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Abstract

Asymptotic Ruin Probabilities in the Cramér-Lundberg model has been widely studied
when the claims have light-tailed or heavy-tailed distributions. However, it has not been
studied for extreme values over some threshold. In this paper, we investigate the use
of the peaks over threshold method, to construct a new estimator of the ruin proba-
bility for a risk process with heavy tails claims amounts with infinite variance for the
stationary arrival claims in an infinite time. Our approach is based on approximating
the sample over some threshold by the generalized Pareto distribution. We prove that
the proposed estimator is consistent and asymptotically normal. The performance of
our new estimator is illustrated by some results of simulations for some loss models and
provides an extensive example application to Danish data on large fire insurance.

Keywords: Risk Process · Extremes values · Heavy-tailed distribution · Generalised
Pareto Distribution (GPD) · Ruin probability · POT method.
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1. Introduction

Risk theory in general and ruin probabilities in particular are traditionally considered as part
of insurance mathematics. The ruin probability refers to the risk that the monetary surplus
of an insurance company becomes less than zero. The pioneering ideas of Filip Lundberg’s
Lundberg (1903) thesis remain the basis for the collective risk theory for general insurance
actuaries and the estimation of the ruin probability. Lundberg’s work was republished in
the 1930s by Harald Cramer Cramer (1930).

In recent years, the classical risk process has been extended to more practical and real
situations. The Cramér-Lundberg model has been generalized in two main ways. i) Assump-
tions on the company’s liabilities (on the modeling of claims): heavy/light tails, dependency
between claims etc., dependency between claims number process and claims, regime change,
etc, and, ii) Asset assumptions instead of the fixed premium rate, various strategies (divi-
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dend payment, reserve investment, interest rate consideration) instantaneous, Brownian or
Levy type perturbations on prices, etc.

In classical risk model, the claim number process was assumed to be a Poisson process
and the individual claim amounts were described as independent and identically distributed
random variables. The claim modeling is an important procedure that leads to the pricing
of premium and risk analysis for an insurance company.

Recent studies concluded that simple analytic results for the ruin probability using the
classical model exist when the claim amounts distribution is exponential or close to it, but
for other claims amounts distributions, they are not easy to obtain.

Modeling insurance loss data of a unimodal type with a heavy tail has been an interesting
topic for actuaries. Distributions that can mimic the heavy tail of the insurance loss data are
crucial to sufficiently provide a good estimate of the associated business risk level (Abubakar
et al., 2015). In insurance, heavy tails are encountered when modeling for instance fire and
storm damages (Embrechts et al, 1997).

A substantial bibliography is available on quantile estimation of heavy-tailed distributions,
see Embrechts et al (1997) for an excellent introduction and overview of this field.

The literature on the ruin theory is rich in methods for calculating, see, e.g., Sundt
et al (1995), approximating, see, e.g., De Vylder (1978), asymptotically analyzing the ruin
probabilities, see, e.g., Aurzada et al. (2020). Some are in the univariate, see, e.g., Asmussen
(2010), Mikosch (2000), and even multivariate cases, see, e.g., Behme et al (2020). Others
are in the Stationary and even Non-Stationary cases, see, e.g., Xiaoping et al. (2014), Zhu
(2013). We also find several publications using the Bayesian approach, see, e.g., Concepcion
et al. (2007).

In addition, ruin theory has fruitful methodological links and applications to other fields
of applied probability, like queueing theory and mathematical finance (pricing of barrier
options, credit products, etc.).

The common statistical techniques used in the modeling of insurance claims are related to
average. However, some of these claims should be considered extreme rather than average.
Therefore, the extreme value theory is of particular importance to insurance mathematics,
it studies extreme events that, although low in frequency, cause high claims to the insurance
companies. There are two ways to model extreme events using extreme value models. The
first approach is to divide the sample into blocks and then obtain the maximum of each
block, which is called the block maxima method. The second approach is the Peaks Over the
Threshold method (POT), which involves taking the large observations that exceed some
threshold u. POT models are generally useful for practical applications, see, for example,
Reiss et al. (2002).

In this paper, we are interested in the estimator of the ruin probability for the risk process
with claims of heavy tails. Our approach is based on an extreme theory using the Peaks Over
the Threshold method (POT) for the approximate excess by generalized Pareto distribution
(GPD). We attempt to estimate the ruin probability in infinite time with a large initial
reserve. We propose a new estimator of the ruin probability when the second moment of the
claims is infinite and we provide the almost sure consistency and the asymptotic normality
of our estimator.

The paper is organized as follows. In Section 2, we present the classical risk model and we
give the definition of the ruin probability when the claims are heavy-tailed, and we present
some illustration for the performance and the normality of the ruin probability when the
variance of the claims are finite. Section 3 is restricted to the Generalized Pareto Distribution
using the Peaks Over Threshold method. In section 4, we give some assumptions and state
an almost sure consistency and asymptotic normality for the proposed estimator of the ruin
probability when the second moment of the claims is finite or infinite. Section 5 is devoted
to validating the performance of our results by some simulation results and provides an
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example of extended application to Danish large fire insurance loss data. The appendix is
reserved for the proofs of the results. All computations and graphics presented in this paper
were done in the R software.

