — with samples sizes n =
25, 50, 75, 100, 200 and 500 and repeat the simulations N = 1, 000 times. The subroutine
optim in R (R Core Team, 2020) is used for maximizing the log-likelihood Equation (13).
The average estimates (AEs) of the ML estimators and their mean squared errors (MSEs)
are reported in Tables 1, 2 and 3. The AEs tend to be closer to the true parameters and the
MSEs decrease when the sample size n increases in agreement with first-order asymptotic
theory. Note that the parameter — presents the lowest MSE in all scenarios. In addition, the
parameter ⁄ is the one which presents the highest MSE.
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Table 1. Monte Carlo results under ◊ = (1.3, 1.6, 1.4, 1.2, 0.6).

AE MSE
n ‚a ‚b ‚c ‚⁄ ‚— ‚a ‚b ‚c ‚⁄ ‚—

25 2.219 2.102 2.916 2.958 1.483 7.706 6.801 10.945 11.097 3.319
50 1.942 1.913 2.658 2.689 0.946 5.256 4.602 7.705 8.133 0.728
75 1.834 1.927 2.563 2.423 0.835 4.197 4.062 6.320 5.910 0.348
100 1.908 1.788 2.403 2.399 0.788 4.251 3.314 5.917 5.272 0.218
200 1.726 1.805 2.133 2.089 0.681 2.557 2.654 3.500 3.389 0.053
500 1.630 1.770 1.892 1.717 0.632 1.727 1.712 2.160 1.511 0.013

Table 2. Monte Carlo results under ◊ = (1.4, 2, 0.9, 2.8, 1.1).

AE MSE
n ‚a ‚b ‚c ‚⁄ ‚— ‚a ‚b ‚c ‚⁄ ‚—

25 2.173 3.919 2.110 5.153 2.497 6.493 12.609 8.104 19.458 6.186
50 2.028 3.514 1.822 4.353 2.251 4.719 9.481 6.205 13.103 4.631
75 1.932 3.381 1.612 3.958 2.180 3.297 7.829 4.690 10.588 4.319
100 1.911 3.271 1.614 3.701 1.983 3.407 6.675 4.481 8.492 3.269
200 1.904 3.025 1.443 3.328 1.792 2.845 4.440 2.989 6.200 2.297
500 1.818 2.835 1.347 2.916 1.405 1.972 3.225 2.057 3.555 0.808

Table 3. Monte Carlo results under ◊ = (1.7, 1.9, 1.2, 2.2, 0.7).

AE MSE
n ‚a ‚b ‚c ‚⁄ ‚— ‚a ‚b ‚c ‚⁄ ‚—

25 2.689 3.342 2.302 4.495 2.056 8.880 10.736 8.074 17.959 5.889
50 2.367 3.046 2.132 3.610 1.700 5.293 7.422 6.402 11.657 3.954
75 2.262 2.859 2.094 3.479 1.471 4.589 6.739 5.869 10.489 2.886
100 2.297 2.734 1.897 3.279 1.263 4.167 5.378 4.320 8.920 1.844
200 2.209 2.599 1.925 2.913 0.968 3.824 4.000 3.793 5.655 0.638
500 2.087 2.412 1.694 2.609 0.798 2.235 2.489 2.114 2.963 0.187

8. Applications

Two real data applications prove empirically the adequacy of the MC distribution. The
applications are developed using the R software (version 3.6.3) (R Core Team, 2020) with
the script AdequacyModel (Marinho et al., 2019). The criteria for model selection are based
on the statistics defined by Chen and Balakrishnan (1995): Anderson Darling (Aú) and
Cramér-von Mises (W ú). In addition to these statistics, we consider the Akaike information
criterion (AIC), Consistent Akaike information criterion (CAIC), Bayesian information cri-
terion (BIC), Hannan-Quinn information criterion (HQIC) and Kolmogorov-Smirnov (KS)
statistic with its p-value for model comparisons. The smaller the value of these statistics
evidence we have for a good fit. All these important statistics for selecting the best models
are provided in the AdequacyModel package. The graphical analysis is also important to
identify the best fitted model. We analyze the data histograms, the estimated PDFs and
CDFs and the empirical CDF calculated by the Kaplan-Meier (Kaplan and Meier, 1958)
method.
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The MC distribution is compared with three popular lifetime models. The first one is the
beta-modified Weibull (BMW) distribution defined by Silva et al. (2010), whose PDF is
given by

fbmw(x; a, b, –, ⁄, “) = ax
“≠1(“ + ⁄x)e⁄x

B(a, b) e≠b–x“e⁄x
Ë
1 ≠ e≠–x“e⁄x

Èa≠1

, x > 0,

where a, b, and “ are positive shape parameters, – > 0 is a scale parameter and ⁄ > 0 is
an accelerating factor in imperfection time which acts as a fragility factor in the survival of
the individual as time increases.

The second one is the three-parameter Burr XII distribution (Zimmer et al., 1998), whose
PDF has the form

fbxii(x; s, d, c) = cd

sc
x

c≠1

5
1 +

3
x

s

4c6≠(d+1)

, x > 0,

where s > 0 is a scale parameter and c and d are two positive shape parameters.
The third distribution is the Kumaraswamy-log logistic (KLL) (de Santana et al., 2012)

model, whose PDF is stated as

fkll(x; a, b, –, “) = ab“

–a“
x

a“≠1

5
1 +

3
x

–

4“6≠(a+1)
I

1 ≠
C

1 ≠ 1
1 +

! x
–

"“

D–Jb≠1

, x > 0,

where – > 0 is a scale parameter and a, b and “ are positive shape parameters.

8.1 Windshields data

We consider 85 uncensored failure times for a specific windshield model studied by Murthy et
al. (2004) and Cordeiro et al. (2015). A problem of interest would be to accurately estimate
the probability of failure of this windshield model within a specified period time.

The descriptive statistics for these data are listed in Table 4, including minimum and
maximum values, first and third quartile, median (Med), mean, standard deviation (SD),
and coe�cients of skewness and kurtosis.
Table 4. Descriptive statistics for windshields data.

n Min 1st quartile Med Mean 3rd quartile Max SD Skewness Kurtosis
85 0.04 1.87 2.38 2.56 3.38 4.66 1.11 0.09 2.37

The ML estimates and their associated standard errors (SEs) in parentheses for the fitted
distributions are reported in Table 5. Some estimators have large SEs for the BMW and
BXII distributions. In addition, the MC and KLL distribution parameters are significant.
Table 6 gives the values of the information criteria described before. The MC distribution
has the lowest values for all information criteria. Thus, it is the distribution that yields the
best fit to the current data. The p-values of the KS statistic also reveal that the data are
described well for all distributions.

Since the MG family includes as special cases the beta-G and Kumaraswamy-G classes,
two LR tests are performed: MC versus beta-Chen (c = 1) and MC vs Kumasrawamy-Chen
(a = 1). The LR statistics for these tests are 7.0369 and 7.2441, respectively. The two null
hypotheses are rejected, thus indicating that the MC distribution is the most suitable for
the current data.



Chilean Journal of Statistics 105

Table 5. ML estimates and their associated standard errors (SEs) in parentheses for the
distributions fitted to windshields data.

