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Abstract

This study focuses on R × R ordinal square contingency tables. Ordinal square con-
tingency tables are always obtained by cross-classifying the matched-pair data of the
two ordinal categorical variables with the same classifications. A well-known model in
square contingency tables is the symmetry model. This study focuses on the relation-
ship between the symmetry and sum-symmetry models. The sum-symmetry model has
a symmetric structure between the probability that the sum of row variable X and col-
umn variable Y is t, when X < Y , for t = 3, . . . , 2R − 1 and the probability that the
sum of X and Y is t, when X > Y . The sum-symmetry model inevitably holds when
the symmetry model holds, but the converse is not necessarily true. This study pro-
poses a model that must be satisfied in addition to the sum-symmetry model, to satisfy
the symmetry model. We also reveal that the value of the likelihood ratio chi-squared
statistic of the symmetry model is equal to the sum of chi-squared statistic of the sum-
and sum-parameter symmetry models. We evaluate the utility of these properties by
applying them to real-world vision data.

Keywords: Matched-pair data · Necessary and sufficient condition · Ordinal
categorical data · Sum-parameter symmetry · Test statistic.
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1. Introduction

Contingency tables are widely used in many disciplines, including data science, engineering
and scientific research, see, Agresti (2013), Vélez and Marmolejo-Ramos (2017).

This study focuses on R × R ordinal square contingency tables. Ordinal square contin-
gency tables are always obtained by cross-classifying the matched-pair data of the two or-
dinal categorical variables with the same classifications. For such data, we examine whether
the probability of the observations falling in the (i, j)th cell of the table, when i < j, is
equal to the probability of the observations falling in the (j, i)th cell. In other words, we
analyze whether there is symmetry in cell probability in regard to the main diagonal cells
of the table. The symmetry (S) model proposed by Bowker (1948) is useful for analyzing
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the above structure. Other models, with weaker constraints than the S model, have also
been proposed, for example, McCullagh (1978) introduced the conditional symmetry (CS)
model, while Read (1977) introduced the global symmetry (GS) model. Moreover, Read
(1977) revealed (i) the decomposition theorem—the S model holds, if and only if, both the
CS and GS models hold—, and (ii) the orthogonality of the test statistics—the value of
the likelihood ratio chi-squared statistic (denoted by G2) of the S model is equal to the
sum of G2 of the CS and GS models. This decomposition theorem is useful to evaluate the
cause that the symmetry model does not hold—decomposition theorem is one of the priority
disciplines of the research on square contingency tables.

Yamamoto et al. (2013) introduced the sum-symmetry (SS) and conditional sum-
symmetry (CSS) models. Yamamoto et al. (2013) also revealed that (i) the decomposition
theorem—the SS model holds, if and only if, both the CSS and GS models hold—, and (ii)
the orthogonality of the test statistics for this decomposition theorem.

This study focuses on the relationship between the S and SS models. The SS model
inevitably holds when the S model holds, but the converse is not necessarily true. We want
to propose a model that must be satisfied in addition to the SS model, to satisfy the S
model. Moreover, we reveal that the value of G2 of the S model is equal to the sum of G2

of the SS and proposed models.
The rest of this paper is organized as follows. Section 2 introduces the S, SS, and proposed

models, and gives the orthogonality of the test statistics—the value of G2 of the S model is
equal to the sum of G2 of the SS and proposed models. Section 3 evaluates the utility of the
properties given by this study by applying them to real-world data. Section 4 closes with
concluding remarks.

2. Orthogonal decomposition of the statistical model

2.1 Statistical model

In this section, first, we describe the models introduced in Section 1.
Let X and Y be the row and column variables, respectively. The S model is defined by

P(X = i, Y = j) = P(X = j, Y = i) (i < j).

The S model indicates that the probability of the observations falling in the (i, j)th cell of
the table, when i < j, is equal to the probability of the observations falling in the (j, i)th
cell. Thus, the S model indicates the symmetric structure of the cell probabilities in regard
to the main diagonal cells of the table.

The CS model is defined by

P(X = i, Y = j) = ∆P(X = j, Y = i) (i < j).

The CS model indicates that the probability of the observations falling in the (i, j)th cell of
the table, when i < j, is ∆ times higher than the probability of the observations falling in the
(j, i)th cell. Thus, the CS model indicates the asymmetric structure of the cell probabilities
in regard to the main diagonal cells of the table. Note that the CS model with ∆ = 1 is
equivalent to the S model. Therefore, the CS model inevitably holds when the S model
holds, but the converse is not necessarily true.