2. Model

2.1 Background

Let the initial capital of the insurance company is denoted by u. The number of claims in the
time period (0, t], denoted by (Nt)t≥0, is described by a Poisson process with fixed rate λ > 0.
Claim severities are non-negative random variables (RV’s), given by an independent and
identically distributed (i.i.d.) sequence X,X1, X2, ..., having distribution function (CDF)
F with unknown mean µX < +∞ and variance σ2

X . We assume that X,X1, X2, ..., are
independent of (Nt)t≥0. We also assume that the insurance company receives a premium
at a constant rate p per unit time and that the so-called net-profit condition holds, that is
ρ = p/λ > µX , (see, Asmussen (2010)). The classical risk process (Rt)t≥0 is given by

Rt = u+ pt−
Nt∑
i=1

Xi, t ≥ 0.

The corresponding claim surplus process is defined by

St = u−Rt =
Nt∑
i=1

Xi − pt, t ≥ 0.

We are primarily interested in the probability that St exceeds an initial reserve u at some
time t prior to or at a horizon time T . Explicitly, this probability may be written as

Φ(u, T ) = P [sup St
0<t≤T

> u].

The ruin probability in infinite time is defined by

Φ(u) = lim
T→+∞

Φ(u, T ).

We are interested in the case when X,X1, X2, ..., have heavy tails.
Let X be a positive random variable with distribution function F , where

F̄ (x) = cx−
1
ξ (1 + x−δL(x)), as x ↑ +∞, (2.1)

and F̄ (x) = 1− F (x) represent the tail function of the distribution F .
For ξ ∈ (0, 1), δ > 0, and some real constant c, with L a slowly varing function at infinity,

that L(tx)/L(x) → 1, as x ↑ +∞ for t > 0. For more details on these function, see, e.g.,
Chapter 0 in Resnik (1987) or Seneta (1976).
F is regularly varying tail at +∞ with index ξ, that F̄(tx)/F̄(x) → t(−1/ξ), as x ↑ +∞

uniformly for t > 0.
F is called heavy tail with tail index ξ > 0 (e.g., Pareto, Burr, log-Normal, log-Gamma,

Student, etc..), see, e.g., (Dekkers et al, 1993, 1989). Notice that when ξ ∈ (0, 1/2), we have
µX = E(X) <∞ and E(X2) <∞. But if ξ ∈ (1/2, 1), we have E(X2) =∞.

Any F with a regularly varying tail is subexponential, i.e. F̄ ∗2(x)/F̄ (x)→ 2, as x ↑ +∞.
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Here F ∗ G denotes the convolution of the distribution functions F and G,F ∗1 = F and
F ∗(n+1) = F ∗n ∗ F , (see Asmussen (2010))

If F is subexponential, it has been shown that for large initial reserve u, the ruin proba-
bility Φ(u), (see, e.g., K Klüppelberg et al. (1996), Asmussen (2010), Vladimir et al (2000)
and Zhu (2013)), given by

lim
u−→+∞

Φ(u)
F̄0(u)

= µX
(ρ− µX) ,

where F0 denotes the stationary excess distribution or the integrated tail distribution,

F0(x) = 1
µX

∫ x

0
F̄ (x)dx, x ≥ 0.

We can then write the approximation of the ruin probability Φ(u) as follows.

Φ(u) ' 1
(ρ− µX)

∫ +∞

u
F̄ (x)dx for a large initial reserve u. (2.2)

2.2 Traditional Estimator of the Ruin Probability

Let X1, ..., Xn be a random sample of size n of CDF F . The Tail of the distribution F
assumed to start at some level un supposed sufficiently high, and we set Yi = max(Xi−un, 0)
with CDF FY . By replacing F and µX by its empirical estimators F̂n and µ̂X respectively
in Equation (2.2), the estimator is written as follows:

Φ̂n(un) = 1
(ρ− µ̂X)

∫ +∞

un

ˆ̄Fn(x)dx for a large initial reserve un. (2.3)

In Section 4, we prove that the estimator given in Equation (2.3) is asymptotically normal
provided that it has a finite second moment. To illustrate the performance and normality
of Φ̂n(un), we draw samples from the Pareto distribution F̄ (x) = x−1/ξ, x > 1, ξ > 0 using
R packages (actuar, evir, extremefit, tea, boot) to generate samples, and to estimate
parameters of the GPD distribution. The qqplot and boostrap functions were used to
adjust graphically the normality of the ruin probability. We choose two values ξ = 1/4 in
which case we have the two moments are finite and ξ = 3/4 in which case we have the
second moment is infinite as shown in Figure 1. We can notice that the ruin probability
is well fitted by the normal distribution for ξ = 1/4 (finite variance). On the other hand,
if ξ = 3/4 (infinite variance), the ruin probability is far from the normal distribution (see
Figure 1).
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(a) n = 1000 (b) n = 5000 (c) n = 10000