Distribution Estimate
MC(a, b, c, ⁄, —) 0.0360 0.0994 22.2596 0.0451 1.2201

(0.0051) (0.0228) (0.6653) (0.0186) (0.0139)
BMW(a, b, –, ⁄, “) 4.9756 0.1824 1.0938 0.6004 0.1290

(5.2775) (0.1640) (0.7173) (0.1519) (0.1963)
KLL(a, b, –, “) 0.3359 3.5033 5.6294 6.2686

(0.0374) (0.6590) (0.0304) (0.0306)
BXII(s, d, c) 13.5330 42.7872 2.4122

(8.5003) (59.8242) (0.2171)

Table 6. Statistics for the fitted distributions to windshields data.

Distribution W
ú

A
ú AIC CAIC BIC HQIC KS p-value (KS)

MC 0.0576 0.3684 259.0505 259.8100 271.2638 263.9630 0.0810 0.6332
BMW 0.0683 0.4849 264.4261 265.1856 276.6394 269.3387 0.0820 0.6173
KLL 0.0617 0.5597 268.1631 268.6631 277.9337 272.0931 0.0570 0.9454
BXII 0.0590 0.5973 269.0118 269.3081 276.3398 271.9594 0.0538 0.9663

A graphical analysis can show the best choice for a model. First, the estimated PDFs are
plotted on the data histogram in Figure 5(a). These plots show that the MC distribution
is the most appropriate model for the current data and that its estimated PDFs captures
the bimodality of the histogram. Figure 5(b) displays the empirical CDF and the estimated
CDFs of the MC, BMW and KLL models, which also reveals the superiority of the MC
distribution for these data.

x

p
d
f

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

MC
BMW
KLL

(a)

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

c
d
f

Empirical
MC
BMW
KLL

(b)

Figure 5. Histogram with estimated PDFs (a) and empirical CDF with estimated CDFs (b) of the MC, BMW and

KLL models for windshields data.
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8.2 Kevlar/epoxy data

This data set is about the lifetime of spherical pressure vessels under constant pressure
until vessel failure, commonly known as static fatigue or stress rupture. NASA space shuttle
uses Kevlar/epoxy spherical pressure vessels in a sustained pressure mode for the life of the
vessel. The use of this material can be found in air-space breathing apparatus. These data
are available in Andrews and Herzberg (1985). The main interest in this application would
be to accurately estimate the survival function of these spherical pressure vessels.

The descriptive statistics for these data are given in Table 7. The ML estimates of the
parameters for four fitted models are listed in Table 8. Again, the BMW and BXII distri-
butions have large SEs for some estimates. Di�erently, all the MC and KLL parameters are
significant.

Table 7. Descriptive statistics for Kevlar/epoxy data.

n Min 1st quartile Med Mean 3rd quartile Max SD Skewness Kurtosis

49 1051 5620 8831 8805.69 11745 17568 4553.92 0.10 2.17

Table 8. ML estimates and their associated standard errors (SEs) in parentheses for the
distributions fitted to Kevlar/epóxy data.

Distribution Estimate
MC(a, b, c, ⁄, —) 0.3290 0.1171 5.3114 0.1595 0.5822

(0.0758) (0.0248) (0.0380) (0.0137) (0.0114)
BMW(a, b, –, ⁄, “) 0.7204 0.4003 0.0162 0.0814 1.7067

(0.5976) (1.1377) (0.0308) (0.1062) (1.6739)
KLL(a, b, –, “) 0.2718 13.0771 37.9120 7.1778

(0.0433) (4.5558) (0.4090) (0.6379)
BXII(s, d, c) 39.5646 18.5077 2.0830

(28.7962) (25.6918) (0.2439)

The LR values for the tests MC vs BC (c = 1) and MC vs KC (a = 1) are 1.1182 and
0.8931, respectively, and therefore the two null hypotheses are not rejected. In Table 9, the
more useful statistics W

ú and A
ú to compare nested and non-nested models indicate that

the MC distribution is more appropriate for the current data. The KC distribution can also
be chosen based on the AIC, CAIC and HQIC criteria. According to BIC criteria the BXII
model is chosen. However, these criterions are more useful to compare nested models. The
p-values of the KS statistic indicate that all models can be adopted to fit the current data,
although it is higher for the BXII model.

Table 9. Statistics for the fitted models to Kevlar/epóxy data.

Distribution W
ú

A
ú AIC CAIC BIC HQIC KS p-value (KS)

MC 0.0294 0.2228 291.3719 292.7673 300.8310 294.9607 0.0724 0.9593
BMW 0.0313 0.2304 291.6484 293.0438 301.1075 295.2372 0.0697 0.9711
KLL 0.0639 0.4196 291.8350 292.7441 299.4023 294.7060 0.0849 0.8716
BXII 0.0800 0.5221 291.4196 291.9530 297.0951 293.5729 0.0902 0.8198
BC 0.0350 0.2491 290.4901 291.3992 298.0574 293.3612 0.0750 0.9455
KC 0.0354 0.2494 290.2651 291.1742 297.8324 293.1361 0.0749 0.9463
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Figure 6. Histogram with estimated PDFs (a) and empirical CDF with estimated CDFs (b) of the MC, KLL and

BXII models for Kevlar/epoxy data.

The histogram and estimated PDFs are reported in Figure 6(a), where the superiority of
the MC distribution is noted, thus corroborating with the W

ú and A
ú statistics.

The estimated CDFs along and the empirical CDF are displayed in Figure 6(b). These
plots reveal that the estimated CDF of the MC model is closer to the empirical one. Thus,
the MC model has a better performance to explain the survival function of the data.

The probability-probability (PP) plots for windshields and Kevlar/epóxy data are given
in Figures 7 and 8, respectively. For both data sets, the plot points are close to the diagonal
line for the MC model, followed by the KLL distribution. This is a further indication that
the MC distribution is the best model for these data sets. Plot of the profile log-likelihood
function for windshields and Kevlar/epóxy data are shown in Figures 9 and 10, respectively.
These plots were constructed by fixing the other parameters and varying the parameter of
interest in a range covering the respective ML estimate. For example in Figure 9(a), the
parameter a varies between 0.01 and 0.2, in Figure 9(b) 0.01 < b < 0.8, in Figure 9(c)
10 < c < 40, in Figure 9(d) 0.004 < ⁄ < 0.05 and Figure 9(e) 0.3 < — < 1.24. The plots of
the Figure 10 are constructed in an analogous way.

9. Conclusions, limitations, and future research

In this paper, the new McDonald-Chen distribution was proposed, which extended the
Chen distribution and presented more flexibility. In the proposal, three shape parameters
were added to the Chen distribution to obtain more flexibility and bimodality for the gen-
erated probability density function. Its failure or hazard rate function can be increasing,
decreasing, upside-down bathtub, bathtub and increasing-decreasing-increasing shapes. Few
distributions have this last form. As a result, the new distribution can accommodate sev-
eral types of data sets, so providing a good alternative for fitting survival and fatigue data.
Monte Carlo simulations evaluated the accuracy of the maximum likelihood estimators of
the parameters. Finally, two real applications showed that the McDonald-Chen distribution
provided better fits than three well-known models because it accommodates bimodality.