Read (1977) showed that the GS model must be satisfied in addition to the CS model, to
satisfy the S model. The GS model is defined by

P(X < Y ) = P(X > Y ).
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Yamamoto et al. (2013) proposed the SS and CSS models. The SS model is defined by

P(X + Y = t,X < Y ) = P(X + Y = t,X > Y ) (t = 3, . . . , 2R− 1).

The SS model indicates that the probability that the sum of X and Y is t when X < Y , for
t = 3, . . . , 2R− 1 is equal to the probability that the sum of X and Y is t when X > Y .

The CSS model is defined by

P(X + Y = t,X < Y ) = ∆P(X + Y = t,X > Y ) (t = 3, . . . , 2R− 1).

The CSS model indicates that the probability that the sum of X and Y is t when X < Y , for
t = 3, . . . , 2R− 1 is ∆ times higher than the probability that the sum of X and Y is t when
X > Y . Note that the CSS model with ∆ = 1 is equivalent to the SS model. Therefore,
the CSS model inevitably holds when the SS model holds. However, the converse is not
necessarily true. Yamamoto et al. (2013) also showed that the GS model must be satisfied,
in addition to the CSS model, to satisfy the SS model.

Although the details are omitted, in recent years, there has been some researches on
models with respect to the sum of row and column variables. For example, see Yamamoto
et al. (2016), Iki and Tomizawa (2020), Ando (2021a,b).

This study focuses on the relationship between the S and SS models. When the number
of categories R is less than or equal to three, the SS model is equivalent to the S model.
When R = 3, the SS model is expressed as follows:

P(X + Y = 3, X < Y ) = P(X + Y = 3, X > Y )
⇔ P(X = 1, Y = 2) = P(X = 2, Y = 1),

P(X + Y = 4, X < Y ) = P(X + Y = 4, X > Y )
⇔ P(X = 1, Y = 3) = P(X = 3, Y = 1) and

P(X + Y = 5, X < Y ) = P(X + Y = 5, X > Y )
⇔ P(X = 2, Y = 3) = P(X = 3, Y = 2).

However, when R = 4, the SS model is expressed as follows:

P(X + Y = 3, X < Y ) = P(X + Y = 3, X > Y )
⇔ P(X = 1, Y = 2) = P(X = 2, Y = 1),

P(X + Y = 4, X < Y ) = P(X + Y = 4, X > Y )
⇔ P(X = 1, Y = 3) = P(X = 3, Y = 1),

P(X + Y = 5, X < Y ) = P(X + Y = 5, X > Y )
⇔ P(X = 1, Y = 4) + P(X = 2, Y = 3)

= P(X = 4, Y = 1) + P(X = 3, Y = 2),
P(X + Y = 6, X < Y ) = P(X + Y = 6, X > Y )

⇔ P(X = 2, Y = 4) = P(X = 4, Y = 2) and
P(X + Y = 7, X < Y ) = P(X + Y = 7, X > Y )

⇔ P(X = 3, Y = 4) = P(X = 4, Y = 3).

We see that when R is more than or equal to four, the SS model is different from the S
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model.
Therefore, when R is more than or equal to four, we want to propose a model that must

be satisfied, in addition to the SS model, to satisfy the S model. Moreover, as in Read (1977)
and Yamamoto et al. (2013), the proposed model should satisfy the assumption that the
value of G2 of the S model is equal to the sum of G2 of the SS and proposed models.

We propose the sums-parameter symmetry (SPS) model as the model that must be sat-
isfied, in addition to the SS model, to satisfy the S model. The SPS model is defined by

P(X = i, Y = j) = ∆i+jP(X = j, Y = i) (i < j). (2.1)

The SPS model indicates that the probability of the observations falling in the (i, j)th cell
of the table, when i < j, is ∆i+j times higher than the probability of the observations falling
in the (j, i)th cell. The SPS models with {∆i+j = 1} and {∆i+j = ∆} are equivalent to the
S and CS models, respectively. When we replace {∆i+j} with {∆j−i} in Equation (2.1), the
model is equivalent to the diagonals-parameter symmetry model given by Goodman (1979).
Moreover, when we replace {∆i+j} with {∆j−i} in Equation (2.1), the model is equivalent
to the linear diagonals-parameter symmetry model given by Agresti (1983).

2.2 Orthogonal decomposition

In this section, we present the orthogonal decomposition of the S model using SS and SPS
models. We obtain the following decomposition theorem.