(d) n = 1000 (e) n = 5000 (f) n = 10000

Figure 1. QQ-plot of the Ruin probability against the normal distribution when ξ = 1/4 (top row) and ξ = 3/4
(bottom row)

3. The GPD Estimate

3.1 GPD Approximation of the Tail of Distribution

Let FY be the distribution of the excesses over the threshold un, FY (y) = P (X − un ≤
y|X > un) , for 0 ≤ y < xF − un, with xF = sup {x ∈ R, F (x) < 1} (upper-end point of F )
generally xF = +∞. It follows from Equation (2.1) that

F̄Y (y) = F̄ (y + un)
F̄ (un)

=
(

1 + y

un

)− 1
ξ 1 + (un + y)−δL(un + y)

1 + un−δL(un)

and if β = β(un) = unξ, then F̄Y (y) is a perturbed GPD distribution, where the CDF of
the generalised Pareto distribution (GPD) has the form

Gβ,ξ(y) =
{

1− (1 + ξ
β y)−

1
ξ ξ 6= 0

1− e−
y
β ξ = 0

, y ∈
{

[0,+∞) ξ ≥ 0
[0, βξ ) ξ < 0 .

The POT method is based on Balkama et al. (1974) result which says that the distribution
of the excesses over a fixed threshold is approximated by the generalized Pareto distribution
(GPD). This means that for large values of un, we have

lim
un→xF

sup
0≤x<xF−un

|FY (x)−Gξ,β(x)| = 0,

See also Theorem (3.4.13) in Embrechts et al (1997).
Let X1, ..., Xn be a random sample of size n. The tail of the distribution F assumed to

start at some level un supposed sufficiently high, and the exceedance Yi = Xi − un, for all i
such that Xi > un are approximately a random sample from a GPD. It is clear that FY is
also regularly varying at infinity with the same index −1/ξ < 0.

The estimation of FY based on over a peaks threshold value un, requiring thus the choice
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of a threshold at which the tail of the underlying distribution begins.
If the chosen threshold is too low, the GPD approximation may not hold and bias can

occur. If the threshold is chosen too high, reduced sample size increases the variance of
parameter estimates. The task is to find the lowest threshold such that the GPD fits the
sample of exceedances over this threshold adequately.

The problem of choosing the threshold un is still of high theoretical and practical interest.
It is desirable to have an intuitive automated threshold selection procedure to use with POT
analysis. The simple method is an a priori, or fixed threshold selection based on expertise
on the subject matter at hand. Various rules have been suggested, for example, selecting the
top 10% of the data, see, e.g., Dumouchel (1983), or the top 5%, see, Kelly et al. (2014), or
the top square root of the sample size see, e.g., Ferreira et al. (2003), Bader et al. (2018),
and Silva lomba et al. (2020).

Many threshold selection methods are available in the literature, see Dekkers (1989),
Scarrott et al (2012), Gomes et al. (2008), Guillou et al. (2001), Matthys et al. (2000), and
Caeiro et al. (2016) for recent reviews. The classical method is the empirical mean residual
life plot (MRLP), has been used as far back as the third century (see, e.g, Davison et al.
(1990) and Guess et al. (1988). Drees et al (2000) suggested the Hill plot, which plots the Hill
estimator of the shape parameter based on the top k order statistics against the threshold
u. Many variants of the Hill plot have been proposed (Scarrott et al, 2012). Other selection
methods can be grouped into two categories.

The first is based on the asymptotic results about estimators of properties of the tail
distribution. The threshold is selected by minimizing the asymptotic mean squared error
(MSE) of the estimator, for example, tail index (Beirlant et al., 1996). The second category
of methods are based on Goodness-of-fit of the GPD, where the threshold is selected as the
lowest level above which the GPD provides adequate to the exceedance.

Those interested in extreme value theory and its applications are referred to the textbooks
of de Haan et al. (2006), Embrechts et al (1997), and Beirlant et al. (2004).

3.2 POT based estimator of the ruin probability

If X1, X2, ... be positive i.i.d RV’s with CDF F given in Equation (2.1) and un = O+(nαξ)
for some α ∈ (1/(1 + 2δξ), 1), where δ > 0, and if Yi = Xi − un, for all i such that Xi > un
be positive i.i.d. RV’s with CDF FY .