A limitation of the new distribution proposed here is its usefulness in fitting data with
very small samples because this distribution has five parameters. This compromises the
degrees of freedom for data with small samples.
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Figure 7. PP-plots for windshields data.
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Figure 8. PP-plots for Kevlar/epóxy data.
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Figure 9. Profile log-likelihood functions for windshields data.
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Figure 10. Profile log-likelihood functions for Kevlar/epóxy data.
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Future work can be directed to: (i) correct the maximum likelihood estimators analytically
(if possible) or numerically (via bootstrap resampling); (ii) reparameterize the McDonald-
Chen distribution in terms of the median and propose a regression model to model the
median; and (iii) perform inference studies on the McDonald-Chen regression model and
diagnostic analysis.

Author contributions Conceptualization, L.D.R.R., G.M.C., J.J.S.S.; methodology,
L.D.R.R., G.M.C., J.J.S.S.; software, L.D.R.R., J.J.S.S.; validation, L.D.R.R., G.M.C.,
J.J.S.S.; formal analysis, L.D.R.R., J.J.S.S.; investigation, L.D.R.R., J.J.S.S.; data curation,
L.D.R.R., J.J.S.S.; writing-original draft preparation, L.D.R.R., J.J.S.S.; writing-review and
editing, G.M.C.; visualization, L.D.R.R., J.J.S.S., G.M.C.; supervision, G.M.C. All authors
have read and agreed the published version of the paper.

Acknowledgements The authors would also like to thank the Editors-in-Chief and the
anonymous reviewers for comments that improved the paper.

Funding The authors would like to thank the Fundação de Amparo à Ciência e Tecnologia
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Cordeiro, G.M., Cintra, R.J., Rêgo, L.C., and Ortega, E.M.M., 2012a. The McDonald normal
Distribution. Pakistan Journal of Statistics and Operation Research, 8, 301–329.

Cordeiro, G.M., Hashimoto, E.M., Ortega, E.M.M., and Pascoa, M.A.R., 2012b. The Mc-
Donald extended distribution: properties and applications. AStA Advances in Statistical
Analysis, 96, 409–433.
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2
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Abstract

In this paper, we explore the family of arctan transformation of a distribution function.

We get some general properties such as those related to the right tail and scale trans-

formation, among others. The results obtained are used to generalize the Pareto Type

II (also known as Lomax) distribution, giving us a distribution with a long right-tail

that admits the zero value in its support. We show some properties and provide closed-

form expressions for the raw moments, the quantile function, the tail value at risk, and

other analytical forms that can be helpful in financial and actuarial settings, such as the

limited expected value, the mean excess function, and the integrated tail distribution.

We also show three numerical illustrations including health expenditure for outpatients,

automobile insurance claim size and to see how the new model works as compared to

other distributions used in the applied statistical literature.
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1. Introduction

Gómez-Déniz and Caldeŕın-Ojeda (2015a) introduced a mechanism to add a shape parame-
ter to a parent distribution by using the arctan trigonometric transformation of this parent
model. They studied the case where the parent distribution was replaced by the classical
Pareto cumulative distribution function (CDF). Due to this transformation, results for this
new model were obtained including very nice properties. The case where the parent survival
function (SF) is the exponential distribution was studied in Caldeŕın-Ojeda et al. (2016).
The discrete case was investigated in Gómez–Déniz et al. (2019), obtaining a generalization
of the geometric distribution. Furthermore, this transformation was also used in income dis-
tribution by Gómez-Déniz (2016), getting the corresponding Lorenz and Leimkhuler curves.
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After showing the general properties of this family, one of its particular cases is investi-
gated, the arctan Pareto type II distribution. We derive some essential properties, which are
simple consequences of the properties of the general family. The flexibility of this distribu-
tion is illustrated by applying it to three empirical data sets and comparing the results to
previously used distributions.

An apparent reason for generalizing a standard or parent distribution is that the general-
ized form provides greater flexibility as compared to the parent distribution. For example,
consider the problem of determining a suitable model for a population for which it is desired
to make a inference. A common way to carry out this task is to use a general model that
includes a simpler one as a particular case or limit. After fitting both models, the one that
yields the best inference is chosen. Experience indicates that the general model produces
better results than the simplest model.

The rest of the paper is structured as follows. Properties of the family of the arctan
transformation of a CDF are studied in Section 2. Section 3 is devoted to the specific subject
of dealing with the Pareto type II distribution. Numerical applications are considered in
Section 4, and finally, Section 5 concludes the work.

2. The arctan transformation and general properties

In this section we firstly illustrate the general procedure to derive the arctan family of
distributions. Next, we present some relevant properties of this family. Finally we show that
the arctan family of probability distributions can be ordered in terms of the usual stochastic
order.

2.1 General methodology

Gómez-Déniz and Caldeŕın-Ojeda (2015b) provided a method to add a scale parameter to
a distribution (parent distribution), obtaining a more flexible distribution than the parent
model. To make this paper self-contained, we reproduce here this methodology which is
based on the tan≠1 (arctan) transformation of the parent distribution.

The half-Cauchy distribution (Jacob and Jayakumar, 2012) truncated at – > 0 has prob-
ability density function (PDF) given by

f(y) = 1
tan≠1

–

1
1 + y2 , 0 < y < –. (2.1)

In the latter expression, tan≠1 is the inverse of the circular tangent function. Let us consider
now the transformation y = –F̄�(x), where F̄� is the SF of a random variable X with
support in [a, b], whereas a and b can be finite or non-finite, and � is a parameter or
vector of parameters. Then, the corresponding PDF of the random variable X obtained
from Equation (2.1) results

f�,–(x) = 1
tan≠1

–

–f�(x)
1 + [–F̄�(x)]2

, (2.2)

for a Æ x Æ b and – > 0. The SF of X, which is obtained from Equation (2.2) by integration,
is stated as

F̄�,–(x) = tan≠1(–F̄�(x))
tan≠1

–
. (2.3)
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Furthermore, it is simple to see that Equations (2.2) and (2.3) are proper PDF and SF,
respectively, when the support of the parameter – is extended to (≠Œ, Œ) except for zero.
In this case, we get that F̄�,–(x) = F̄�,≠–(x). Additionally, by taking in Equation (2.3) limit
when the parameter – tends to zero and applying the L’Hospital rule, it is straightforward
to derive that the parent SF, F̄�, is obtained as a particular case, that is, F̄�,–(x) æ
F̄�(x) when – æ 0. Thus, this methodology can be considered a mechanism to add a scale
parameter to a parent SF and, therefore, a mechanism to obtain a more flexible SF. In
particular, the case where F̄ is replaced by the CDF of the classical Pareto distribution was
considered in Gómez-Déniz and Caldeŕın-Ojeda (2015b) and Gómez-Déniz (2016) and the
case where the parent SF is the classical exponential distribution was studied in Caldeŕın-
Ojeda et al. (2016). The discrete case was studied in Gómez–Déniz et al. (2019) obtaining a
generalization of the classical geometric distribution. Also, in actuarial statistics, the arctan
transformation was first used in Gómez-Déniz and Caldeŕın-Ojeda (2015a).

2.2 Properties

The quantile function is easy to derive from Equation (2.3) and it is given by

x“ = F
≠1
�,–

1
1 ≠ –

≠1 tan(“̄ tan≠1
–)

2
, (2.4)

where “̄ = 1 ≠ “, 0 < “ < 1 and F
≠1 is the inverse of the CDF F . In particular, the median

is expressed as

x0.5 = F
≠1
�,–

1
1 ≠ –

≠1 tan((0.5) tan≠1
–)

2
,

Proposition 2.1 Suppose that the parent SF depends on a vector of parameters � =
(◊1, . . . , ◊s) satisfying F̄�(x/k) = F̄�1(x), being �1 a vector of parameters for which the
parameter j, for some j œ {1, . . . , s} is a scale or rate transformation of ◊, with rate or scale
value k > 0. Then, the arctan distribution preserves also the same transformation.

