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Abstract

In square contingency tables, weighted kappa and AC2 coefficients are used to summa-
rize the degree of agreement between raters of an ordered square contingency table. In
addition to investigate the agreement between raters, category distinguishability should
be considered to check the reliability of the study. The overall degree of distinguishability
is used for R×R tables. In some applications, the value of overall degree of distinguisha-
bility is calculated outside the defined range as negative values. Since overall degree of
distinguishability is calculated by using all the category pairs, there occurs inflation
on its value. In this study, adjusted overall degree of distinguishability is suggested to
solve these two problems. Furthermore, interpretation of category distinguishability is
outlined and benchmark scales for overall degree of distinguishability are developed. A
simulation study is performed to compare the accuracy of the adjusted overall degree of
distinguishability and the classical one. The tables to find the adjusted overall degrees of
distinguishability for certain values of agreement coefficients are generated. The results
are discussed over medical data sets.

Keywords: AC2 coefficient · Category distinguishability · Polynomial regression
· Square contingency tables · Weighted kappa coefficient
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1. Introduction

Categorical variables reflect the characteristics of the experimental unit such as gender,
marital status, the severity of a disease, departments of a faculty, brand preference of the
customers (Vélez and Marmolejo-Ramos, 2017). There are two types of categorical variables,
nominal and ordinal. Ordinal variables are commonly used in the health sciences. The tables
with ordered categories arise if two raters rate the same subjects or one rater rates the same
subjects in two different time points. For these tables, analysis of agreement between the
row and column classifications is important. Cohen’s weighted kappa and AC2 coefficients
are used to determine the level of agreement between the ordinal classifications of two raters
(Cohen, 1968; Gwet, 2012).

Even though raters (observers) rate the subjects independently, a correlation occurs be-
tween their decisions. Two main components of the agreement are expressed as the marginal
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homogeneity and the category distinguishability. While marginal homogeneity represents the
differences in the marginal distributions of raters, category distinguishability is the ability
of raters to make a distinction between two categories (Darroch and McCloud, 1986; Valet
and Mary, 2011).

In the agreement studies, it is necessary to determine if the ordered categories are dis-
tinguishable from one to another (Perkins and Becker, 2002). If the categories are indis-
tinguishable, raters’ perceptions differ. The main reasons for indistinguishability are the
definition of categories and expertise of the rater. If the definition of categories is not clear,
then different raters get them differently or the same rater does not distinguish the cate-
gories correctly. If raters are non-expert in their fields, then it may be difficult for them
to distinguish the categories. The measure to calculate the distinguishability level is called
degree of distinguishability (DD) (Darroch and McCloud, 1986).

Darroch and McCloud (1986) state that the values of DD range between 0 which refers
to indistinguishability and 1 which refers to perfect distinguishability. In some applications,
the value of DD is calculated outside the defined range as negative values. For example, the
data used in Oh (2009) includes classifications of two trauma surgeons and two radiologists
of 60 patients into four categories. For this example, DD between 2–3 and 3–4 categories are
calculated as -0.43 and -0.67, respectively. Because the minimum value of DD is defined as
negative, there is uncertainty about its interpretation. To solve this problem for 2×2 tables,
Yilmaz and Saracbasi (2019) suggest to use the adjusted degree of distinguishability (ADD).
In this article, the conditions where negative DD values occur are theoretically examined in
Section 2.2.

For the ordinal tables, DD is calculated for each 2 × 2 sub-table. The overall degree of
distinguishability (ODD) is used to summarize the distinguishability of a table by a single
value. Because ODD is an average of degrees of distinguishability calculated for all pairs,
these negative values affect the value of ODD, as well. In this article, we suggest the adjusted
overall degree of distinguishability (AODD) for R×R tables to overcome this problem. Fur-
thermore, to the best of our knowledge, there is no information about the interpretation of
ODD. It is aimed to assess the weighted kappa coefficient and AODD in square contingency
tables together. A simulation study is performed to compare the accuracy of AODD with the
classical one. Then, polynomial regression is used to model the weighted kappa coefficient,
AC2, and AODD. Furthermore, benchmark scales for AODD are determined based on a
simulation study. Inter-rater agreement coefficients and category distinguishability are re-
viewed in Section 2. The simulation study and the illustrative examples results are discussed
in Section 3.

2. Inter-rater Agreement and DD

In this section we review the inter-rater agreement and the DD.

2.1 Inter-rater Agreement

There are numerous agreement coefficients for each table structure (nominal, ordinal or
interval). The well-known agreement coefficients for ordinal categories are Cohen (1968)
weighted kappa coefficient and Gwet (2012) AC2 coefficient. These coefficients are used to
assess the agreement between ordinal classifications of two raters.

Consider two raters who classify the subjects into an R ordinal scale. Let nij denote the
number of subjects placed in category i by the first rater and in category j by the second
rater (i, j = 1, 2, . . . , R). The cell probabilities are pij = nij/n. The marginal row and
column probabilities are pi. = ni./n and p.j = n.j/n, respectively. The observed agreement
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and the proportion agreement expected by chance for kappa are

P0 =
R∑
i=1

R∑
j=1

wijpij and Pe,κ =
R∑
i=1

R∑
j=1

wijpi.p.j . (2.1)

The weighted kappa coefficient κw is

κw = P0 − Pe,κ
1− Pe,κ

.

Since the proportion agreement expected by chance for AC2

Pe,AC2 = wT
R(R− 1)

R∑
i=1

πi(1− πi), (2.2)

where wT =
∑R
i=1
∑R
j=1 wij and πi = (pi. + p.i)/2. The AC2 coefficient is given by

AC2 = P0 − Pe,AC2

1− Pe,AC2
,

where P0 is defined in Equation (2.1). The wij ’s in Equation (2.1) and (2.2) are the weights,
0 ≤ wij ≤ 1. The coefficient allows each (i, j) cell to be weighted according to the de-
gree of agreement between ith and jth categories (Shoukri, 2004). Different formulations
of weighting schemes are compared by Tran et al. (2020) and it is concluded the accuracy
of the coefficients is not sensitive to the used weights if the table of interest is not highly
unbalanced and the true agreement is not that low. Thus, we only considered the linear
weights wij = 1− |i− j|/(R− 1) of Cicchetti and Allison (1971).

2.2 Category Distinguishabilities

In the agreement studies with ordered scales, besides the level of agreement, category dis-
tinguishability is of interest (Becker, 1989). Category distinguishability is the ability of the
raters to distinguish the categories. DD is used to measure the degree to which raters can dis-
tinguish between categories. In such studies, it is expected to have as many distinguishable
categories as possible because indistinguishable categories may affect the level of agreement.
If the definition of two categories is not clear or rater is not expert on his/her field, and
raters cannot distinguish these categories well, then it would be difficult to categorize the
subjects into a correct category. In that case, the choices they make between these two
categories are expected by chance and these random classifications cause poor agreement.

Darroch and McCloud (1986) argue that kappa coefficient is not satisfactory as a measure
of category distinguishability; and instead of kappa coefficient, the measure of DD can be
used.

DD is suggested to investigate the ability of the raters to distinguish between two cate-
gories (Darroch and McCloud, 1986). Let any 2× 2 sub-table of an R×R agreement table
is shown in Table 1.



168 Yilmaz

Table 1. Notation for a 2 × 2 sub-table.

Rater 2
Rater 1 i j Total

i nii nij ni.
j nji njj nj.

Total n.i n.j

The measure of category distinguishability is defined in terms of the following odds ratio.

τij = niinjj
nijnji

, i < j. (2.3)

The DD of ith and jth categories is

δij = 1− τ−1
ij , (2.4)

where 0 ≤ δij ≤ 1. When δij ∼= 1, then there is a perfect distinguishability between these two
categories. When δij ∼= 0, then it is impossible to distinguish between these two categories
and this is not a preferred situation in the studies.

The odds ratio measures the differences in the interpretation of two categories by two
raters. If the odds ratio is equal to one as (niinjj = nijnji), then δij = 0 which represents
the indistinguishable categories. In that case, the decision of the raters is effectively made
by the toss of a suitably weighted coin (Darroch and McCloud, 1986). If the odds ratio is
high enough as (niinjj > nijnji), then δij ∼= 1 which represents the perfect distinguishable
categories. In that case, the raters make their choices clearly, not by chance.