By definition

F̄ (y + un) = F̄Y (y)F̄ (un), (3.4)

for pn = P (X1 > un) = F̄ (un), the estimation of pn may be done using

p̂n = F̂ (un) = 1
n

n∑
i=0

1{Xi>un} = Nun

n
,

N := Nun =
∑n
i=1 1{Xi>un}, where N is the number of Xi’s which exceed un, we have a

binomial distribution, i.e., N  B(n, pn).
When npn = n1−αO+(1) , it follows that from the Central Limit Theorem that,

√
n√

pn(1− pn)
(p̂n − pn) D−→ N (0, 1) as n ↑ +∞.

Further, let µn = E(X11{X1≤un}) with its empirical estimator µ̂n = n−1∑n
i=1 Xi1{Xi≤un}
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and σ2
n = V ar(X11{X1≤un}). Then, from the Central Limit Theorem, we have,

√
n

σn
(µ̂n − µn) D−→ N (0, 1) as n ↑ +∞

(see, e.g., Johansson (2003)). For large values of un, we use F̂ Y (y) ≈ Ḡξ̂n,β̂n(un)(y), for
appropriate estimates ξ̂n, and β̂n(un). Note that βn will be estimated separately, i.e. βn =
ξun will be note used, see, e.g., Johansson (2003).
Notice that the maximum likelihood estimates ξ̂n and β̂n are consistent and converges in
probability, see, e.g., Beirlant et al. (1989) and Section 5.2, Beirlant et al. (2001).

For ξ > −0.5 it can be shown that maximum likelihood regularity conditions are fulfilled
and that maximum likelihood estimates (ξ̂n, β̂n) based on a sample of N excesses of a
threshold un are asymptotically normally distributed, see e.g., Smith (1987), and Pirouzi et
al (2013) as follows

√
npnQ

1
2

(
β̂n − β
ξ̂n − ξ

)
D−→ N (0, I) , as n ↑ +∞,

where

Q−1 = (1 + ξ)
(

2β2 −β
−β 1 + ξ

)
.

Under the assumption that √npnunL(un) → 0 and that x−δL(x) is non-increasing, this
condition is met if un = O+

(
nαξ

)
with α > 1/(1 + 2δξ), where L is slowly varying at +∞,

(see Johansson (2003)). If we use the Equation (3.4), we can write

∫ +∞

un

F̄ (x)dx =
∫ +∞

0
F̄ (y + un)dy = pn

∫ +∞

0
F̄Y (y)dy = pnµY .

Then, the simplified form is

Φ(u) ' pn
µY

(ρ− µX) .

For large values of un, and under the assumption ρ = p

λ
> µX .

By the replacement of the µX and µY by its empirical estimators, µ̂X and µ̂Y respectively,
we can define an empirical estimator of Φ(un) as follows

Φ̂n(un) = p̂n
µ̂Y

(ρ− µ̂X)

For ξ ∈ (0, 1/2), X1 has finite variance (σ2
n <∞), in this case µX = E(X1) and µY = E(Y1)

is estimated by the sample mean µ̂X = X̄ = n−1∑n
i=1 Xi, and µ̂Y = Ȳ = n−1∑n

i=1 Yi
respectively. The estimator of Φn(un) become as follows:

Φ̂(1)
n (un) = p̂n

Ȳ(
ρ− X̄

) .
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Using the central limit theorem, the asymptotic normality of Φ̂(un) is established in the
Theorem 4.1.

An alternative way to estimate µX may be made by GPD’s approximation (see Johansson
(2003)). Indeed, for each n ≥ 1, we have

µX =
∫ ∞

0
xdF (x) = µ∗n + κn,

where

µ∗n =
∫ un

0
xdF (x) and κn =

∫ ∞
un

xdF (x).

For ξ ∈ (1/2, 1), X1 has an infinite variance (σ2
n = ∞) Johansson’s estimator (see, Jo-

hansson (2003)) of µX is given by

µ̂JX,n = µ̂∗n + κ̂n,

where

µ̂∗n = 1
n

n∑
i=1

Xi1{Xi≤un} and κ̂n = p̂n

(
un + β̂n

1− ξ̂n

)
,

and µY is estimated by the approximate of the tail distribution function F̄ by the GPD
distribution Ḡ, and after the integrating, we obtain the formula

µ̂Y,n = β̂n

1− ξ̂n
.

Then, the estimator of Φn(un) become as follows:

Φ̂(2)
n (un) = p̂n

µ̂Y,n(
ρ− µ̂JX,n

) .
In the end, an asymptotic estimator of Φn(un) for any 0 < ξ < 1 has the following form:

Φ̂n(un) :=
{

Φ̂(1)
n (un) for 0 < ξ ≤ 1/2

Φ̂(2)
n (un) for 1/2 < ξ < 1

.

In the following section we present our main results.

4. Main results

In this section, we present the main results of this paper. The three theorems provides the
consistency and the asymptotic normality of our estimator.