Proof By denoting Y = k X, and denoting the SF of Y as F̄
Y
�,–, we have that

F̄
Y
�,–(y) = F̄

Y
�,–(kx) = F̄�,–(x/k) = tan≠1(–F̄�(x/k))

tan≠1
–

= tan≠1(–F̄�1(x))
tan≠1

–
= F̄�1,–(x),

where in the last equality we have used the assumption that F̄�(x/k) = F̄�1(x). ⇤
To illustrate Proposition 2.1, consider the exponential distribution with mean � = 1/⁄

and ⁄ > 0. Then, it is simple to verify that

P (kX > x) = P (X > x/k) = exp(≠x/(⁄k)),

that is, the random variable kX follows an exponential distribution with parameter �1 =
1/(⁄k). Now, the arc transformation of the exponential distribution has SF given by

F̄�,–(x) = tan≠1(– exp(≠x/⁄))
tan≠1

–
,

which satisfies F�,–(x/k) = F�1,–(x) as it can be verified in a simple way.
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It is already known that any probability distribution, that is specified through
its CDF F (x) on the real line, is heavy right-tailed (Rolski et al., 1999) if
lim supxæŒ(≠ log(F̄ (x)/x)) = 0. Observe that ≠ log(F̄ (x) is the hazard function of F (x).
Next, a result shows that, under mild condition, the family of SF provided in Equation (3.8)
is a heavy-tailed distribution.

Proposition 2.2 Suppose that the PDF of the parent distribution in the family stated in
Equation (2.2) satisfies that

lim sup
xæŒ

f�(x) = 0. (2.5)

Then, the CDF F�,– of the family defined in Equation (3.8) is a heavy-tailed distribution.

Proof We have that

lim sup
xæŒ

1
x

log F̄�,–(x) = ≠ 1
tan≠1

–
lim sup

xæŒ

log(tan≠1(–F̄�(x)))
x

= –

tan≠1
–

lim sup
xæŒ

f�(x)
1 + –2[F̄�(x)]2

= 0,

after applying the L’Hospital rule. The fact that lim supxæŒ F̄�(x) = 0 and the assumption
that lim supxæŒ f�(x) = 0 conduct to the result.⇤

In this case, the distribution fails to possess any positive exponential moment, that is,s
exp(sx)dF (x) = Œ for all s > 0 (Foss et al., 2011, Ch. 1, p. 2). Distributions of this type

have moment generating function MF (s) = Œ, for all s > 0, as occurs, for example, with the
lognormal distribution. As a consequence of the last result, we have the following corollary.

Corollary 2.3 It is verified that lim supxæŒ exp(sx)F̄�,–(x) = Œ, for s > 0.

Proof This is a direct consequence of Proposition 2.2.⇤
An important issue in extreme value theory is the regular variation (Bingham, 1987 and

Konstantinides, 2018). This is, a fexible description of the variation of some function ac-
cording to the polynomial form of the type x

≠” + o(x≠”), ” > 0. This concept is formalized
in the following definition.

Definition 2.4 A CDF (measurable function) is called regular varying at infinity with
index ≠” if it holds

lim sup
xæŒ

F̄ (·x)
F̄ (x)

= ·
≠”

,

where · > 0 and the parameter ” Ø 0 is called the tail index.

The next result establishes that if the SF of the parent distribution stated in Equation
(3.8) is a regular variation Lebesgue measure, then the SF given in Equation (3.8) is also a
regular variation Lebesgue measure.

Proposition 2.5 Let F̄�(x) ibe a regular variation Lebesgue measure. Then, the SF given
in Equation (2.3) is also a SF with regularly varying tails.
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Proof Consider the SF given in Equation (2.3). Then, we have

lim sup
xæŒ

F̄�,–(·x)
F̄�,–(x)

= lim sup
xæŒ

f�(·x)
f�(x)

1 + –
2[F̄�(x)]2

1 + –2[F̄�(·x)]2
= ·

≠(�+1)
,

after applying the L’Hospital rule. The fact that lim supxæŒ F̄�,–(·x) =
lim supxæŒ F̄�,–(x) = 0 and that f�(·x)/f�(x) æ ·

� when x æ Œ, conduct to
the result.⇤

In actuarial setting and also into the individual and collective risk models the practitioner
is usually interested in the random variable Sn =

qn
i=1 Xi for n Ø 1. Although in practice,

its PDF is di�cult or impossible to calculate, we can approximate its probabilities by using
the following Corollary, which is an immediate consequence of Proposition 2.5 (Jessen and
Mikosch, 2006).

Corollary 2.6 Let X1, . . . , Xn be independent identically distributed random variables
with common SF given by Equation (2.3) and Sn =

qn
i=1 Xi, n Ø 1. Then, we get

P (Sn > x) ≥ P (X > x) as x æ Œ. (2.6)

Therefore, if Pn = maxi=1,...,n Xi, for n Ø 1, we have that

P (Sn > x) ≥ nP (X > x) ≥ P (Pn > x).

This means that, for large x, the event {Sn > x} is due to the event {Pn > x}. Therefore,
exceedences of high thresholds by the sum Sn are due to the exceedence of this threshold
by the largest value in the sample.

As Jessen and Mikosch (2006) pointed out, expression given in Equation (2.6) can be
taken as the definition of a subexponential distribution. The class of those distributions
is greater than the class of regularly varying distributions. The result given in Corollary
2.6 remains valid for subexponential distributions in the sense that subexponentiality of
Sn implies subexponentiality of X1. Usually, this property is referred to as convolution root
closure of subexponential distributions. More details can be viewed in Embrechts and Goldie
(1980) and Embrechts and Goldie (1982).

2.3 Stochastic ordering

Next, a stochastic representation of the parameters of the given family in Equation (2.3)
is studied. As it is well known, many parametric families of distributions can be stated by
means of some stochastic orders according to the value of its parameters. For the general
family of distributions given in Equation 2.3, it is di�cult to establish an order in terms of
the likelihood ratio order (Ross, 1996; Shaked and Shanthikumar, 2007). For a particular
choice of the main distribution, this is possible (Gómez-Déniz and Caldeŕın-Ojeda, 2015a).
However, a weaker but also useful result may be obtained, as shown below.

Definition 2.7 Let us consider two random variables X�1 and X�2 , with X�1 preceding
X�2 in the stochastic dominance sense or X�1 being smaller than X�2 . In this case, the
notation X�1 ÆST X�2 is used, if and only if the CDF of X�1 always exceeds X�2 , that is,

F�1(x) Ø F�2(x), ≠Œ < x < Œ,
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where F�1 and F�2 are the CDFs of X�1 and X�2 respectively. Note that this expression is
the same as

F̄�1(x) Æ F̄�2(x), ≠Œ < x < Œ.

In the following, we provide two stochastic orderings. In the first one the order is given
by fixing the shape parameter – and modifying the parameters of the parent distribution,
whereas in the second one we have fixed the parameters vector of the parent distribution
and changed the parameter –.