The ODD is suggested to summarize the category distinguishability of an R×R table by
a single value. As δij is defined as in Equation (2.4), the ODD is given in Equation (2.5).

δ = 1(R
2
) ∑
i<j

δij , (2.5)

where 0 ≤ δ ≤ 1. δ ∼= 1 if and only if all pairs of categories are completely distinguishable,
and δ ∼= 0 if and only if all pairs of categories are completely indistinguishable.

The ranges of DD and ODD are defined between 0 and 1. In the applications, the value of
DD may be calculated outside the defined range as negative. To solve this problem, Yilmaz
and Saracbasi (2019) suggest to use ADD. The ADD between ith and (i+ 1)st categories is

δai(i+1) =
{

1− τ−1
i(i+1) if τi(i+1) ≥ 1,

1− τi(i+1) if τi(i+1) < 1,
(2.6)

where 0 ≤ δai(i+1) ≤ 1, i = 1, 2, . . . , (R− 1). The odds ratio for square contingency tables is

τi(i+1) =
nii n(i+1)(i+1)

ni(i+1) n(i+1)i
.

If the table contains sampling zeros, the odds ratio either equal to 0 or∞. Hence, the degree
of distinguishability is calculated as −∞ or 1, respectively. To solve this problem, the odds
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ratio is calculated by adding 0.50 to each cell (Agresti, 2002)

τi(i+1) =
(nii + 0.5)(n(i+1)(i+1) + 0.5)
(ni(i+1) + 0.5)(n(i+1)i + 0.5) .

To get the inequality for the sub-tables with negative distinguishabilities (δij < 0), Equation
(2.3) and (2.4) can be used

δij = 1− nijnji
niinjj

= niinjj − nijnji
niinjj

< 0

= niinjj − nijnji < 0.

Then, DD is negative only if niinjj < nijnji. By considering Table 1, let A = nii +njj show
the number of subjects that the two raters agree and D = nij + nji show the number of
subjects that the two raters disagree.

In this study, when DD is negative, we conduct a more detailed investigation of the
frequency distribution of sub-tables. We consider three cases: (a) raters agree more than
disagree; (b) raters disagree more than agree; (c) equal agreement and disagreement (Figure
1).

Figure 1. A flowchart showing the problems of DD calculations.

Case 1: Let there is negative distinguishability and the raters agree more than disagree.
To solve the compound inequalities in Case 1, we need to consider the followings:

(1) When DD is negative, then (niinjj < nijnji).
(2) When the raters agree than disagree, then (A > D).
(3) When any cell frequency is zeros, 0.5 is added to all the cells. Thus, nii > 0, njj > 0,

nij > 0, and nji > 0.

By considering these three inequalities above, the possible solutions are

• If D > nii, then −nii +D < njj < nijnji/nii.
• If D < nii, then 0 < njj < nijnji/nii.

Case 2: Let there is negative distinguishability and the raters disagree more than agree.
To solve the compound inequalities in Case 2, we need to consider the followings
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(1) When DD is negative, then niinjj < nijnji.
(2) When the raters disagree than agree, then (A < D).
(3) nii > 0, njj > 0, nij > 0, and nji > 0.

By considering these three inequalities above, the possible solutions are

• If nij = nii, then 0 < njj < nji.
• If nji = nii, then 0 < njj < nij .
• If nij < nii and nji < nii, then 0 < njj < D − nii.
• If nij > nii and nji > nii, then 0 < njj < D − nii.
• If nij > nii and nii > nji, then 0 < njj < nijnji/nii.
• If nji > nii and nii > nij , then 0 < njj < nijnji/nii.

Case 3: Let there is negative distinguishability and the number of subjects that two
raters agree and the number of subjects that they disagree are equal. To solve the compound
inequalities in Case 3, we need to consider the followings

(1) When DD is negative, then niinjj < nijnji.
(2) When there is equal agreement and disagreement, then (A = D).
(3) nii > 0, njj > 0, nij > 0, and nji > 0.

By considering these three conditions above, the only possible solution is

• nii < D and njj = D − nii, then 0 < njj < nijnji/nii.
The negative values of DD may also affect the value of ODD because it is an average of
the distinguishabilities between all possible combinations of the categories. When some of
DD values are negative, ODD value is calculated less than its true value. In this paper, we
proposed AODD to calculate the ADD.

We proposed AODD under two arguments. Firstly, the distinguishability between ith and
jth categories is equal to the distinguishability between jth and ith categories. Secondly, DD
only for the adjacent categories instead of all the pairs is used to calculate the overall degree
of distinguishable because if categories (i) and (i + 1) are distinguishable and categories
(i + 1) and (i + 2) are distinguishable, then it is reasonable if categories (i) and (i + 2)
are distinguishable as well. Even though in the original formulation of DD, it is possible
to calculate for each pair of categories, in real-life applications it is not preferable. Agresti
(1988) discusses that the value of DD increases as the distance between the categories
increases and calculated the DD’s only for the adjacent categories. Valet et al. (2007) suggest
the log-linear non-uniform association models and considered the distinguishability between
two adjacent categories. The reason is that the association has an ordinal pattern and when
the distance between the categories increases, the association (odds ratio) between them
increases. Because the formulation of DD is directly related to the odds ratio, the ability
of the raters to distinguish the categories also increases. To give an example, Valet et al.
(2009) use the furrows between eyebrows, wrinkles above lips, nasolabial fold (NLF) scale
for skin ageing signs (see Table 1 in Valet et al. (2009)). The data has six ordinal categories
and the calculated DD values are

Categories 2 3 4 5 6
1 0.99 1.00 1.00 1.00 1.00
2 0.63 0.99 0.99 1.00
3 0.70 1.00 1.00
4 0.93 1.00
5 0.95
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The results show that the DD values increase when the difference between the categories.
If we calculate the DD values by using all the pairs, we calculate the ODD as 0.94. Because
the values of non-adjacent categories are higher than the adjacent ones, the ODD value does
not reflect the true distinguishability. However, when we calculate the DD values by using
only the adjacent categories we calculate the ODD as 0.84. For this reason, it is sufficient
to calculate DD only for the adjacent categories instead of all the pairs. The AODD is

δa = 1
R− 1

R−1∑
i=1

δai(i+1). (2.7)

Here, δai(i+1) can be calculated from Equation (2.6). The benchmark scale of AODD is derived
and discussed in Section 3.4.

3. Simulation Study

A simulation study is performed to compare the proposed AODD with the classical one for
square contingency tables with ordinal categories. It is also aimed to discuss the equivalence
of weighted kappa coefficient and AODD, and to develop benchmarking scales for AODD.

3.1 Design of the Simulation Study

We use the method presented by Goktas and Isci (2011) to generate R × R contingency
tables. We randomly generate two independent standard normal distributions (X and Y)
considering the predetermined sample sizes. As ρ is the true correlation between X1 and X2
variables, we calculate a and b (see Goktas and Isci (2011) study for more detail).

a =
√

1 + ρ+
√

1− ρ
2 and b =

√
1 + ρ−

√
1− ρ

2 .

Then, X1 = aX + bY and X2 = bX + aY are generated. To get an R × R table, the range
of generated X1 and X2 variables are divided into R sub-equal intervals and the cross-table
is generated.

The sample size (n) is taken as 50, 100, 200, and 500. Number of categories (R) is taken
as 3, 4, 5, and 6. Spearman’s rank correlation coefficient (ρ) is considered as 0.20, 0.50, and
0.80 which refer to low, moderate, or strong relationship among the raters. The linearly
weighted kappa coefficient, ODD, and AODD are calculated for each scenario.

The simulation software is developed in R version 3.6.1 by the author on a computer with
an Intelr CoreTM i7 processor and 8GB RAM, running on the Windows version 8.1. We
utilize stepAIC() function of MASS package to select the best fitted polynomial regression
models (Venables et al, 2002) and irrCAC package to calculate kappa and AC2 coefficients
(Gwet, 2019). The results are based on 50,000 replications. The computation time for each
scenario is on average of about 755 seconds.