Theorem 2.1 The following necessary and sufficient condition holds:

The S model holds, if and only if, both the SS and SPS models hold.

Proof It is clear that the necessary condition (i.e., if the S model holds, then both the SS
and SPS models hold) holds. We need to show that the sufficient condition (i.e., if both SS
and SPS models hold, then the S model holds) also holds. From the SPS model holds, the
following equality also holds:

∑∑
(i,j)∈At

P(X = i, Y = j) = ∆t

∑∑
(i,j)∈At

P(X = j, Y = i) (t = 3, . . . , 2R− 1), (2.2)

where At = {(i, j)|i+ j = t, i < j}.
The SS model can be also expressed as follows:

∑∑
(i,j)∈At

P(X = i, Y = j) =
∑∑
(i,j)∈At

P(X = j, Y = i) (t = 3, . . . , 2R− 1). (2.3)

From Equation (2.2) and (2.3), we obtain ∆t = 1 for all t = 3, . . . , 2R − 1. As the SPS
model with {∆t = 1} is equivalent to the S model, the sufficient condition holds. The proof
is complete. �

Theorem 2.1 is useful for demonstrating the cause that the S model does not hold for the
presented data.

We obtain the following theorem from Theorem 2.1 and the decomposition theorem of
Yamamoto et al. (2013) (i.e., the SS model holds if and only if both CSS and GS models
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hold).

Theorem 2.2 The following necessary and sufficient condition holds:

The S model holds if and only if all CSS, GS, and SPS models hold.

We denote nij as the observed frequency in the (i, j)th cell of the table (i = 1, . . . ,R; j =
1, . . . ,R). We assume multinomial sampling over the cells of the table.

Each model can be tested for goodness-of-fit by, for example, the test statistic G2 with
the corresponding degrees of freedom. The G2 of model M is given by

G2(M) = 2
R∑

i=1

R∑
j=1

nij log
(
nij

êij

)
,

where êij is the maximum likelihood estimate (MLE) of the expected frequency eij under
model M. The number of degrees of freedom for the S, SS, and SPS models are R(R− 1)/2,
2R− 3, and (R− 2)(R− 3)/2, respectively. It must be noted that the number of degrees of
freedom for the S model is equal to the sum of the number of degrees of freedom for the SS
and SPS models.

We obtain the following orthogonality of test statistic.

Theorem 2.3 The following equality holds:

G2(S) = G2(SS) + G2(SPS).

Proof Although the details are omitted, the êij under the S, SS, and SPS models are provided
in Equation (2.4), (2.5), and (2.6), respectively.

êij =


nij + nji

2 (i 6= j),
nij (i = j),

(2.4)

êij =


(Bt + Ct)

2Bt
nij (i+ j = t, i < j),

nij (i 6= j),
Bt + Ct

2Ct
nij (i+ j = t, i > j),

(2.5)

where

Bt =
∑∑
(i,j)∈At

nij and Ct =
∑∑
(i,j)∈At

nji.

êij =


Bt

Bt + Ct
(nij + nji) (i+ j = t, i < j),

nij (i 6= j),
Ct

Bt + Ct
(nij + nji) (i+ j = t, i > j).

(2.6)
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nij/êij in the S model is equal to the product of that of the SS and SPS models. Therefore,
the value of G2(S) is equal to the sum of G2(SS) and G2(SPS). The proof is complete. �

From Theorem 2.3, we point out that the value of G2(S) assuming that the SS model holds
true (i.e., G2(S|SS)) is equal to the value of G2(SPS) because G2(S|SS) = G2(S)−G2(SS).

We obtain the following theorem from Theorem 2.3 and the orthogonality of the test
statistic of Yamamoto et al. (2013) (i.e., G2(SS) = G2(CSS) + G2(GS)).

Theorem 2.4 The following necessary and sufficient condition holds:

G2(S) = G2(CSS) + G2(GS) + G2(SPS).

3. Application to real-world data

First, we consider the data set in Table 1, taken from Tomizawa (1985). This data set
presents a cross-classification of vision grades for right and left eyes. Table 1 is the data of
unaided distance vision of 4746 university students aged 18 to 25, including about 10% of
the women of the Faculty of Science and Technology, Tokyo University of Science, examined
in 1982.