Proposition 2.8 Let us consider two random variables X1 and X2 with CDFs F�1(x) and
F�2(x), respectively such that X1 is stochastically smaller than X2 (X1 ÆST X2), that is,
F�1(x) Ø F�2(x) for �1 Æ �2. Then, the arctan transformation preserves this stochastic
order, that is, F�1,–(x) Ø F�2,–(x).

Proof Since the arctan function is monotone, we have that

F�1(x) Ø F�2(x) =∆ –F�1(x) Ø –F�2(x) =∆ tan≠1(–F�1(x)) Ø tan≠1(–F�2(x))

=∆ tan≠1(–F�1(x))
tan≠1

–
Ø tan≠1(–F�2(x))

tan≠1
–

=∆ F�1,–(x) Ø F�2,–(x).

Hence, the result is obtained.⇤
Theorem 2.9 Let X1 and X2 be two random variables with PDFs f�,–1(x) > 0 and
f�,–2(x) > 0 obtained from Equation (2.2), respectively. If –1 Æ –2, then X1 ÆLR X2.

Proof Note that the ratio

f�,–2(x)
f�,–1(x) = –2 tan≠1

–1
–1 tan≠1

–2
m�,–1,–2(x)

is non-decreasing if and only if m
Õ
�,–1,–2(x) Ø 0 for x in their support, where

m�,–1,–2(x) = 1 + [–1F̄�(x)]2

1 + [–2F̄�(x)]2
.

Some calculations show that

m
Õ
�,–1,–2(x) = 2f�(x)F̄�(x)(–2

2 ≠ –
2
1)m�,–1,–2(x)

(1 + [–1F̄�(x)]2)(1 + [–2F̄�(x)]2)
.

Now, taking into account that –1 Æ –2, then m�,–1,–2(x) Ø 0 and the result holds.⇤
We have now the following corollary.

Corollary 2.10 Let X1 and X2 be two random variables with PDFs f�,–1(x) > 0 and
f�,–2(x) > 0 obtained from Equation (2.2), respectively and hazard rates h�,–1(x) and
h�,–2(x), being h�,–(x) = f�,–(x)/F̄�,–(x), respectively. If –1 Æ –2 then,

(i) E(Xk
1 ) Æ E(Xk

2 ) for all k > 0,

(ii) h�,–1(x) Æ h�,–2(x) for all x in their support.
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Proof It is well-known (Shaked and Shanthikumar, 2007) that

X1 ÆLR X2 =∆ X1 ÆHR X2 =∆ X1 ÆST X2. (2.7)

Therefore, (i) follows from Theorem 2.9 and Equation (2.7) by taking into account that
X1 ÆST X2 holds if and only if

E [� (X1)] Æ E [� (X2)] for all non-decreasing function �.

Similarly, (ii) follows by combining Theorem 2.9 and Equation (2.7). Thus, in consequence,
if –1 Æ –2 we have that F̄�,–1(x) Æ F̄�,–2(x).

3. The Lomax arctan distribution

In this section, we firstly introduce the Lomax arctan distribution (LAT hereafter) and
derive some of its more relevant statistical and financial properties.

3.1 Specific model

A particular case of the Pareto Type II distribution is considered here. This distribution is
essentially a classical Pareto distribution modified to get that the support begins at zero. As
it is known, this distribution is widely employed as a model in business, economics, actuarial
science, queueing theory, and internet tra�c modeling, among others. Its SF is given by

F̄�(x) =
3

⁄

⁄ + x

4‡

, x Ø 0, (3.8)

(Fisk, 1961; Suárez-Espinosa et al., 2018) which is a particular case of the Champernowne
distribution (Champrenowne, 1952) and obviously is a scale transformation of the classi-
cal Pareto distribution (Arnold, 1983). A Lomax regression model with varying precision
parameter was recently presented in Melo et al. (2021) In the rest of the paper we use
X ≥ L(‡, –) to point out that X follows a Pareto Type II distribution with the PDF given
in Equation (3.9).

An excellent property of this distribution, apart from having a very tractable SF, is
a fascinating preservation property. That is, if X ≥ L(‡, ⁄), then the random variable
kX ≥ L(‡, k⁄), for k > 0. This property is very useful in economics and actuarial fields
when dealing with inflation. The PDF, derived from Equation (3.8), results

f�(x) = ‡⁄
‡

(x + ⁄)‡+1 , x Ø 0, ‡ > 0, ⁄ > 0. (3.9)

One of the advantages of working with the SF given in Equation (3.8) is the possibility
of dealing with data that includes the zero value, the mode of the distribution. This is
impossible for most classical continuous distributions, such as the gamma and the inverse
Gaussian distribution. Nevertheless, the distribution has limited flexibility for adapting to
empirical data whose modal value is not located at zero. To get a more flexible distribution,
we consider here the tan≠1 transformation of the Pareto Type II distribution. The resulting
distribution, Pareto Type II arctan distribution, it is obtained by applying the Equation
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(2.3) to Equation (3.8) to get the SF given by

F̄�,–(x) = tan≠1(–(1 + x/⁄)≠‡)
tan≠1

–
. (3.10)

Its PDF results

f�,–(x) = –‡

⁄ tan≠1
–

(1 + x/⁄)≠‡≠1

1 + –2(1 + x/⁄)≠2‡
. (3.11)

Figure 1 shows several graphs of the PDF given in Equation (3.11) for di�erent values of its
parameters. It is noted that when the scale parameter – < 1 or the shape parameter ‡ Æ 1,
the mode of the distribution is located at 0, and for values larger than one, the modal value
moves to the right. Observe that the larger are the value of the parameters, the greater is
the modal value.
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Figure 1. PDF the LAT distribution for selected values of parameters ‡, ⁄ and –

Since this distribution is a scale transformation of the Pareto arctan distribution studied
in Gómez-Déniz and Caldeŕın-Ojeda (2015a), we can easily obtain its row moments that are
given by

E(Xr) = –‡⁄
r

tan≠1
–

rÿ

j=0

(≠1)j

‡ ≠ r + j

A
r

j

B

2F1

3
1,

‡ ≠ r + j

2‡
; 3‡ ≠ r + j

2‡
; ≠–

2
4

,

where 2F1 is the hypergeometric function defined as

2F1(a, b; c; z) = �(c)
�(b)�(c ≠ b)

⁄ 1

0
t
b≠1(1 ≠ t)c≠b≠1(1 ≠ tz)≠adt.
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In particular, the mean takes the form

µ = E(X) = –⁄‡

(‡ ≠ 1) tan≠1
–

2F1

3
1,

‡ ≠ 1
2‡

; 3‡ ≠ 1
2‡

; ≠–
2
4

≠ ⁄, ‡ > 1. (3.12)

From Equation (2.4), the quantile function x“ is simply derived as

x“ = ⁄

I5 1
–

tan
1
“̄ tan≠1

–

26≠1/‡

≠ 1
J

, (3.13)

and from Equation (3.13), the median can be easily obtained.
The mode, which can be obtained by di�erentiating Equation (3.11) with respect to the

variable x, is expressed as

xMo = ⁄

S

U
A

–
2(‡ ≠ 1)
1 + ‡

B(2‡)≠1

≠ 1

T

V .