3.2 The comparison of overall and adjusted overall degrees of
distinguishability

To compare the ODD and AODD, a simulation study is performed. Table 2 shows the
minimum, maximum values, median, mean, and standard errors of ODD and AODD for
different number of categories, different sample sizes, and different values of correlation.
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Table 2. The descriptive statistics of ODD and AODD.

δ δa

ρ R n Min Med Max Mean S.E. Min Med Max Mean S.E.
0.

20

3
50 -4.14 0.4820 0.99 0.3591 0.0021 0.00 0.5744 0.99 0.5676 0.0009
100 -4.01 0.4230 0.96 0.2551 0.0024 0.00 0.5484 0.96 0.5402 0.0008
200 -6.14 0.4215 0.92 0.2524 0.0025 0.01 0.5054 0.92 0.4986 0.0007
500 -7.69 0.4338 0.83 0.3617 0.0015 0.00 0.4559 0.83 0.4482 0.0006

4
50 -58.09 0.0213 0.94 -0.3168 0.0056 0.00 0.4988 0.95 0.4965 0.0007
100 -14.99 0.0788 0.88 -0.1354 0.0035 0.01 0.4251 0.88 0.4253 0.0006
200 -11.43 0.1355 0.80 0.0220 0.0023 0.01 0.3489 0.80 0.3522 0.0006
500 -2.89 0.1853 0.68 0.1548 0.0011 0.01 0.2661 0.68 0.2713 0.0005

5
50 -43.41 -0.3168 0.95 -0.9310 0.0088 0.00 0.5466 0.95 0.5406 0.0006
100 -55.72 -0.1302 0.90 -0.6567 0.0082 0.00 0.4869 0.94 0.4863 0.0006
200 -30.20 -0.0130 0.83 -0.2652 0.0046 0.02 0.4074 0.89 0.4097 0.0005
500 -7.12 0.0741 0.70 0.0136 0.0015 0.02 0.2999 0.71 0.3043 0.0004

6
50 -37.73 -0.6933 0.94 -14.977 0.0114 0.01 0.5752 0.95 0.5704 0.0006
100 -46.63 -0.3444 0.90 -0.9613 0.0094 0.04 0.5166 0.94 0.5157 0.0006
200 -48.73 -0.1467 0.88 -0.4246 0.0050 0.06 0.4417 0.88 0.4432 0.0005
500 -6.95 -0.0036 0.70 -0.0607 0.0015 0.03 0.3154 0.75 0.3187 0.0004

0.
50

3
50 -2.76 0.7672 1.00 0.6768 0.0013 0.05 0.7692 1.00 0.7287 0.0008
100 -3.16 0.7838 0.99 0.7110 0.0011 0.03 0.7842 0.99 0.7479 0.0006
200 -1.85 0.7922 0.97 0.7585 0.0007 0.06 0.7923 0.97 0.7682 0.0005
500 -1.44 0.7994 0.93 0.7898 0.0003 0.30 0.7994 0.93 0.7900 0.0003

4
50 -26.73 0.3909 0.95 0.1911 0.0034 0.01 0.5435 0.95 0.5387 0.0007
100 -6.68 0.4512 0.93 0.3645 0.0017 0.04 0.5053 0.93 0.5014 0.0007
200 -5.98 0.4822 0.85 0.4507 0.0009 0.00 0.4932 0.85 0.4869 0.0006
500 -0.13 0.5042 0.76 0.4937 0.0005 0.05 0.5044 0.76 0.4963 0.0004

5
50 -31.48 0.0577 0.95 -0.4320 0.0071 0.01 0.5568 0.95 0.5518 0.0006
100 -36.17 0.2179 0.89 -0.0558 0.0046 0.03 0.4939 0.91 0.4917 0.0006
200 -14.91 0.2946 0.87 0.2056 0.0019 0.03 0.4284 0.87 0.4293 0.0006
500 -1.69 0.3442 0.75 0.3198 0.0008 0.03 0.3782 0.75 0.3788 0.0005

6
50 -28.78 -0.3556 0.95 -10.445 0.0098 0.00 0.5714 0.95 0.5674 0.0006
100 -41.40 -0.0528 0.88 -0.4928 0.0073 0.05 0.5051 0.92 0.5044 0.0005
200 -14.48 0.0888 0.83 -0.0702 0.0032 0.01 0.4261 0.85 0.4281 0.0005
500 -3.66 0.1724 0.72 0.1311 0.0012 0.04 0.3398 0.72 0.3422 0.0004

0.
80

3
50 -1.11 0.9398 1.00 0.9117 0.0004 0.14 0.9398 1.00 0.9133 0.0004
100 -0.01 0.9475 1.00 0.9352 0.0002 0.29 0.9475 1.00 0.9354 0.0002
200 -0.71 0.9514 0.99 0.9467 0.0001 0.54 0.9514 0.99 0.9468 0.0001
500 0.86 0.9538 0.99 0.9522 0.0001 0.86 0.9538 0.99 0.9522 0.0001

4
50 -6.46 0.7843 0.99 0.7305 0.0010 0.04 0.7855 0.99 0.7593 0.0006
100 -0.83 0.8085 0.97 0.7895 0.0004 0.14 0.8085 0.97 0.7918 0.0004
200 0.17 0.8211 0.95 0.8131 0.0003 0.42 0.8211 0.95 0.8132 0.0003
500 0.58 0.8289 0.92 0.8259 0.0001 0.58 0.8289 0.92 0.8259 0.0001

5
50 -35.51 0.5827 0.97 0.3756 0.0034 0.03 0.6599 0.97 0.6498 0.0006
100 -21.59 0.6516 0.95 0.5819 0.0015 0.08 0.6663 0.95 0.6535 0.0006
200 -1.59 0.6842 0.94 0.6595 0.0006 0.12 0.6849 0.94 0.6706 0.0005
500 0.20 0.7047 0.89 0.6968 0.0003 0.30 0.7047 0.89 0.6970 0.0003

6
50 -30.85 0.1996 0.96 -0.2625 0.0069 0.08 0.5983 0.96 0.5932 0.0006
100 -17.18 0.3520 0.94 0.1631 0.0034 0.08 0.5516 0.94 0.5497 0.0005
200 -8.00 0.4226 0.87 0.3589 0.0014 0.11 0.5166 0.87 0.5155 0.0005
500 -0.93 0.4664 0.83 0.4472 0.0006 0.10 0.4901 0.83 0.4909 0.0004

Although the defined range lies between 0 and 1, there are negative minimum and max-
imum values of DD. In that case, AODD should be used instead of ODD. According to
represented results in Table 2, the estimates of ODD and AODD differ for each scenario.
The results in Table 2 show that when the correlation between raters increases, the values
of ODD and AODD also increase. When the sample size increases, the value of ODD and
AODD decrease for the tables with low correlation (ρ = 0.20). The tables with medium or
high correlation, with R ≤ 4 categories, and with n > 50 sample size, are not affected by
the sample sizes. When the sample size increases, ODD and AODD decrease for the tables
with medium or high correlation and with R ≥ 5 categories. When the number of categories
increases, ODD and AODD decrease for the tables with medium or high correlation. The
tables with three categories have the highest distinguishability.
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3.3 Modeling agreement coefficients and AODD

As Darroch and McCloud (1986) remark in their study, one of the components of rater
agreement is the category distinguishability. If raters cannot distinguish the categories, this
may cause wrong decisions and the wrong decisions may affect the level of agreement. At this
part of the study, we proposed to investigate rater agreement and category distinguishability
together.

The polynomial regression models of linearly weighted kappa coefficient and AC2 are
discussed on the following equations. A pilot study is performed first with the different
polynomial degrees and the fits of the models are compared. There are no statistically
significant differences between the models with 5 and 10 degrees, but there are difference
between the models with 3 and 5 degrees. Thus, the maximum degree of polynomial terms
is accepted as five. In Equation (3.8), weighted kappa coefficient is explained by a function
of AODD. In Equation (3.9), AC2 is explained by a function of AODD.