The X is the right eye grade, and Y is the left eye grade with the categories ordered from
the highest (1) to the lowest grade (4). Yamamoto et al. (2013) mentioned that it is natural
to evaluate the degree of an individual’s vision grade as the sum of the grades of both right
and left eyes for these data. The sum of the grades of both the right and left eyes (i.e.,
X + Y ) is ordered from the highest (2) to the lowest grade (10). Table 2 gives the values

Table 1. The table below is the data of unaided distance vision of 4746 university students aged 18–
25, including 10% of the women of the Faculty of Science and Technology, Tokyo University of Science,
examined in 1982; source Tomizawa (1985).

Left eye grade
Right eye grade (1) (2) (3) (4) Total

Highest (1) 1291 130 40 22 1483
(1291) (130) (40) (20.40)

Second-highest (2) 149 221 114 23 507
(149) (221) (115.60) (23.0)

Third-highest (3) 64 124 660 185 1033
(64) (122.40) (660) (185)

Lowest (4) 20 25 249 1429 1723
(21.60) (25) (249) (1429)

Total 1524 500 1063 1659 4746

Note: Estimates under the SPS model are shown in parentheses in the second line.

of G2 for the S, SS, and SPS models. This table shows that the SPS model fits well, but
the other models fit poorly. Table 1 shows the MLEs of the expected frequencies under the
SPS model. From Theorem 2.1, we can infer that the S model does not hold for the data in
Table 1 due to the SS model, rather than the SPS model. Under the SPS model, the MLE
of ∆3,∆4,∆5,∆6,∆7 are 0.872, 0.625, 0.944, 0.920, 0.743, respectively. The S model does
not hold, largely due to the asymmetric structure corresponding to the cells in which the
sums of the right and left eye grades are 4 and 7.

Next, we consider the data in Table 3, taken from Stuart (1953). Table 3 is the data of
unaided distance vision of 7477 women aged 30–39, employed in Royal Ordnance factories
from 1943 to 1946.
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Table 2. Values of the likelihood ratio chi-squared statistic G2 for each model applied to the data in Table
1

Applied models Degrees of freedom G2

S 6 16.955∗
SS 5 16.668∗

SPS 1 0.287

∗ indicates significance at 0.05 level.

Table 4 gives the values of G2 for the S, SS, CSS, GS, and SPS models. This table shows
that the CSS model fits well, but the others fit poorly. The parenthesized values in Table 3
are the MLEs of the expected frequencies under the CSS model.

Table 3. The table below is the data of unaided distance vision of 7477 women aged 30–39 employed in
Royal Ordnance factories from 1943 to 1946; source Stuart (1953).

Left eye grade
Right eye grade (1) (2) (3) (4) Total

Highest (1) 1520 266 124 66 1976
(1520) (268.45) (129.40) (63.76)

Second-highest (2) 234 1512 432 78 2256
(231.55) (1512) (417.31) (85.91)

Third-highest (3) 117 362 1772 205 2456
(111.60) (377.40) (1772) (206.17)

Lowest (4) 36 82 179 492 789
(37.53) (74.09) (117.83) (492)

Total 1907 2222 2507 841 7477

Note: Estimates under the conditional sum-symmetry (CSS) model are shown in the paren-
theses in the second line.

Table 4. Values of the likelihood ratio chi-squared statistic G2 for each model applied to the data in Table
3

Applied models Degrees of freedom G2

S 6 19.249∗
SS 5 15.299∗

CSS 4 3.403
GS 1 11.896∗
SPS 1 3.951∗

∗ indicates significance at 0.05 level.

From Theorem 2.1, we can infer that the S model does not hold for the data in Table 3
due to both the SS and SPS models. We are also interested in finding why the SS model
does not hold. From the decomposition theorem of Yamamoto et al. (2013), we can infer
that the SS model does not hold because of the GS model, rather than the CSS model.
Moreover, from Theorem 2.2, we can infer that the S model does not hold because of the
GS and SPS models, rather than the CSS model.

Under the CSS model, since the MLE of ∆ is 1.159, the probability that the degree of
the individual’s vision grade, in which the right eye grade is greater than the left eye grade
is t for t = 3, 4, 5, 6, 7, is estimated to be 1.159 times higher than the probability that the
degree of the individual’s vision grade in which the right eye grade is greater than the left
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eye grade is t. Therefore, under the CSS model, a woman’s right eye vision was estimated
to be better than her left eye vision.

4. Concluding remarks

When R is less than or equal to three, the sum-symmetry model is equivalent to the sym-
metry model. On the other hand, when R is more than or equal to four, the sum-symmetry
model is different from the symmetry model. Therefore, when R is more than or equal
to four, we are interested in finding a model which must be satisfied in addition to the
sum-symmetry model, to satisfy the symmetry model.