Then, the hazard rate function for the LAT distribution, h�,–(x) = f�,–(x)/F̄�,–(x), which
is obtained from Equations (3.10) and (3.11), has been plotted for the same values of pa-
rameters as considered in the previous Figure. This is shown in Figure 2. It can be observed
that the hazard rate function has a variety of shapes. For example, for values of – < 1, the
hazard rate function is monotonically decreasing and for values of the scale parameters –

and the shape parameter ‡ and scale parameter ⁄ the function is firstly increasing and then
decreasing.
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Figure 2. Failure rate function of LAT distribution for selected values of parameters ‡, ⁄ and –
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We now provide some properties which are consequences of the results obtained in the
previous section.

Proposition 3.1 If X ≥ LAT(‡, ⁄, –) then kX ≥ LAT(‡, k⁄, –).

Proof It is a direct consequence of Proposition 2.1.⇤

Proposition 3.2 The CDF F�,–(x) of the family stated in Equation (3.10), that is, the
LAT distribution is a heavy-tailed distribution.

Proof It is a direct consequence of applying Proposition 2.2 having into account that the
PDF given in Equation (3.9) satisfies Equation (2.5).

Proposition 3.3 The SF given in Equation (3.10) is a SF with regularly varying tails.

Proof It is a consequence of the result provided in Proposition 2.5, having into account
that the SF given in Equation (3.8) verifies

lim sup
xæŒ

F̄�(·x)
F̄�(x)

= ·
≠‡

.

Now, because ‡ > 0, we have the result.⇤

3.2 Further properties

We provide here some other properties which can be helpful in financial and actuarial fields.
Let the random variable

Z = X · Ê =
;

X, X < Ê,

Ê, X Ø Ê,

which is an amount used in excess of loss reinsurance context with excess level Ê > 0.
Insurance companies widely use this tool to reduce the amount paid on larger claims. Its
expected value, E(X · Ê), is referred to as the limited expected value in insurance context.
Obviously, it is a right-censored variable for which it is easy to see (Hogg and Klugman,
1984; Boland, 2007) that can be computed as

E(X · Ê) = E[min(X, Ê)] =
⁄ Ê

0
x f(x) dx + Ê F̄ (Ê). (3.14)

Furthermore, it represents the expected amount per claim retained by the insured on a
policy with a fixed amount deductible of Ê. Thus, defining the expected dollar (or other
monetary units) saving per incident when a deductible is imposed (Klugman et al., 2008,
Ch. 3).

For the LAT distribution, the limited expected value given by Equation (3.14) is expressed
as

E(X · Ê) = (Ê + ⁄)F̄�,–(Ê) ≠ ⁄ + H
1
�,–(Ê) ≠ H

2
�,–(Ê), (3.15)
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where

H
1
�,–(Ê) = ⁄ + Ê

F̄ (Ê) 2F1

3
1,

1 + ‡

2‡
; 1
2

3
3 + 1

‡

4
; (–F̄�,–(Ê))≠2

4
, (3.16)

H
2
�,–(Ê) = ⁄ 2F1

3
1,

1 + ‡

2‡
; 1
2

3
3 + 1

‡

4
; (–F̄�,–(Ê))≠2

4
, (3.17)

which can be obtained also by using a scale transformation of the classical Pareto distribution
(Gómez-Déniz and Caldeŕın-Ojeda, 2015a).

The value at risk (VaR) is defined as the amount of capital required to ensure that the
insurer does not become insolvent with a high degree of certainty. The VaR of a random
variable X which follows the LAT distribution is the 100qth quantile and therefore coincides
with Equation (3.13).

It is known that the use of the VaR is questionable due to the lack of subadditivity.
For that reason, the expected loss given that the loss exceeds the 100qth quantile of the
distribution of X, that is, the tail value at risk (TVaR), is considered. Then, if X follows a
LAT distribution, for any quantile q, the tail value at risk, can be obtained again by a scale
transformation of the TVaR of the classical Pareto distribution and is given by

TVaR(X; q) = 1
1 ≠ q

⁄ 1

q
VaR(x; q) dq = –⁄‡

q̄(‡ ≠ 1) tan≠1
–

C
tan(q̄ tan≠1

–)
–

D1≠1/‡

◊ 2F1

3
1,

‡ ≠ 1
2‡

; 3
2 ≠ 1

2‡
; ≠ tan2(q̄ tan≠1

–)
4

≠ ⁄.

The integrated tail distribution (also known as equilibrium distribution) is an important
distribution that often appears in insurance and many other applied probability models.

Let F̄ be the SF given in Equation (3.10). Then, the integrated tail distribution of F (for
instance, Klüppelberg, 1988 and Yang, 2004) is defined as F

I(x) = (1/E(X))
s x

0 F̄ (y) dy.
For the distribution proposed in this work, as proven in the following result, the integrated
tail distribution can be written as a closed-form expression and given by

F
I
�,–(x) = 1

µ

Ë
(x + ⁄)F̄�,–(x) ≠ ⁄

È
+ ‡

–µ(‡ + 1) tan≠1
–

Ë
H

1
�,–(x) ≠ H

2
�,–(x)

È
, (3.18)

where H
j
�,–(x), for j = 1, 2, are given in Equations (3.16) and (3.17), respectively, whereas

F̄�,– and µ are defined in Equations (3.10) and (3.12), respectively. Under the classical
model (Embrechts and Veraverbeke, 1982; Yang, 2004) and assuming a positive security
loading, fl, for the claim size distributions with regularly varying tails we have that, by
using Equation (3.18), it is possible to obtain an approximation of the probability of ruin,
�(u), when u æ Œ. In this case, the asymptotic approximation of the ruin function is
stated as �(u) ≥ (1/fl)F̄ I(u), for u æ Œ, where F̄

I(u) = 1 ≠ F
I(u).

The failure rate of the integrated tail distribution, which is expressed as “I(x) =
F̄ (x)/

s Œ
x F̄ (y) dy, is also obtained in closed-form. Furthermore, the reciprocal of “I is the

mean residual life that can be easily derived. For a claim amount random variable X, the
mean excess function (also known as the conditional mean exceedence) is the expected pay-
ment per claim for a policy with a fixed amount deductible of x > 0, where claims with
amounts less than or equal to x are wholly ignored. Then, we have that

e(x) = E(X ≠ x|X > x) = 1
F̄ (x)

⁄ Œ

x
F̄ (u) du. (3.19)
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This function is also essential in an actuarial setting, when we deal with reinsurance (Al-
brecher et al., 2017). If X is a lifetime, as in demography or reliability, Equation (3.19) is
recognized as the mean residual lifetime. The following result gives the mean excess function
of the LAT distribution in a closed-form expression.

Proposition 3.4 The mean excess function of the LAT distribution is given by

e�,–(x) = 1
F̄�,–(x)

C

µ + ⁄ ≠
‡(H1

�,–(x) ≠ H
2
�,–(x))

–(1 + ‡) tan≠1
–

D

≠ (x + ⁄), (3.20)

where H
j
�,–(x), for j = 1, 2, are given in Equations (3.16) and (3.17), respectively, whereas

F̄�,– and µ are given in Equations (3.10) and (3.12), respectively.