κ̂w = β0 + β1δ
a + β2(δa)2 + β3(δa)3 + β4(δa)4 + β5(δa)5 (3.8)

ÂC2 = β0 + β1δ
a + β2(δa)2 + β3(δa)3 + β4(δa)4 + β5(δa)5 (3.9)

Table 3. The estimates and standard errors (SE) of the polynomial regression models for ρ = 0.20.

β0 β1 β2 β3 β4 β5
R n Model Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE p-value

3

50 κw 0.087 0.020 -1.062 0.157 4.653 0.442 -7.089 0.529 3.924 0.227 < 0.001
AC2 0.615 0.005 0.501 0.016 -1.155 0.043 0.973 0.034 < 0.001

100 κw 0.043 0.009 -0.560 0.079 2.873 0.252 -4.643 0.335 2.782 0.158 < 0.001
AC2 0.709 0.007 0.162 0.059 0.429 0.186 -1.342 0.247 0.974 0.117 < 0.001

200 κw 0.018 0.004 -0.227 0.039 1.694 0.145 -2.944 0.219 1.912 0.116 < 0.001
AC2 0.764 0.001 0.360 0.020 -0.749 0.051 0.525 0.035 < 0.001

500 κw 0.017 0.002 -0.214 0.041 2.340 0.257 -6.551 0.720 8.483 0.929 -3.904 0.449 < 0.001
AC2 0.780 0.001 0.130 0.014 -0.235 0.042 0.207 0.033 < 0.001

4

50 κw 0.120 0.020 -0.209 0.157 1.006 0.442 -1.599 0.529 1.010 0.227 < 0.001
AC2 0.356 0.006 0.127 0.043 -0.236 0.092 0.250 0.063 < 0.001

100 κw 0.089 0.004 0.091 0.031 -0.209 0.076 0.313 0.058 < 0.001
AC2 0.360 0.002 0.187 0.050 -0.345 0.142 0.316 0.109 < 0.001

200 κw 0.089 0.001 0.267 0.046 -0.491 0.152 0.491 0.134 < 0.001
AC2 0.372 0.006 -0.293 0.103 2.103 0.679 -5.809 2.050 7.509 2.867 -3.495 1.502 < 0.001

500 κw 0.089 0.001 0.279 0.013 -0.111 0.026 < 0.001
AC2 0.358 0.001 0.199 0.012 -0.071 0.024 < 0.001

5

50 κw 0.090 0.008 0.143 0.051 -0.254 0.103 0.202 0.066 0.090 0.008 < 0.001
AC2 0.436 0.004 -0.052 0.016 0.076 0.015 < 0.001

100 κw 0.102 0.001 0.021 0.002 0.102 0.001 < 0.001
AC2 0.412 0.001 0.066 0.014 -0.046 0.017 < 0.001

200 κw 0.103 0.001 0.073 0.019 -0.082 0.028 0.103 0.001 < 0.001
AC2 0.421 0.004 -0.066 0.028 0.200 0.069 -0.148 0.054 < 0.001

500 κw 0.100 0.001 0.054 0.002 0.100 0.001 < 0.001
AC2 0.411 0.001 0.047 0.002 < 0.001

6

50 κw 0.142
AC2 0.162

100 κw 0.127 0.001 -0.023 0.003 < 0.001
AC2 0.139 0.001 -0.032 0.003 < 0.001

200 κw 0.122 0.001 -0.021 0.002 < 0.001
AC2 0.470 0.003 -0.391 0.045 1.142 0.180 < 0.001

500 κw 0.116 0.001 0.005 0.002 0.002
AC2 0.062

According to the simulation study results in Tables 3–5, different models have been found
for each scenario. All the models are found statistically significant (p < 0.05), except for
ρ = 0.20 where R = 6 of n = 50 and n = 500. The results in Tables 3 and 4 show that
AODD explains κw better than AC2 for the tables with low or medium correlations. For the
tables with high correlation, even though the fit of κw model is better than the fit of AC2
model where R = 3, AC2 results are better where R > 3. In other words, AODD explains
κw better than AC2 where R = 3, and explains AC2 better than κw where R > 3.

The observed and predicted values of κw and AC2 under the models in Tables 3–5 are
summarized in Figures 2 and 3, respectively. According to the results, observed and predicted
values of κw are found very similar. While the sample size increases, the difference between
these values decreases and becomes very similar. The medians of the predicted values of
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Figure 2. The of observed and predicted weighted kappa results by median.

Figure 3. The observed and predicted AC2 results by median.

AC2 are also found very similar to observed ones. The results show that the value of AODD
affects the value of agreement coefficients and there is a non-linear correlation between them.
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Table 4. The estimates and standard errors (SE) of the polynomial regression models for ρ = 0.50.

β0 β1 β2 β3 β4 β5
R n Model Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE p-value

3

50 κw 0.260 0.035 -2.883 0.249 10.92 0.635 -15.25 0.692 7.589 0.273 < 0.001
AC2 0.667 0.003 1.748 0.044 -3.455 0.085 1.979 0.045 < 0.001

100 κw 0.089 0.022 -1.321 0.157 6.225 0.413 -9.495 0.463 5.100 0.188 < 0.001
AC2 0.698 0.004 0.366 0.013 -1.025 0.030 0.886 0.022 < 0.001

200 κw -0.010 0.024 -0.293 0.171 3.039 0.436 -5.560 0.478 3.396 0.191 < 0.001
AC2 0.813 0.015 -0.319 0.107 1.492 0.272 -2.404 0.298 1.339 0.119 < 0.001

500 κw 0.297 0.091 -1.811 0.554 5.688 1.251 -7.477 1.236 3.859 0.452 < 0.001
AC2 0.620 0.018 1.023 0.078 -1.812 0.110 1.078 0.052 < 0.001

4

50 κw 0.199 0.007 0.202 0.045 -0.321 0.091 0.458 0.058 < 0.001
AC2 0.453 0.002 0.051 0.006 0.165 0.006 < 0.001

100 κw 0.211 0.002 0.121 0.005 0.176 0.006 < 0.001
AC2 0.455 0.002 0.016 0.007 0.175 0.007 < 0.001

200 κw 0.218 0.002 0.091 0.007 0.152 0.008 < 0.001
AC2 0.453 0.001 0.450 0.030 -0.672 0.082 0.435 0.061 < 0.001

500 κw 0.199 0.004 0.277 0.032 -0.319 0.070 0.343 0.051 < 0.001
AC2 0.462 0.001 0.024 0.006 0.132 0.006 < 0.001

5

50 κw 0.239 0.004 0.546 0.083 -1.190 0.197 0.855 0.128 0.239 0.004 < 0.001
AC2 0.514 0.003 0.242 0.062 -0.482 0.148 0.365 0.096 < 0.001

100 κw 0.261 0.001 0.114 0.002 0.261 0.001 < 0.001
AC2 0.518 0.001 0.091 0.002 < 0.001

200 κw 0.265 0.001 0.138 0.002 0.265 0.001 < 0.001
AC2 0.520 0.001 0.100 0.001 < 0.001

500 κw 0.260 0.001 0.063 0.006 0.063 0.008 0.260 0.001 < 0.001
AC2 0.518 0.001 0.040 0.005 0.044 0.006 < 0.001

6

50 κw 0.274 0.014 0.192 0.080 -0.373 0.152 0.247 0.093 < 0.001
AC2 0.288 0.013 0.225 0.074 -0.438 0.140 0.283 0.086 < 0.001

100 κw 0.304 0.002 0.053 0.017 -0.043 0.020 < 0.001
AC2 0.315 0.001 0.049 0.015 -0.046 0.019 < 0.001

200 κw 0.293 0.003 0.740 0.193 -3.090 0.863 4.910 1.395 -2.684 0.774 < 0.001
AC2 0.337 0.018 -0.505 0.245 3.217 1.278 -8.814 3.170 11.15 3.746 -5.288 1.695 < 0.001

500 κw 0.300 0.001 0.027 0.008 0.037 0.011 < 0.001
AC2 0.303 0.001 0.026 0.007 0.033 0.010 < 0.001

Table 5. The estimates and standard errors (SE) of the polynomial regression models for ρ = 0.80.