Our main first result is the asymptotic normality of Φ̂n(un), when E(X) < ∞ and
E(X2) < ∞ ( i.e., 0 < ξ ≤ 1/2). This result is a straight application of the central limit
theorem.
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Theorem 4.1 Let F be a CDF fulfilling Equation (2.1) with ξ ∈ (0, 1/2), we have

√
n(Φ̂(1)

n (un)− Φ(un)) D−→ N (0, σ2), as n ↑ +∞.

where the asymptotic variance σ2 is given by the formula

σ2 = 1
(ρ− µX)4 (σ2

1(ρ− µ2 − un)2 + σ2
2(µ1 − un)2),

and

µ1 = E(X̄1{Xi≥un}), µ2 = E(X̄1{Xi≤un}), σ2
1 = V ar(X̄1{Xi≥un}), σ2

2 = var(X̄1{Xi≤un}).

The second main result is the almost pointwise sure convergence and asymptotic normality
of Φ̂n(un), when E(X2) = ∞ (i.e., 1/2 < ξ < 1). In this case, the central limit theorem is
not applicable.

Theorem 4.2 Let F be a CDF fulfilling Equation (2.1) with ξ ∈ (1/2, 1). Suppose that L
is locally bounded in [xF ,+∞) for xF ≥ 0 and x 7→ x−δL(x) is non-increasing near infinity,
for some δ > 0. For any un = O+(nαξ) with α ∈ (1/(1 + 2δξ), 1) , we have

Φ(un) = Φ̂(2)
n (un) + oP (1), as n ↑ +∞.

Theorem 4.3 Let F be as in Theorem 4.2, then for any un = O(nαξ) with α ∈
(1/(1 + 2δξ), 1), we have

√
n

σ

(
Φ̂(2)
n (un)− Φ(un)

)
D−→ N (0, 1), as n ↑ +∞,

where

σ2 = θ1

(
p2
nσ

2
n + pn (1− pn) θ2 + pn(2ξ2 − ξ + 1)(1 + ξ)

(1− ξ)2 θ3

)
= O+(1)

with

θ1 = β2

(1− ξ)2 (ρ− µX)4 , θ2 = (ρ− un)2 , θ3 = (ρ− µn − pnun)2 .

The proofs of the above theorems are given in the Appendix.

5. Simulation Study and Application

5.1 Simulation Study

In this section, we have applied the result of the Theorem 4.2 and Theorem 4.3 we first
begin to fix a significance level η ∈ (0, 1) and calculate zη/2 for the (1 − η/2) quantile of
the standard normal distribution N (0, 1). If we use a realization of the random variables
X1, ..., Xn , which follow a CDF F satisfying the conditions of the Theorem 4.3, we construct
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a level 1− η confidence interval for Φ(u) as follows.

Φ(un) ∈
[

¯̂Φ(2)
n (un)− 1√

n
z η

2
σ̂ ¯̂Φ(2)

n (un) , ¯̂Φ(2)
n (un) + 1√

n
z η

2
σ̂ ¯̂Φ(2)

n (un)

]
,

where ¯̂Φ(2)
n (un) and σ̂2

¯̂Φ2
n(un)

are the empirical mean and variance respectively.
We realized a simulation study to validate the performance of the ruin probability esti-

mation and the asymptotic normality of our proposed estimator. All numerical evaluations
and graphics presented here were done in the R software using the packages POT, evir,
extremefit, and actuar for Extreme values. To this end, we simulated samples of the
Pareto, Burr and Log-Gamma distributions, whose tail index parameters are summarized
in Table 1.

Table 1. Regularly varying distribution functions

Distribution Tail F̄ (x) or density f(x) Parameters Index Parameter (1/ξ)
Pareto F̄ (x) = x−c, x > 1 c > 0 c

Burr F̄ (x) = (1 + xc)−k, x > 0 c, k > 0 ck

Log-Gamma f(x) = ck/Γ(k)(ln(x))k−1x−c−1, x > 0 c, k > 0 c

We generated 200 samples of sizes 500, 1000 and 5000 from the previous distributions
with the index values ξ = 2/3 and ξ = 3/4.
For each simulated sample, we obtain a value of the estimators Φ̂(2)

n (un). The overall esti-
mated Φ̂(2)

n (un) is then taken as the empirical mean of the values in the 200 repetitions with
its confidence interval. We also obtain the bias and the root mean squared error (RMSE) of
the estimator of Φ̂(2)

n (un). We summarize the results in Table 2 and Table 3.