Proof Using the expression

e(x) = E(X) ≠ E(X · x)
F̄ (x)

,

which relates the mean excess function given in Equation (3.19) with the limited expected
value function (Hogg and Klugman, 1984, p. 59), the result follows by using and Equations
(3.12), (3.10), (3.15) and a some little algebra.⇤

Figure 3 shows the mean residual life function given in Equation (3.20) for special cases
of parameters. It can be seen that this function can be increasing, decreasing, unimodal or
anti-unimodal.
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Figure 3. Mean residual life function of LAT distribution for selected values of parameters
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4. Illustrative examples

In this section, we examine the practical performance of the LAT distribution in three
examples that can be found in the personal web page of Professor E. Frees Frees (2010)
(examples 1 and 3) and another one available in Klugman (1991) (example 2). All the data
used in this work are displayed in Appendix.

The parameters are estimated using WinRats (Brooks, 2009) for examples 1 and 2, while
Mathematica v.12.0 (Ruskeepaa, 2009) is used for example 3. The values of the supplied
tests and the p-values were obtained using the R software. Graphical plots have been made
employing Mathematica and R. All calculations were carried out on Windows-supported
computers with an i7-7700 CPU@3.60GHz processor with response times for all examples
standard.

4.1 Example 1

The data were obtained from the Medical Expenditure Panel Survey (MEPS), conducted
by the U.S. Agency of Health Research and Quality. MEPS is a probability survey that
provides nationally representative estimates of health care use, expenditures, sources of
payment, and insurance coverage for the U.S. civilian population. The variable of interest
consist of amounts of expenditures for outpatient (EXPENDOP) visits. In the first row of
Table 1, we report the descriptive statistics of the empirical data that seems to be unimodal
and positively skewed. In Figure 4(al), it is displayed the histogram of the empirical data
and the PDF plot corresponding to Example 1.

The log-likelihood function together with the normal equations, which provide the maxi-
mum likelihood estimates, are shown in Appendix of this article.

Table 1. Descriptive statistics of the data sets used in the indicated example.

Example n Mean Standard deviation Minimum Maximum
1 75 4.95594 9.32897 0 62.8111
2 30 9.54 14.16 0 59
3 1091 5.3262 16.1746 0.005 273.604
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Figure 4. Empirical histograms and PDF plots for examples 1 (a), 2 (b) and 3 (c).

We compare the LAT distribution introduced in this work with other competing models
proposed in the literature that have the capacity to incorporate zero observations in the
sample. As a benchmark, we consider the classical exponential distribution with mean 1/⁄,
for ⁄ > 0, the Lomax distribution and the generalized exponential distribution due to
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Marshall and Olkin (1997), with SF given by

F̄ (x) = ⁄ exp(≠‡x)
1 ≠ ⁄̄ exp(≠‡x)

, x Ø 0, ‡ > 0, ⁄ > 0,

and ⁄̄ = 1 ≠ ⁄.
In Table 2 are exhibited the parameter estimates together with their standard errors (in

brackets) for the four models considered. It can be seen that the LAT distribution provides
the best fit to data in terms of the two measures of model selection examined, negative
of the maximum of the log-likelihood function (NLL) and Akaike information criterion
(AIC). Model selection was also assessed from a practical perspective using the Kolmogorov-
Smirnov (KS) and the Crámer-von Mises (CM) goodness-of-fit tests to quantify the distance
between the empirical CDF (ECDF) constructed from the data and the ones generated from
the fitted models. Let ‚F denote the CDF of the fitted model, the original data by x1, . . . , xN

and the ordered data in increasing magnitude by x(1), . . . , x(N). Then the expressions of the
KS and CM statistics are defined as:

(i) Kolmogorov-Smirnov test statistic: D = max(D+
, D

≠), where

D
+ = max

1ÆjÆN

----
j

N
≠ ‚F (x(j))

---- , D
≠ = max

1ÆjÆN

---- ‚F (x(j)) ≠ j ≠ 1
N

---- .

(ii) Crámer-von Mises test statistic:

W
2 =

Nÿ

j=1

5
‚F (x(j)) ≠ 2j ≠ 1

2N

62
+ 1

12N
.

Results on the goodness of fit of the four parametric models considered are also presented
in last four rows of Table 2. Note that the LAT distribution yields lower values for both test
statistics and it is not rejected for both tests as judged by the corresponding p-values.

Table 2. Example 1. Parameter estimates for the exponential (E), Lomax (L), generalized exponential (GE)

and LAT distributions via maximum likelihood estimation. Standard errors are provided in parenthesis and

p-values for the KS and CM tests between brackets.

Parameter E L GE LAT
‚⁄ 0.202 0.181 0.129 4.624

(0.023) (0.085) (0.077) (0.209)
‚‡ 2.106 0.058 1.991

(0.718) (0.029) (0.048)
‚– -0.581

(0.238)
n 75 75 75 75

NLL 195.044 182.833 183.653 182.811
AIC 392.088 369.666 371.306 371.622
KS 0.157 0.747 0.107 0.077

[0.10] [< 0.001] [0.652] [0.97]
CM 0.752 0.227 0.191 0.127

[0.007] [0.237] [0.293] [0.460]
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4.2 Example 2

In the second example, we use data that can be found in Appendix of Klugman (1991).
In particular, we employ the data set 2 ,where the loss value for the first year in the 30
first classes have been taken. The second row of Table 1 shows the descriptive statistics of
this second data set and in the middle panel of Figure 4 are illustrated the ECDF and the
smooth CDF for the second example. In Table 3, we report the parameter estimates together
with their standard errors (in brackets) for four of the models previously considered. Once
again, it can be seen that the LAT distribution provides a marginal best fit data in terms
of the negative of the NLL. However, when the AIC is considered, the GE distribution
provides a slightly better fit to this dataset. Model selection was also assessed via KS and
CM goodness-of-fit tests to quantify the distance between the ECDF constructed from the
data and the ones generated from the fitted models. As judged by these tests, the LAT
distribution is not rejected at usual significance levels.

Table 5 reports empirical and theoretical limited expected values for the LAT distribution
with di�erent values of the policy limit x, using the parameter estimates calculated for the
dataset given in Example 2 and the expression defined in Equation (3.15). Note that for
large values of x, that is, when x tends to infinity, the limited lev approaches to the mean
of the distribution. Nevertheless, as in this case – < 1, the mean does not exist.

Table 3. Example 2. Parameter estimates for the exponential (E), Lomax (L), generalized exponential (GE)

and LAT distributions via maximum likelihood estimation. Standard errors are provided in parenthesis and

p-values for the KS and CM tests between brackets.

Parameter E L GE LAT
‚⁄ 0.105 0.188 0.129 3.07 ◊ 10≠6

(0.019) (0.174) (0.123) (0.003)
‚‡ 1.340 0.034 0.176

(0.751) (0.027) (0.016)
‚– -7.639

(0.116)
n 30 30 30 30

NLL 97.644 93.726 93.034 63.969
AIC 197.288 191.452 190.068 133.938
KS 0.300 0.629 0.200 0.264

[0.071] [8.2 ◊ 10≠7] [0.586] [0.134]

4.3 Example 3

The third dataset deals with automobile bodily injury claims data from the Insurance Re-
search Council (IRC), a division of the American Institute for Chartered Property Casualty
Underwriters and the Insurance Institute of America. The data, collected in 2002, contain
information on demographic information about the claimant, attorney involvement and the
economic loss (in thousands of US$). We consider a sample of 1091 losses from a single
state. The third row of Table 1 reports descriptive statistics of this third data set, and in
the bottom panel of Figure 4, the ECDF and the smooth CDF are displayed for the third
example.