β0 β1 β2 β3 β4 β5
R n Model Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE p-value

3

50 κw -16.52 0.860 133.8 6.480 -422.0 19.09 654.7 27.50 -499.7 19.41 150.5 5.380 < 0.001
AC2 -3.761 0.312 36.22 2.352 -113.5 6.931 176.1 9.988 -134.9 7.050 40.78 1.953 < 0.001

100 κw -52.94 2.45 383.6 16.93 -1091.1 45.96 1533.1 61.51 -1066.2 40.62 294.4 10.60 < 0.001
AC2 -13.72 0.957 105.4 6.594 -300.6 17.90 423.6 23.96 -295.6 15.82 81.87 4.128 < 0.001

200 κw 48.26 2.360 -254.6 11.63 503.2 21.29 -439.6 17.16 143.5 5.140 < 0.001
AC2 -46.40 7.130 314.3 44.99 -828.4 112.3 1083.7 138.9 -704.8 85.11 182.5 20.71 < 0.001

500 κw -148.3 8.070 492.6 25.74 -545.9 27.36 202.4 9.690 < 0.001
AC2 -42.18 3.720 143.0 11.87 -158.6 12.61 58.76 4.470 < 0.001

4

50 κw 0.502 0.025 -1.621 0.187 6.054 0.486 -8.000 0.539 3.850 0.217 < 0.001
AC2 0.673 0.016 -1.245 0.113 4.583 0.295 -6.027 0.328 2.873 0.132 < 0.001

100 κw 0.631 0.054 -2.461 0.354 8.061 0.839 -10.10 0.863 4.649 0.325 < 0.001
AC2 0.654 0.033 -0.962 0.215 3.624 0.508 -4.896 0.523 2.422 0.197 < 0.001

200 κw -0.410 0.075 3.726 0.299 -5.556 0.395 2.995 0.173 < 0.001
AC2 0.069 0.045 2.443 0.177 -3.737 0.234 2.054 0.102 < 0.001

500 κw -0.659 0.305 4.603 1.138 -6.606 1.415 3.416 0.586 < 0.001
AC2 1.095 0.015 -1.464 0.038 1.179 0.023 < 0.001

5

50 κw 0.530 0.022 -0.771 0.173 2.868 0.591 -3.784 0.491 1.903 0.256 0.530 0.022 < 0.001
AC2 0.697 0.014 -0.435 0.110 1.607 0.312 -2.077 0.375 1.045 0.163 < 0.001

100 κw 0.515 0.021 -0.507 0.162 2.002 0.453 -2.615 0.541 1.314 0.234 0.515 0.021 < 0.001
AC2 0.671 0.014 -0.242 0.105 1.178 0.293 -1.696 0.350 <0.001 0.152 < 0.001

200 κw 0.390 0.011 0.522 0.056 -0.816 0.094 0.587 0.051 0.390 0.011 < 0.001
AC2 0.712 0.017 -0.472 0.124 1.718 0.337 -2.315 0.395 1.178 0.169 < 0.001

500 κw 0.360 0.029 0.690 0.133 -1.115 0.206 0.752 0.105 0.360 0.029 < 0.001
AC2 0.581 0.019 0.494 0.088 -0.843 0.136 0.570 0.069 < 0.001

6

50 κw 0.526 0.005 0.233 0.082 -0.371 0.185 0.276 0.114 < 0.001
AC2 0.459 0.040 0.994 0.440 -4.113 1.837 8.592 3.662 -8.542 3.501 3.318 1.289 < 0.001

100 κw 0.532 0.002 0.812 0.087 -1.578 0.220 0.935 0.145 < 0.001
AC2 0.533 0.003 0.363 0.052 -0.614 0.124 0.392 0.081 < 0.001

200 κw 0.522 0.001 0.092 0.003 0.053 0.006 < 0.001
AC2 0.530 0.001 0.081 0.003 0.047 0.005 < 0.001

500 κw 0.509 0.007 0.224 0.047 -0.308 0.098 0.237 0.067 < 0.001
AC2 0.536 0.002 0.061 0.008 0.035 0.008 < 0.001

3.4 The benchmark scale of AODD

Yilmaz and Saracbasi (2019) suggest the interpretation levels for ADD in 2× 2 tables. For
ordinal tables, even if there are some general ones, there is not any scale to interpret the
level of category distinguishability.

To develop mixed tables of the linearly weighted kappa coefficient and AODD, we generate
50000 tables for each scenario. For each simulation, we use a random sample size between 40
and 1000; and a random correlation between 0.10 and 0.90. Then, we classify the values of
linearly weighted kappa into nine categories and class interval is accepted as 0.10. According
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to the defined intervals, descriptive statistics of AODD values are summarized in Table 6.

Table 6. The descriptive statistics of the predicted AODD values.

R κw interval Min Median Max R κw interval Min Median Max

3

0.00-0.10 0.01 0.42 0.90

5

0.00-0.10 0.02 0.30 0.88
0.11-0.20 0.33 0.67 0.91 0.11-0.20 0.04 0.31 0.87
0.21-0.30 0.46 0.81 0.94 0.21-0.30 0.03 0.36 0.85
0.31-0.40 0.48 0.89 0.97 0.31-0.40 0.04 0.45 0.87
0.41-0.50 0.50 0.94 0.98 0.41-0.50 0.16 0.57 0.88
0.51-0.60 0.78 0.96 0.99 0.51-0.60 0.27 0.70 0.90
0.61-0.70 0.86 0.98 0.99 0.61-0.70 0.41 0.81 0.93
0.71-0.80 0.97 0.99 1.00 0.71-0.80 0.68 0.89 0.96
0.81-1.00 0.99 0.99 1.00 0.81-1.00 0.95 0.98 0.99

4

0.00-0.10 0.02 0.24 0.78

6

0.00-0.10 0.04 0.32 0.86
0.11-0.20 0.01 0.31 0.80 0.11-0.20 0.05 0.32 0.86
0.21-0.30 0.05 0.44 0.87 0.21-0.30 0.04 0.33 0.86
0.31-0.40 0.17 0.58 0.87 0.31-0.40 0.07 0.36 0.93
0.41-0.50 0.29 0.65 0.90 0.41-0.50 0.07 0.41 0.81
0.51-0.60 0.46 0.80 0.94 0.51-0.60 0.11 0.61 0.85
0.61-0.70 0.71 0.90 0.97 0.61-0.70 0.30 0.78 0.89
0.71-0.80 0.85 0.94 0.97
0.81-1.00 0.95 0.96 0.96

We suggest the benchmark scales in Table 7 for AODD given in Equation (2.7) by con-
sidering medians in Table 6. We use the midpoints of medians to decide the thresholds.
To give an example, the first threshold of 3 × 3 tables is the midpoint of 3rd and 4th
classes ((0.81 + 0.89)/2 = 0.85). The third threshold is the midpoint of 5th and 6th classes
((0.94 + 0.95)/2 = 0.95).

Table 7. The benchmark scales of AODD.

R κw δa Strength of δa

3 ≥0.51 ≥0.95 Good
0.31-0.50 0.85-0.94 Moderate
≤0.30 ≤0.84 Fair

4 ≥0.71 ≥0.92 Good
0.51-0.70 0.72-0.91 Moderate
≤0.50 ≤0.71 Fair

5 ≥0.81 ≥0.94 Good
0.61-0.80 0.76-0.93 Moderate
≤0.60 ≤0.75 Fair

6 ≤0.60 ≤0.70 Good
≤0.60 ≤0.70 Fair

In order to test the validity of the defined intervals, a simulation study is performed
with 50,000 replications for each scenario. Linearly weighted kappa coefficient and AODD
are calculated for each replication. The correct classification rates are calculated for each
scenario and given in Table 8. The correct classification rates in Table 8 change between
0.63 and 1.00.
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Table 8. The correct classification rates.