Table 2. 95% confidence interval for the ruin probability of Pareto, Burr and Log-Gamma Distributions
with tail index ξ = 2/3

Distribution n
¯̂Φ(u) Bias RMSE Confidence Interval

Φ(u) = 0.08186737
500 0.079678 -0.002188 0.027843 (0.073641 , 0.085715)

Pareto 1000 0.081419 -0.000447 0.022333 (0.077098, 0.08574157)
5000 0.081760 0.000106 0.020226 (0.080826, 0.082695)

Φ(u) = 0.065366
500 0.061051 -0.004314 0.008490 ( 0.051344 , 0.070759)

Burr 1000 0.061616 - 0.003749 0.007504 (0.056035 , 0.067198)
5000 0.064166 -0.001199 0.006906 (0.061623, 0.066710)

Φ(u) = 0.07368063
500 0.071909 -0.001771 0.025905 (0.059811, 0.084006)

Log-Gamma 1000 0.075159 0.001479 0.023896 (0.072138, 0.078181)
5000 0.074933 0.001253 0.019920 ( 0.072138 , 0.077729)
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Table 3. 95% confidence interval for the ruin probability of Pareto, Burr and Log-Gamma Distributions
with tail index ξ = 3/4.

Distribution n
¯̂Φ(u) Bias RMSE Confidence Interval

Φ(u) = 0.177327
500 0.161809 -0.015517 0.054281 ( 0.141244 , 0.182373)

Pareto 1000 0.168686 -0.008639 0.044726 (0.154511, 0.182861)
5000 0.179787 0.002460 0.036559 (0.176026 ,0.183547)

Φ(u) = 0.1052539
500 0.094451 -0.010802 0.007272 (0.057324 , 0.122166)

Burr 1000 0.099181 -0.006072 0.004516 (0.082715,0.115647)
5000 0.100817 -0.004436 0.004436 (0.094665, 0.106969)

Φ(u) = 0.1576236
500 0.171419 0.013795 0.053793 (0.150337 , 0.192500)

Log-Gamma 1000 0.159431 0.001807 0.038889 (0.150499 , 0.168363)
5000 0.157925 0.000302 0.035215 (0.155589 , 0.160261)

5.2 Application

We illustrate an application to the Danish fire insurance data (in millions DKK). The Danish
data on large fire insurance claims are widely used and provides an exceptional example of
the use of the extreme value theory in a significant application context, see McNeil (1996),
Mikosch (2006). The full Danish data of Reinsurance comprise 2167 fire losses from Thursday
3rd January 1980 until Monday 31st December 1990. Mikosch (Mikosch, 2006) confirm that
a homogeneous Poisson process is an appropriate model for the arrivals of the Danish fire
insurance data for shorter periods of time such as one year with the parameter λ = 1/1.85.
McNeil (McNeil, 1996) was adjusted the danish fire insurance data, he concluded that the
Lognormal distribution to be good, but the Pareto distribution did not fit the data well,
while the GPD distribution was acceptable. We restrict our attention to the 2156 losses
exceeding one million. The descriptive statistical study of the Danish data is summarized
in Table 4.
Table 4. Descriptive Statistics Summary of the dataset of Danish fire

min Mean Std First Quartile Median Third Quartile max
1 1.85 8.5274 1.321 1.778 2.967 263.250

All numerical evaluations and graphics presented here were done in the R software using
the packages POT, evir, extremefit, and actuar for Extreme values. We also used the
functions qqnorm for the adjustment with the normal distribution. For the resampling, we
used the package boot. The generalized Pareto distribution can be fitted to data on excesses
of high thresholds by a variety of methods including the maximum likelihood method (ML)
to estimate the parameters and the the Mean Residual Life Plot (MRLP) to select the
threshold. The MRLP function (see again Figure 2) is the plot of {(un, en(un)), X(1) < un <
X(n)} where X(1), and X(n) are the first and nth order statistics and en(u) is the sample
mean excess function gives by the sum of the excesses over the threshold un divided by the
number of data points which exceed the threshold un.

en(un) = 1
N

N∑
i=1

(Xi − un), Xi > un.
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The interpretation of the mean excess plot as explained in Beirlant et al. (1996) and Em-
brechts et al (1997). There is evidence of a straightening out of the plot above a threshold
of 1, 10 and perhaps 20 (See Figure 2).

Figure 2. Mean Residual Life plot.

The points show an upward trend, then this is a sign of heavy tailed behaviour. The
Histogram (Figure 3(a)) shows that the data may perhaps is a heavy tailed distribution.

(a) (b)

Figure 3. The histogram (a) and shape parameter as function of the threshold (b) for the Danish data.

It is Noted that we must take the threshold u ≥ 20 to have the shape parameter ξ > 0.5,
which fits our case (see again Figure 3(b)).

We look at standard choices of curve fitted to the whole dataset. We use the GPD with
the threshold u = 20, the maximum likelihood estimators of the parameters are given by the
shape ξ̂ = 0.6840479 and the scale β̂ = 9.6316941. The parameter estimates are the same as
those given by McNeil (1996) for the GPD distribution. The QQ-plot in Figure 4 indicate
that the ruin probability of the Danish data via bootstrap sampling (random sampling with
replacement), see, e.g., Bukhalter et al. (2021) is well fitted by the normal distribution when
the losses exceeding a threshold u = 20.
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Figure 4. The QQ-plot for ruin probability with bootstrap method.