In Table 5, we report the parameter estimates together with their standard errors (in
brackets) for the LAT and GE distributions and two models traditionally used to explain
income data the lognormal (LO) distribution with parameters ⁄ œ (≠Œ, Œ) and ‡ > 0 and
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Table 4. Empirical and theoretical limited expected value for the LAT distribution and di�erent values of

the policy limit x for the second example dataset.

Policy limit (x) Empirical Fitted
0 0.00 0.00
2 1.50 0.99
4 2.70 1.82
6 3.57 2.58
8 4.27 3.31

10 4.94 4.02
12 5.47 4.70
14 5.90 5.37
16 6.27 6.02
18 6.60 6.66
20 6.94 7.29
22 7.20 7.91
24 7.40 8.53
26 7.60 9.13
28 7.77 9.73
30 7.90 10.32
32 8.04 10.90
34 8.17 11.48
36 8.30 12.05
38 8.44 12.62
40 8.57 13.18
42 8.70 13.74
44 8.84 14.30
46 8.97 14.85
48 9.10 15.40
50 9.24 15.94

the Singh-Maddala (SM) distribution with SF given by

F̄ (x) =
C

1 +
3

x

‡

4⁄
D≠–

, x Ø 0, ‡ > 0, ⁄ > 0, – > 0. (4.21)

Observe that the special case ‡ = 1 reduces Equation (4.21) to the Burr type XII distribution
studied by Rezac et al. (2015). Once again, it can be seen that the LAT distribution provides
the best fit to data in terms of the two measures of model selection examined, negative of
the NLL and AIC. Model selection was also assessed via KS and CM goodness-of-fit tests to
quantify the distance between the ECDF constructed from the data and the CDFs generated
from the fitted models. As judged by the measures of model selection, the LAT distribution
provides the best fit to the data. Moreover, although the LAT distribution is rejected in
terms of the KS test and the CM test at the usual significance levels, the value of the test
statistics are the lower among all the models considered.
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Table 5. Example 3. Parameter estimates for the generalized exponential (GE), lognormal (LO), Singh-

Maddala (SM) and LAT distributions via maximum likelihood estimation. Standard errors are provided in

brackets and p-values between brackets.

Parameter GE LO SM LAT
‚⁄ 0.051 0.620 1.103 2.283

(0.013) (0.085) (0.044) (0.042)
‚‡ 0.025 1.445 3.672 1.667

(0.006) (0.045) (0.031) (0.566)
‚– 1.643 -1.709

(0.188) (0.514)
n 1091 1091 1091 1091

NLL 2637.87 2626.74 2601.69 2598.20
AIC 5279.74 5257.48 5209.38 5202.39
KS 0.089 0.093 0.062 0.052

[< 0.001] [< 0.001] [< 0.001] [0.005]
CM 2.715 2.446 1.200 1.002

[< 0.001] [< 0.001] [< 0.001] [0.004]

5. Conclusions, limitations, and future research

In this paper, we derive several properties related to the family of arctan transformation
of a survival function, mainly those connected with the right tail of the distribution. After
this, we introduced the arctan transformation of the Pareto Type II distribution, a scale
transformation of the classical Pareto distribution. This is a model for non-negative con-
tinuous random variables, including the zero value in its support. We have provided in
closed-form expression the raw moment, quantile function, the tail value at risk, and other
functions which can be helpful in the financial and actuarial field, such as the integrated
tail distribution, the limited expected value, and the mean excess function.

The performance of this new family of distributions has been illustrated by using three
di�erent data sets. The first one was associated with the expenditures for outpatients; the
second one was related to the third party automobile insurance claims; and the final exam-
ple considered automobile injury claims. Numerical results showed that the Lomax arctan
distribution is helpful to explain heavy-tailed empirical data. However, although this distri-
bution is able to capture the presence of zeros in the data, if the proportion of zeros is too
high, the model has a worse performance in relation to the other models, as it is shown in
the second example.

Further analysis of this probabilistic family remains as a topic for future studies. In this
regard, investigation of the multivariate version of the arctan transformation is a topic that
deserves to be examined in upcoming works in depth in upcoming works.
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Gómez-Déniz, E., 2016. A family of arctan Lorenz curves. Empirical Economics, 51, 1215–
1233.
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Appendix

Let us assume that X1, . . . , Xn is a random sample selected from the distribution given in
Equation (3.11), with their observations denoted by x1, . . . , xn. The corresponding likelihood
function is given by

¸(�, –; x̃) = n(log(–) + log(‡) ≠ log(⁄) ≠ log(tan≠1(–)) ≠ (‡ + 1)
nÿ

i=1
log(1 + xi/⁄)

≠
nÿ

i=1
log

1
1 + –

2(1 + xi/⁄)≠2‡
2

. (5.22)

The normal equations obtained from Equation (5.22) are stated as

ˆ¸(�, –; x̃)
ˆ‡

= n

‡
≠

nÿ

i=1
log(1 + xi/⁄) + 2–

2
nÿ

i=1

(1 + xi/⁄)≠2‡ log(1 + xi/⁄)
1 + –2(1 + xi/⁄)≠2‡

= 0, (5.23)
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ˆ¸(�, –; x̃)
ˆ⁄

= ≠n

⁄
+ ‡ + 1

⁄2

nÿ

i=1

xi

1 + xi/⁄
+ 2‡–

2

⁄2

nÿ

i=1

xi(1 + xi/⁄)≠2‡≠1

1 + –2(1 + xi/⁄)≠2‡
= 0,

ˆ¸(�, –; x̃)
ˆ–

= n

5 1
–

≠ 1
(1 + –2) tan≠1

–

6
≠ 2–

nÿ

i=1

(1 + xi/⁄)≠2‡

1 + –2(1 + xi/⁄)≠2‡
= 0, (5.24)

from which we can get the maximum likelihood estimates of the parameters by a numerical
method such as Newton-Raphson. On taking the second partial derivatives of Equations
(5.23)-(5.24), the Fisher information matrix I(�, –) can be obtained by taking the expec-
tations of minus the second derivatives. The inverse of the matrix provides the variances for
the maximum likelihood estimators.
Table 6. Data for example 1.

1.4683 35.9342 0 0 7.24614 4.62498 3.80673 1.95896
4.62158 3.72445 0.87823 0.28698 1.80114 6.73978 3.69576 0.06081
3.56721 24.2046 5.82075 6.46576 2.53495 0.69315 1.68874 0.82613
5.32987 3.46299 1.68822 0.03755 6.47876 2.58618 9.5353 0.54148
1.95018 1.18143 3.74168 0.77534 2.88031 2.40923 3.00777 0.36825
0.59158 0.05376 5.8413 0.17115 1.78891 0.47681 0.68236
62.8111 0.12816 4.18265 5.37448 1.99109 3.76849 0.31383
1.45670 3.44599 1.19869 2.56363 2.01848 2.56077 5.63908
5.99927 3.08074 29.1859 5.20015 4.06117 2.13937 2.85663
26.0717 0.11700 1.83426 0 10.8975 0.19800 4.37083

Table 7. Data for example 2.

1 3 5 0 15 27 0 3 0 11
6 20 0 13 11 4 22 0 3 50
10 4 7 1 59 2 1 3 5 0
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