This study reveals that, (i) it is necessary to satisfy the sums-parameter symmetry model
in addition to the sum-symmetry model, to satisfy the symmetry model (i.e., Theorem
2.1) and (ii) the value of G2 of the symmetry model is equal to the sum of G2 of the
sum-symmetry and sums-parameter symmetry models (i.e., Theorem 2.3). Theorem 2.1 is
useful for evaluating why the symmetry model does not hold for the presented data, as
shown in Section 3. From Theorem 2.3, we show that the value of G2(S), assuming the
sum-symmetry model holds true (i.e., G2(S|SS)) is equal to the value of G2(SPS), because
G2(S|SS) = G2(S)−G2(SS).

Generally, we assume that, (i) model M1 holds if and only if models M2 and M3 both
hold, and (ii) the following asymptotic equivalence holds:

G2(M1) ' G2(M2) +G2(M3), (4.7)

where the number of degrees of freedom for model M1 is equal to the sum of the number
of degrees of freedom for models M2 and M3. Darroch and Silvey (1963) described that, (i)
when Equation (4.7) holds, if both models M2 and M3 are accepted (at the α significance
level) with high probability, then model M1 would be accepted; but (ii) when that does
not hold, such an incompatible situation where both models M2 and M2 are accepted with
high probability, but model M1 is rejected with high probability, is quite possible. In fact,
Darroch and Silvey (1963) and Tahata et al. (2011) showed such interesting examples. We
note that the proposed decomposition theorems satisfy Equation (4.7).

Although the proposed decomposition theorems were applied to vision data in real-world
data analysis, we believe that they are also useful for analyzing other data, for example,
social mobility data.
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Appendix. Example R code

We provide an example R code to obtain the maximum likelihood estimate of the expected
frequency under the S, SS, and SPS models. The R code includes the following functions:
S MLE(x), SS MLE(x), and SPS MLE(x), where x is an R×R ordinal square contingency
table.
S MLE <− function ( x ){
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R <− nrow( x )
e <− matrix (0 ,nrow=R, ncol=R)
for ( i in 1 :R){

for ( j in 1 :R){
i f ( i !=j ){

e [ i , j ] <− ( x [ i , j ]+x [ j , i ] ) /2
}
else {

e [ i , j ] <− x [ i , j ]
}

}
}
return ( e )

}

SS MLE <− function ( x ){
R <− nrow( x )
e <− matrix (0 ,nrow=R, ncol=R)
A <− rep (0 ,2∗R−1)
B <− rep (0 ,2∗R−1)
for ( i in 1 :R){

for ( j in 1 :R){
i f ( i < j ){

A[ i+j ] <− A[ i+j ] + x [ i , j ]
}
else i f ( i > j ){

B[ i+j ] <− B[ i+j ] + x [ i , j ]
}

}
}
for ( i in 1 :R){

for ( j in 1 :R){
i f ( i < j ){

e [ i , j ] <− x [ i , j ] ∗(A[ i+j ]+B[ i+j ] ) /(2∗A[ i+j ] )
}
else i f ( i==j ){

e [ i , j ] <− x [ i , j ]
}
else i f ( i > j ){

e [ i , j ] <− x [ i , j ] ∗(A[ i+j ]+B[ i+j ] ) /(2∗B[ i+j ] )
}

}
}
return ( e )

}

SPS MLE <− function ( x ){
R <− nrow( x )
e <− matrix (0 ,nrow=R, ncol=R)
A <− rep (0 ,2∗R−1)
B <− rep (0 ,2∗R−1)
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for ( i in 1 :R){
for ( j in 1 :R){

i f ( i < j ){
A[ i+j ] <− A[ i+j ] + x [ i , j ]

}
else i f ( i > j ){

B[ i+j ] <− B[ i+j ] + x [ i , j ]
}

}
}
for ( i in 1 :R){

for ( j in 1 :R){
i f ( i < j ){

e [ i , j ] <− ( x [ i , j ]+x [ j , i ] ) ∗A[ i+j ] / (A[ i+j ]+B[ i+j ] )
}
else i f ( i==j ){

e [ i , j ] <− x [ i , j ]
}
else i f ( i > j ){

e [ i , j ] <− ( x [ i , j ]+x [ j , i ] ) ∗B[ i+j ] / (A[ i+j ]+B[ i+j ] )
}

}
}
return ( e )

}