ρ

R n 0.20 0.50 0.80

3
50 0.95 0.81 0.71
100 0.98 0.84 0.73
200 0.98 0.87 0.74
500 1.00 0.94 0.63

4
50 0.93 0.86 0.72
100 0.98 0.92 0.80
200 0.99 0.97 0.89
500 1.00 1.00 0.98

5
50 0.94 0.92 0.72
100 0.98 0.98 0.77
200 0.99 0.99 0.78
500 1.00 1.00 0.80

6
50 0.82 0.83 0.69
100 0.92 0.94 0.71
200 0.99 0.99 0.80
500 1.00 1.00 0.90

3.5 Illustrative Examples

Example 1: In the study of Walsh et al. (2014), two raters classify 159 children in terms of
immediate “gestalt” impression of overall clinical appearance. After examining the children,
they are classified again in terms of their clinical impression. Intra-rater and inter-rater
reliabilities are considered and summarize in Tables 9 and 10.
Table 9. The initial gestalt classifications (classifications following examination) of two raters.

First Rater
Second Rater Not ill appearing Unsure Ill appearing Total
Not ill appearing 94 (103) 11 (6) 13 (14) 118 (123)
Unsure 12 (8) 0 (0) 2 (1) 14 (9)
Ill appearing 14 (14) 5 (2) 8 (11) 27 (27)
Total 120 (125) 16 (8) 23 (26) 159

Table 10. The first (second) rater’s initial-after classifications.

After Examining Xhild
Gestalt Impression Not ill appearing Unsure Ill appearing Total
Not ill appearing 113 (113) 3 (3) 2 (4) 118 (120)
Unsure 8 (9) 4 (5) 2 (2) 14 (16)
Ill appearing 2(3) 2 (0) 23 (20) 27 (23)
Total 123 (125) 9 (8) 27 (26) 159

The calculated overall categories are summarized in Table 11. R codes for calculation of
ODD and AODD are provided in Appendix A. Firstly, the existence of zero cells are detected
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and if there are any, adding 0.5 to each cell. Then, the DD and ADD values are calculated
for the adjacent categories and represented as a matrix. The means of the DD and ADD
values give the ODD and AODD, respectively.

The linearly weighted kappa coefficient results show that the agreements between the
classifications are found as “slight”, “fair”, “substantial”, and “substantial”, respectively. The
linearly AC2 coefficient results indicate “moderate” agreements for all the tables. Because
of the negative values of DD, the ODD of initial classifications are also found as negative.
Thus, AODD is preferred over ODD. The distinguishabilities are found as “fair”, “fair”,
“good”, and “good”, respectively. Because of the low levels of agreement between the raters,
the indistinguishable categories are investigated by using the pairwise ADD.

Table 11. The calculated overall coefficients.

Tables κw AC2 δ δa

Initial 0.177 0.477 -1.174 0.681
After 0.261 0.518 0.368 0.206
Rater 1 0.777 0.574 0.967 0.952
Rater 2 0.714 0.551 0.976 0.968

The calculated DD and ADD values for each pair of categories are summarized in Table
12. The results show that DD of initial classifications between “Not ill appearing”–“Unsure”
and “Unsure”–“Ill appearing” and DD of after classifications between “Not ill appearing”–
“Unsure” are calculated as negative. In this case, ADD can be used instead of DD. The initial
classifications indicate the fair and homogeneous distinguishabilities and after classifications
indicate the poor distinguishabilities, except for ‘Not ill appearing”–“Ill appearing”.

Table 12. The calculated DD and ADD for gestalt data.

Initial After
Categories δij δaij δij δaij

Not ill appearing-Unsure -2.042 0.671 -0.068 0.063
Unsure-Ill appearing -2.235 0.691 0.348 0.348
Not ill appearing-Ill appearing 0.756 – 0.823 –

Even if high levels of intra-rater agreements and distinguishabilities are found, the inter-
rater ones are found at low levels. The reason is the inability of the raters to distinguish the
categories, even if they are consistent in themselves. Because there are poor distinguishabil-
ities of categories, we reclassify the categories (Table 13). After the reclassification of initial
classifications, the weighted kappa, AC2, and DD are increased to 0.194, 0.528, and 0.696,
respectively. For the reclassification following examination, the weighted kappa, AC2, and
DD are increased to 0.298, 0.427, and 0.814, respectively.

Table 13. The reclassified initial (following examination) results of two raters.

First Rater
Second Rater Not ill appearing+Unsure Ill appearing Total
Not ill appearing+Unsure 117 (117) 15 (15) 132 (132)
Ill appearing 19 (16) 8 (11) 27 (27)
Total 136 (133) 23 (26) 159
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Example 2: The data is taken from Oh (2009) and given in Table 14. The radiographs of
60 patients are shown to two groups of doctors (two trauma surgeons and two radiologists).

Table 14. The ratings given by trauma surgeons and radiologists.

Trauma Radiologists
Surgeons 0 1 2 3 Total
0 3 15 1 2 21
1 1 11 13 1 26
2 1 5 4 2 12
3 0 0 1 0 1
Total 5 31 9 5 60

For Table 14, linearly weighted kappa coefficient is calculated as 0.11. The correlation
between doctors is ρ̂ = 0.29. The calculated values for each pair of categories are summarized
in Table 15.

Table 15. The calculated DD and ADD for radiographs data.

0-1 0-2 0-3 1-2 1-3 2-3
δij 0.42 0.86 0.29 -0.43 0.87 -0.67
δaij 0.42 – – 0.30 – 0.40

DD’s between 2–3 and 3–4 are calculated as negative. The category distinguishability
between 0–2 and 1–3 are in the good level. Even if δ = 0.22, it decreases to -0.67 when
calculating only for the adjacent categories. It is expected that while the distance between
categories increases, the level of category distinguishability also increases. Thus, the calcu-
lation of ODD over all the category pairs has an increasing effect on its level.

Because the negative values affect its value, AODD is preferred over ODD. AODD for
radiographs data is calculated as δa = 0.38. When we interpret the level of ODD by the
suggested benchmarking scales in Table 7, the calculated values suggest a “fair” agreement
between the doctors’s decisions and the categories are indistinguishable. In that case, it is
possible to define the indistinguishable categories by using the pairwise ADD.

From the functional equations for n = 50 and ρ = 0.20 in Tables 3, the weighted kappa
coefficient is predicted as 0.12 which is similar to the observed one. This example indicates
the accuracy of the regression models in Equation (3.8) and (3.9).

4. Conclusions, Limitations, and Future Research

In recent studies, inter-rater agreement analysis has grown extensively. There are different
ideas between researchers when the subject is agreement. In the agreement studies, it is
necessary to discuss the term of category distinguishability. Yilmaz and Saracbasi (2019)
discuss that the value of degree of distinguishability may be calculated outside the defined
range as negative and they suggest adjusted degree of distinguishability as an alternative
measure to degree of distinguishability. In this study, in order to detect the conditions where
degree of distinguishability is negative, we conduct a detailed investigation of the frequency
distribution of sub-tables.

For ordered agreement tables, overall degree of distinguishability can be used to detect
the general distinguishability of the table. We discuss that the negative values of degree
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of distinguishability affect the value of overall degree of distinguishability because it is an
average of the all the degree of distinguishability’s. Simulation study results in Section 3
show that overall degree of distinguishability can also be found negative which is which is
outside the defined range and the results prove the necessity of a correction on the coefficient.
We also discuss that degree of distinguishability only for the adjacent categories instead of
all the pairs should be used to calculate the overall degree of distinguishability. In this
paper, we propose adjusted overall degree of distinguishability as an alternative to overall
degree of distinguishability. The new coefficient overcomes the problems of overall degree
of distinguishability: (1) solve the problem of its calculation outside the defined range and
(2) solve the problem of the inflation of its value by using only the adjacent categories.
The adjusted degree of distinguishability and adjusted overall degree of distinguishability
can be used for all the ordinal classifications of two raters, one device-one rater, or same
rater-two different times in dermatological (see Valet et al. (2007, 2009), psychiatric, and
pathological researches, reading ultrasound pictures (see Bagheban et al. (2008)), word-sense
distinguishabilities (see Bruce and Wiebe (1998)), etc.