Conclusions, limitations, and future research

In this paper, we have proposed a new estimator for the ruin probability of heavy-tailed
claims amounts via semi-parametric estimation. Our approach is based on a variant of
extreme value theory, called the Peaks Over the Threshold method. We have demonstrated
the consistency and the normality of the estimator of the ruin probability. Finally, we have
validated these results with a simulation study. We calculated the ruin probability for danish
fire insurance claims and used the bootstrap method to prove that the last is normal. Our
proposal provides interesting results and constitutes a tool that can be useful for actuarial
researchers and insurance companies when modeling for instance fire, and storm damages.
Our proposal has some limitations such as the choice of the threshold which remains a
theoretical and practical research problem, and we must have a large sample of claims and
large initial capital. This limitations open some doors for further research, which will be
considered by the authors in future works.
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Appendix

Proof of Theorem 4.1

Proof The proof of this theorem is based on the multivariate Delta method theorem who
generalise the central limit theorem.

If we take

Zn =

Z1
n

Z2
n

 =

 1
n

∑n
i=1 Xi1{Xi≥un}

1
n

∑n
i=1 Xi1{Xi≤un}

 =

 X̄1{Xi≥un}

X̄1{Xi≤un}

 .
Therefore the asymptotic normality of Zn follows directly from the classical Central Limit

Theorem

√
n(Zn − µ) D−→ N (0,Σ), as n ↑ +∞,

where µ =

µ1

µ2

 and Σ =

σ2
1 0

0 σ2
2

, and if we take g(s1, s2) = s1 − un/ρ− (s1 + s2), we

obtain

√
n(g(Zn)−g(µ)) =

√
n

p̂n Ȳ(
ρ− X̄

) − pn µY
ρ− µX

 D−→ N
(
0,5g(µ)TΣ5 g(µ)

)
, as n ↑ +∞.

where

5g(µ) =
(

∂g
∂y1

(µ)
∂g
∂y2

(µ)

)

and

σ2 := 5g(µ)TΣ5 g(µ) = 1
(ρ− µX)4

(
σ2

1(ρ− µ2 − un)2 + σ2
2(µ1 − un)2

)
.

�

Proof of Theorem 4.2

Proof Let us write

Φ̂(2)
n (un)− Φ(un) =

p̂n µ̂Y,n(
ρ− µ̂JX,n

) − pn µY
(ρ− µX)



=
(p̂nµ̂Y,n − pnµY ) (ρ− µX) +

(
µ̂JX,n − µX

)
pnµY(

ρ− µ̂JX,n
)

(ρ− µX)
.

If we note An =
(
ρ− µ̂JX,n

)
(ρ− µX)

(
Φ̂(un)− Φ(un)

)
.
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For GPD’s approximation, Johansson has proposed (see, Johansson (2003)) the estimators
of µ̂JX,n and µ̂Y as follows

µ̂JX,n = µ̂∗n + κ̂ = µ̂∗n + p̂n

(
un + β̂

1− ξ̂

)

and µ̂Y = β̂

1−ξ̂ (Y has a GPD distribution). This expression may be rewritten as follows

An =

 p̂nβ̂n(
1− ξ̂n

) − pnβ

1− ξ

(ρ− µ− pn (un + β

1− ξ

))

+

µ̂+ p̂n

un + β̂n(
1− ξ̂n

)
− µ− pn (un + β

1− ξ

) pnβ

1− ξ .

After rearrangement, we can write

An =

 p̂nβ̂n(
1− ξ̂n

) − pnβ̂n(
1− ξ̂n

) + pnβ̂n(
1− ξ̂n

) − pnβ

1− ξ

(ρ− µn − pn (un + β

1− ξ

))

+

(µ̂n − µn) + (p̂n − pn)

un + β̂n(
1− ξ̂n

)
+ pn

 β̂n(
1− ξ̂n

) − β

1− ξ

 pnβ

1− ξ .

Using the approximations of Johansson (Johansson (2003)), we can deduce

An = pnβ

1− ξ (µ̂n − µn) + β

1− ξ (ρ− µn) (p̂n − pn)

+ pn(ρ− µn − pnun)
(1− ξ)

(
β̂n − β

)
+ pnβ(ρ− µn − unpn)

(1− ξ)2

(
ξ̂n − ξ

)
+ oP(1) (5.5)

then, we can rewrite

Φ̂(2)
n (un)− Φ(un) = 1(

ρ− µ̂JX,n
)

(ρ− µX)
(An,1 + An,2 + An,3 + An,4) + oP(1)
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where

An,1 = pnβ

1− ξ
1(

ρ− µ̂JX,n
)

(ρ− µX)
(µ̂n − µn) ,

An,2 = β

1− ξ (ρ− µn) 1(
ρ− µ̂JX,n

)
(ρ− µX)

(p̂n − pn)

An,3 = pn(ρ− µn − pnun)
(1− ξ)

1(
ρ− µ̂JX,n

)
(ρ− µX)

(
β̂n − β

)

An,4 = pnβ(ρ− µn − unpn)
(1− ξ)2

1(
ρ− µ̂JX,n

)
(ρ− µX)

(
ξ̂n − ξ

)

We need the following proposition to complete the demonstration of the Theorem 4.2.