Darroch and McCloud (1986) discuss that weighted kappa coefficient is a measure of ob-
server agreement and it is unsatisfactory as a measure of overall category distinguishability.
In other words, even if weighted kappa coefficient explains how well two raters agree with
each other, it does not describe how well any rater can distinguish the categories from each
other. In this study, we focus on the assessment of weighted kappa, AC2 coefficients, and
overall degree of distinguishability; and we discuss their interpretation. Weighted kappa and
AC2 coefficients are agreement indexes while degree of distinguishability is a measurement
of category distinguishability. Even though they are different coefficients, we focused on how
these coefficients associated with each other. The polynomial regression model study results
show that category distinguishability has an important influence on the value of agreement
coefficients. Adjusted overall degree of distinguishability explains κw better than AC2 for
the tables with poor and medium correlations, and explains AC2 better than κw for the
tables with high correlation R > 3.

In general, the values of weighted kappa coefficient and adjusted overall degree of dis-
tinguishability are affected by the number of categories. When the number of categories
increases (especially R ≥ 5), then the ability of the raters to distinguish the categories
becomes weaker. Low distinguishability may affect the agreement, as well. In the rater
agreement studies, it is proposed to use weighted kappa coefficient and adjusted overall
degree of distinguishability simultaneously. In order to get more distinguishable tables, it is
proposed to avoid the tables with more than five categories.

We also propose a benchmarking scale shown in Table 7. It is possible to interpret adjusted
overall degree of distinguishability by using these intervals. If the category distinguishability
is at poor level, then it means that the raters have some difficulties to distinguish the
categories. The reason may be about the unclearly defined categories or non-expert raters.
If the problem is about unclearly defined categories, it is suggested to combine the categories
by considering the category distinguishability between adjacent categories.

The tables with poor distinguishability indicate poor agreement. Although indistinguish-
able categories point towards a poor agreement, the good or substantial distinguishability
does not always point towards a good agreement. To get a good agreement level, the cate-
gories should be distinguishable as well. Besides, marginal homogeneity is also important.

The distributions of adjusted overall degree of distinguishability associated with the lin-
early weighted kappa coefficient for different number of categories are summarized in the
Appendix B. These tables can be used in two ways: (1) If we calculate linearly weighted
kappa coefficient, we can find adjusted degree of distinguishability and (2) If we calculate
adjusted degree of distinguishability, we can find the linearly weighted kappa coefficient.
Let us illustrate how these tables work using a hypothetical inter-rater experiment featur-



Chilean Journal of Statistics 181

ing two raters who have classified 100 patients into four categories. Suppose the weighted
kappa coefficient is calculated as 0.44. Then, the value of adjusted degree of distinguisha-
bility can be found using the tables similar to using a z-table. The intersection point of 0.4
from the second column and 0.04 from the first row is found. The value is found as 0.68
which is at “fair” level. On the other hand, for the same conditions, if we have a “good”
distinguishability (δa = 0.95), then the weighted kappa coefficient is expected to be around
0.75 which is at “substantial” level.

This study is limited with the linearly and quadratically weighted kappa and AC2 co-
efficients. The recent studies show the effect of weighting schemes and coefficients on the
agreement Tran et al. (2020); Yilmaz and Altas (2018). In the future studies, different coeffi-
cients with different weighting schemes can also be considered. Besides, the adjusted degree
of distinguishability and adjusted overall degree of distinguishability can be extended for
the tables with multiple raters.
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Appendix A. R Codes

R <− 3 #number o f c a t e g o r i e s
r a t i n g s <− matrix ( c ( 9 4 , 12 , 14 , 11 , 0 , 5 , 13 , 2 , 8 ) , nrow=R) #data matrix
i f ( any ( r a t i n g s == ’0 ’)){ r a t i n g s <− r a t i n g s + 0 . 5}
comb <− f a c t o r i a l (R)/ f a c t o r i a l (R−2)/ f a c t o r i a l ( 2 )
DD <− matrix (NA, R, R)
ADD <− matrix (NA, R, R)

f o r ( i i n 1 : (R−1)){
f o r ( j i n ( i +1):R){

DD[ i , j ] <− 1−1/( r a t i n g s [ i , i ]∗ r a t i n g s [ j , j ] / r a t i n g s [ i , j ] / r a t i n g s [ j , i ] )
}
}
f o r ( i i n 1 : (R−1)){

ADD[ i , i +1] <− 1−1/( r a t i n g s [ i , i ]∗ r a t i n g s [ i +1, i +1]/ r a t i n g s [ i , i +1]/ r a t i n g s [ i +1, i ] )
i f ( ADD[ i , i +1]<0){

ADD[ i , i +1] <− 1− r a t i n g s [ i , i ]∗ r a t i n g s [ i +1, i +1]/ r a t i n g s [ i , i +1]/ r a t i n g s [ i +1, i ]}
}
ODD <− sum(DD, na . rm = TRUE)/ comb #o v e r a l l d e g r e e o f d i s t i n g u i s a b i l i t y
AODD <− sum(ADD, na . rm = TRUE) / (R−1) #a d j u s t e d o v e r a l l d e g r e e o f d i s t i n g u i s a b i l i t y

Appendix B. Tables

Table A1. The distribution of AODD associated with the weighted kappa coefficient for 3 × 3 tables.

κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

50

0.0 0.48 0.50 0.52 0.53 0.55 0.56 0.57 0.59 0.60 0.61
0.1 0.63 0.64 0.65 0.66 0.68 0.69 0.70 0.71 0.72 0.73
0.2 0.74 0.75 0.76 0.77 0.78 0.79 0.79 0.80 0.81 0.82
0.3 0.83 0.83 0.84 0.85 0.85 0.86 0.87 0.87 0.88 0.88
0.4 0.89 0.89 0.90 0.90 0.91 0.91 0.92 0.92 0.92 0.93
0.5 0.93 0.93 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95
0.6 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
0.7 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
0.8 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
0.9 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

10
0

0.0 0.39 0.45 0.47 0.49 0.50 0.52 0.54 0.56 0.57 0.59
0.1 0.60 0.62 0.63 0.65 0.66 0.68 0.69 0.70 0.72 0.73
0.2 0.74 0.75 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84
0.3 0.84 0.85 0.86 0.87 0.87 0.88 0.88 0.89 0.89 0.90
0.4 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.94
0.5 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95
0.6 0.95 0.95 0.95 0.94 0.97 0.98 0.98 0.98 0.98 0.98
0.7 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

20
0

0.0 0.33 0.35 0.36 0.38 0.40 0.43 0.45 0.47 0.50 0.52
0.1 0.55 0.57 0.59 0.61 0.64 0.66 0.68 0.72 0.73 0.74
0.2 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.84
0.3 0.85 0.86 0.87 0.88 0.89 0.90 0.92 0.93 0.90 0.91
0.4 0.91 0.92 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.94
0.5 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97
0.6 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
0.7 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

50
0

0.0 0.16 0.23 0.26 0.29 0.32 0.36 0.40 0.43 0.47 0.50
0.1 0.53 0.56 0.59 0.61 0.64 0.66 0.68 0.70 0.71 0.73
0.2 0.74 0.76 0.77 0.78 0.78 0.81 0.82 0.83 0.83 0.84
0.3 0.86 0.87 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91
0.4 0.92 0.92 0.93 0.94 0.94 0.94 0.94 0.94 0.95 0.95
0.5 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97
0.6 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99
0.7 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A2. The distribution of AODD associated with the weighted kappa coefficient for 4 × 4 tables.

κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
n

=
50

0.0 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47
0.1 0.47 0.48 0.47 0.47 0.47 0.46 0.47 0.47 0.47 0.47
0.2 0.47 0.48 0.48 0.49 0.50 0.50 0.51 0.51 0.51 0.52
0.3 0.53 0.54 0.56 0.57 0.57 0.58 0.59 0.59 0.61 0.62
0.4 0.63 0.64 0.66 0.67 0.68 0.69 0.71 0.71 0.72 0.73
0.5 0.72 0.73 0.75 0.77 0.78 0.79 0.80 0.80 0.81 0.83
0.6 0.84 0.85 0.87 0.88 0.89 0.90 0.91 0.91 0.92 0.90
0.7 0.91 0.91 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.94
0.8 0.94 0.94 - - - - - - - -
0.9 - - - - - - - - - -
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

10
0

0.0 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.1 0.40 0.41 0.40 0.40 0.40 0.41 0.41 0.41 0.42 0.42
0.2 0.43 0.44 0.46 0.47 0.48 0.49 0.50 0.50 0.45 0.47
0.3 0.49 0.50 0.54 0.55 0.57 0.58 0.60 0.60 0.62 0.63
0.4 0.60 0.62 0.65 0.66 0.68 0.69 0.71 0.71 0.72 0.73
0.5 0.74 0.76 0.78 0.79 0.80 0.81 0.81 0.81 0.82 0.83
0.6 0.84 0.85 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91
0.7 0.92 0.93 0.94 0.94 0.95 0.95 0.95 0.95 0.96 0.96
0.8 - - - - - - - - - -
0.9 - - - - - - - - - -
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

20
0

0.0 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
0.1 0.33 0.34 0.32 0.33 0.34 0.34 0.35 0.35 0.36 0.38
0.2 0.39 0.40 0.43 0.44 0.46 0.47 0.49 0.49 0.50 0.51
0.3 0.53 0.50 0.54 0.55 0.57 0.59 0.61 0.61 0.62 0.60
0.4 0.62 0.64 0.67 0.68 0.69 0.71 0.72 0.72 0.73 0.74
0.5 0.74 0.76 0.78 0.79 0.80 0.82 0.83 0.83 0.84 0.85
0.6 0.86 0.86 0.88 0.89 0.89 0.90 0.91 0.91 0.91 0.92
0.7 0.92 0.93 0.94 - - - - - - -
0.8 - - - - - - - - - -
0.9 - - - - - - - - - -
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

50
0

0.0 0.22 0.22 0.22 0.22 0.23 0.24
0.1 0.25 0.26 0.29 0.31 0.33 0.35 0.37 0.37 0.30 0.32
0.2 0.35 0.37 0.41 0.42 0.38 0.41 0.43 0.43 0.45 0.47
0.3 0.49 0.51 0.55 0.57 0.59 0.61 0.63 0.63 0.64 0.66
0.4 0.67 0.69 0.72 0.70 0.69 0.70 0.72 0.72 0.73 0.74
0.5 0.76 0.77 0.79 0.80 0.81 0.82 0.83 0.83 0.84 0.85
0.6 0.86 0.87 0.89 0.89 0.90 0.91 - - - -
0.7 - - - - - - - - - -
0.8 - - - - - - - - - -
0.9 - - - - - - - - - -
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Table A3. The distribution of AODD associated with the weighted kappa coefficient for 5 × 5 tables.

κw 0.00 0.01 0.20 0.03 0.04 0.05 0.06 0.07 0.08 0.09
n

=
50

0.0 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
0.1 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.53 0.53 0.53
0.2 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54
0.3 0.55 0.55 0.55 0.56 0.56 0.56 0.57 0.57 0.58 0.58
0.4 0.58 0.59 0.59 0.60 0.61 0.61 0.62 0.62 0.63 0.64
0.5 0.64 0.65 0.66 0.67 0.68 0.68 0.68 0.69 0.70 0.71
0.6 0.72 0.73 0.74 0.75 0.77 0.78 0.79 0.77 0.78 0.79
0.7 0.81 0.82 0.83 0.85 0.86 0.87 0.89 0.90 0.92 0.93
0.8 0.95 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

10
0

0.0 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
0.1 0.48 0.48 0.48 0.47 0.47 0.47 0.47 0.47 0.47 0.48
0.2 0.48 0.48 0.48 0.49 0.49 0.50 0.50 0.51 0.51 0.52
0.3 0.51 0.51 0.52 0.52 0.53 0.53 0.53 0.54 0.54 0.55
0.4 0.55 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61
0.5 0.63 0.64 0.65 0.67 0.68 0.69 0.71 0.72 0.74 0.75
0.6 0.77 0.73 0.74 0.75 0.77 0.78 0.79 0.80 0.81 0.83
0.7 0.84 0.85 0.86 0.87 0.87 0.88 0.89 0.90 - -
0.8 - - - - - - - - - -
0.9 - - - - - - - - - -
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

20
0

0.0 - - - - - - - 0.40 0.40 0.40
0.1 0.40 0.40 0.38 0.38 0.39 0.39 0.39 0.39 0.40 0.40
0.2 0.40 0.41 0.41 0.42 0.42 0.43 0.44 0.45 0.46 0.48
0.3 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.47
0.4 0.49 0.50 0.52 0.53 0.55 0.56 0.58 0.60 0.61 0.63
0.5 0.65 0.66 0.62 0.64 0.65 0.67 0.68 0.70 0.71 0.73
0.6 0.74 0.75 0.77 0.78 0.80 0.81 0.82 0.83 0.85 0.86
0.7 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96
0.8 0.96 0.97 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

50
0

0.0 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
0.1 0.30 0.30 0.30 0.31 0.32 0.33 0.29 0.30 0.31 0.32
0.2 0.33 0.34 0.35 0.36 0.31 0.32 0.33 0.34 0.36 0.37
0.3 0.39 0.40 0.42 0.43 0.45 0.47 0.49 0.50 0.52 0.55
0.4 0.57 0.59 0.61 0.47 0.49 0.51 0.53 0.55 0.57 0.59
0.5 0.61 0.62 0.64 0.66 0.67 0.69 0.71 0.72 0.73 0.75
0.6 0.76 0.78 0.79 0.80 0.81 0.82 0.83 - - -
0.7 - - - - - - - - - -
0.8 - - - - - - - - - -
0.9 - - - - - - - - - -
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Table A4. The distribution of AODD associated with the weighted kappa coefficient for 6 × 6 tables.

κw 0.00 0.01 0.2 0.03 0.04 0.05 0.06 0.07 0.08 0.09
n

=
50

0.0 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.1 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.2 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.3 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.4 0.57 0.58 0.58 0.58 0.58 0.59 0.59 0.59 0.59 0.60
0.5 0.60 0.61 0.61 0.62 0.62 0.63 0.63 0.64 0.65 0.65
0.6 0.66 0.67 0.68 0.68 0.69 0.70 0.71 0.72 0.73 0.75
0.7 0.76 0.77 0.78 0.80 0.81 0.73 0.74 0.75 0.76 0.77
0.8 0.79 0.80 0.81 0.82 0.84 0.85 0.87 0.88 0.90 0.91
0.9 0.93 0.95 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

10
0

0.0 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.53 0.53
0.1 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.55
0.2 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.55 0.55 0.55
0.3 0.56 0.56 0.57 0.58 0.55 0.55 0.56 0.56 0.57 0.58
0.4 0.58 0.59 0.60 0.61 0.61 0.62 0.63 0.64 0.65 0.66
0.5 0.68 0.69 0.54 0.55 0.55 0.56 0.57 0.57 0.58 0.59
0.6 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.70
0.7 0.71 0.73 0.74 0.76 0.77 0.79 0.80 0.82 0.84 0.86
0.8 0.88 0.90 0.92 0.94 0.96 0.98 0.99 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

20
0

0.0 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.40
0.1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0.2 0.40 0.40 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42
0.3 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.44 0.44 0.45
0.4 0.45 0.46 0.46 0.47 0.47 0.48 0.48 0.49 0.50 0.50
0.5 0.51 0.52 0.52 0.53 0.54 0.54 0.55 0.56 0.57 0.57
0.6 0.60 0.61 0.62 0.63 0.64 0.65 0.67 0.68 0.70 0.71
0.7 0.73 0.74 0.76 0.77 0.79 0.81 0.83 0.85 0.87 0.89
0.8 0.91 0.93 0.95 0.93 0.95 0.96 0.98 0.99 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
κw 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

n
=

50
0

0.0 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
0.1 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
0.2 0.32 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.35 0.35
0.3 0.36 0.37 0.37 0.38 0.37 0.37 0.38 0.38 0.39 0.40
0.4 0.41 0.41 0.42 0.43 0.44 0.45 0.47 0.48 0.49 0.50
0.5 0.52 0.53 0.54 0.56 0.58 0.59 0.61 0.63 0.64 0.66
0.6 0.68 0.70 0.72 0.74 0.76 0.78 0.81 0.83 0.85 0.87
0.7 0.90 0.88 0.78 0.80 0.83 0.85 0.88 0.91 0.94 0.97
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00