Proposition 5.1 Let FX be a CDF fulfilling Equation (2.1) with ξ ∈ (0, 1), δ > 0 and
real c. suppose that L is locally bounded in [xF ,∞) for somme xF ≥ 0. Then fr large n
enough and for any un = O(nαξ), α ∈ (0, 1), we have

σ2
n = OP(nα(2ξ−1)),

(µ̂n − µn) = OP( σn√
n

),

(p̂n − pn) = OP(
√
pn(1− pn)√

n
),

(
β̂n − β

)
= OP( 1

√
pnn

),

(
ξ̂n − ξ

)
= OP( 1

√
pnn

)

Proof For the proof of the proposition (see, e.g.,Smith (1987)). We can deduce that

(µ̂n − µn) = oP(1), as n ↑ +∞,
(p̂n − pn) = oP(1), as n ↑ +∞,(
β̂n − β

)
= oP(1), as n ↑ +∞,(

ξ̂n − ξ
)

= oP(1), as n ↑ +∞.

�

Under the assumption that ρ > µX , It follows that

pnβ

1− ξ
1(

ρ− µ̂JX,n
)

(ρ− µX)
(µ̂n − µn) = oP(1) as n ↑ +∞,

β

1− ξ (ρ− µn) 1(
ρ− µ̂JX,n

)
(ρ− µX)

(p̂n − pn) = oP(1) as n ↑ +∞,
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pn(ρ− µn − pnun)
(1− ξ)

1(
ρ− µ̂JX,n

)
(ρ− µX)

(
β̂n − β

)
= oP(1) as n ↑ +∞,

and

pnβ(ρ− µn − unpn)
(1− ξ)2

1(
ρ− µ̂JX,n

)
(ρ− µX)

(
ξ̂n − ξ

)
= oP(1) as n ↑ +∞.

Hence we have

Φ̂(2)
n (un)− Φ(un) = oP(1)

This completes the proof of Theorem 4.2. �

Proof of Theorem 4.3

Proof The Lemma A.2 in Johansson (2003) gives that the estimators conditional on N , µ̂n
is independent of

(
β̂n, ξ̂n

)
. And if we use that

√
npnQ

1
2

(
β̂n − β
ξ̂n − ξ

)
D−→ N (0, I) , as n ↑ +∞,

where

Q−1 = (1 + ξ)
(

2β2 −β
−β 1 + ξ

)
,

√
n√

pn(1− pn)
(p̂n − pn) D−→ N (0, 1) as n ↑ +∞,

and
√
n

σn
(µ̂n − µn) D−→ N (0, 1) as n ↑ +∞.

Using the result given in Equation (5.5) in the proof of the Theorem 2 and if we note
M = 1/

(
ρ− µ̂JX,n

)
(ρ− µX), we can write

√
n
(
Φ̂(2)
n (un)− Φ(un)

)
= M

[σn√npnβ
σn (1− ξ) (µ̂n − µn) +

√
n
√
pn(1− pn)β

(1− ξ)
√
pn(1− pn)

(ρ− µn) (p̂n − pn)

+
√
npn
√
pn

(1− ξ) (ρ− µn − pnun)(β̂n − β)

+
√
npn
√
pnβ

(1− ξ)2
(
ρ− µn − unpn

) (
ξ̂n − ξ

) ]
+ oP(1).
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By the law of large numbers the random variable 1/
(
ρ− µ̂JX,nX

)
(ρ− µX) converge in prob-

ability to 1/ (ρ− µX)2. Also, by the Slutsky’s Theorem, we can justify the asymptotic nor-
mality of

√
n
(
Φ̂(2)
n (un)− Φ(un)

)
. We can deduce the asymptotic variance as follows

σ2 = β2

(1− ξ)2 (ρ− µX)4

[
p2
nσ

2
n + pn (1− pn) (ρ− un)2 + 2pn(1 + ξ) (ρ− µn − pnun)2

+ pn(1 + ξ)2

(1− ξ)2 (ρ− µn − pnun)2 − 2pn(1 + ξ)
(1− ξ) (ρ− µn − pnun)2

]
.

If we note

θ1 = β2

(1− ξ)2 (ρ− µX)4 , θ2 = (ρ− un)2 , θ3 = (ρ− µn − pnun)2 ,

we can rewrite σ2 as follows

σ2 = θ1

(
p2
nσ

2
n + pn (1− pn) θ2 + pn(2ξ2 − ξ + 1)(1 + ξ)

(1− ξ)2 θ3

)
= O+(1)

�


