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George Christakos San Diego State University, US

Enrico Colosimo Universidade Federal de Minas Gerais, Brazil

Gauss Cordeiro Universidade Federal de Pernambuco, Brazil

Francisco Cribari-Neto Universidade Federal de Pernambuco, Brazil

Francisco Cysneiros Universidade Federal de Pernambuco, Brazil

Mário de Castro Universidade de São Paulo, São Carlos, Brazil

Raul Fierro Universidad de Valparáıso, Chile
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Abstract

This study investigates a Bayesian detection of a change in any parameter, or in any
collection of parameters of the autoregressive time series model of known order p. An
unconditional Bayesian test based on the highest posterior density credible sets is deter-
mined. Using the Gibbs sampler algorithm, some simulated results are given to approx-
imate the posterior densities of the change point and other parameters of the model.
The performance of our proposed method has been investigated on simulated and real
data sets.

Keywords: Bayesian analysis· Change point· Gibbs sampler· HPD credible
set· p-value.

Mathematics Subject Classification: Primary 62M10 · Secondary 62F15.

1. Introduction

Change point detection is an important element in time series analysis that arises in many
fields such as quality control procedures (Basseville and Nikiforov (1993)), anomaly de-
tection in internet tra�c data (Lévy-Leduc and Roue�, 2009; Tartakovsky et al., 2006),
metrology (Jandhyala et al., 2014), economics and financial analysis (Georgescu, 2012), and
biology (Fan et al., 2015), among others. Change point detection is the problem of detecting
abrupt changes in the parameters of temporal or other sequential data. Since the papers of
Page (1954) and Page (1955), who proposed a sequential scheme for identifying changes in
the mean of a sequence of independent random variables, the problem of detecting changes
has been an important issue between statisticians and considerable attention has been given
to this problem in a variety of settings. For example, changes in a sequence of random vari-
ables have been considered by Eastwood (1993), Gombay and Horvath (1999) and Guo and
Modarres (2020) from the nonparametric viewpoint. Montoril and da Silva Ferreira (2018)
proposed a method based on the coe�cient of determination, to estimate the change points
in the Beer-Lambert law problems. Among the approach based on likelihood ratio, Worsley
(1983, 1986) proposed a numerical method for computing the p-value of the generalized
likelihood ratio test to detect a change in the binomial probability and in the location of an
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exponential family distribution. Kim (1996) considered a likelihood ratio test for a change in
the mean when observations are correlated. Kim and Siegmund (1989) considered likelihood
ratio tests to detect a change-point in simple linear regression. Wang et al. (2020) used the
likelihood ratio test to detect changes in the parameters of the skew slash distribution.

From a Bayesian point of view, the problem of detecting a change has received much
attention and has been studied by many authors like Cherno� and Zacks (1964), Kander
and Zacks (1966), Sen and Srivastava (1975), Jani and Pandya (1999), Fan and Chen (2005)
and Shah and Patel (2007). Ming Ng (1990) analyzed a linear model in which both the mean
and the precision change once at an unknown time point, the posterior distributions of the
change point, and the ratio of the precisions are derived.

Kim (1991) proposed a Bayesian significance test for the stationarity of a regression equa-
tion using the highest posterior density (HPD) credible set. From a Monte Carlo simulation
study, he showed that the Bayesian significance test has a stronger power than the Cusum
and the Cusum of squares tests suggested by Brown et al. (1975). Sáfadi and Morettin
(2000) considered a Bayesian analysis for threshold autoregressive moving average models.
Pan et al. (2017) considered a Bayesian analysis of threshold autoregressive (TAR) model
with various possible thresholds. Recently, Hahn et al. (2020) introduced a computation-
ally inexpensive Bayesian approach (BayesProject) for detecting changes in mean within
multivariate data sequences.

For autoregressive time series models, many papers about detecting and estimating
changes in autoregressive time series of known order p (AR(p)) processes have been pub-
lished. For example, Davis et al. (1995) studied the asymptotic behavior of a Gaussian-type
likelihood ratio statistic for testing a change in the parameters of an AR(p) model. Husková
et al. (2007, 2008) used an approach based on partial sums of weighted residuals (asymptotic
and bootstrapping methods). Venkatesan and Arumugam (2007) considered the problem of
gradual changes in the parameters of an autoregressive time series model. Gombay (2008)
used the e�cient score vector to detect change in the parameter(s) of autoregressive time
series. Berkes et al. (2011) developed the likelihood ratio test for the structural change of
an AR model to a threshold AR model. Slama (2014) examined the e�ect of correlation on
the performance of the Bayesian significance test derived under the assumption of no cor-
relation. By numerical studies, he showed that the Bayesian significance test based on the
HPD region is sensitive to the correlation in the data. Kezim and Abdelli (2004) proposed
a Bayesian analysis of a first order autoregressive process subject to one change in both the
variance of the error terms and the autocorrelation coe�cients at an unknown time point.
The detection of possible changes in the parameters of autoregressive models for binary time
series can be found in Hudecová (2013). Cheon and Kim (2014) proposed a general solution
to detect the Bayesian estimation in Bayesian autoregressive structural-change time series
models. A Bayesian approach to estimate the multiple structural change-points in a level
and the trend when the number of change-points is unknown was proposed. Slama and Sag-
gou (2017) investigated the Bayesian approach using HPD credibles sets and p-values for
detecting an abrupt change in the parameters of an AR(p). In a recent work, Gamage and
Ning (2021) proposed a nonparametric method based on the empirical likelihood is proposed
to detect the structural changes in the autoregressive parameters of autoregressive models.
In the last three works, the mean is assumed constant and equal to 0.

Bauwens et al. (2014) solved the problem of the computation of the marginal likelihood
for a Markov-switching GARCH or change-point GARCH models by applying a particle
Markov chain Monte Carlo (PMCMC) method. Recently, Romano et al. (2021) proposed a
principled approach to detect abrupt changes in mean in univariate time-series that models
local fluctuations as a random walk process and autocorrelated noise via an AR(1) process.
For a review of methods of inference for single and multiple change-points in time series, we
refer the reader to Jandhyala et al. (2013) and Truong et al. (2020).
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In this paper, we investigate a Bayesian detection of a change in any parameter, or in
any collection of parameters of an AR(p). We consider a Bayesian significance test for an
abrupt change at an unknown time point in the mean, the autocorrelation coe�cients and
the variance of the error terms of an AR(p). This work is an extension of the paper by Slama
and Saggou (2017) to the case where the mean is unknown and changes at an unknown time.

The rest of the paper is organized as follows. Section 2 presents the model AR(p) with
change in the parameters at an unknown time point and some notations used along this
paper. In Section 3 we give the conditional posterior distributions of the parameters of
change and Bayesian significance test of change in AR(p) model. In Section 4 we present a
simulation results with the application of the Gibbs sampler algorithm. A real data analysis
is provided in Section 5. Finally, our conclusion is presented in Section 6.

2. Definition of the Model and notations

Assume that we observe a real time series, y1, . . . , yn namely, generated from an AR(p)
model, with a change in the mean µ, the autocorrelation coe�cients „i and in the variance
‡

2 at an unknown time point m. The AR(p) model with structural change is given by

Yt ≠ µ1 =
pÿ

i=1

„i (Yt≠i ≠ µ1) + ‘t, t = 1, . . . , m, (1)

Yt ≠ µ2 =
pÿ

i=1

Âi (Yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)µ2) + ‘t, t = m + 1, . . . , m + p,

Yt ≠ µ2 =
pÿ

i=1

Âi(Yt≠1 ≠ µ2) + ‘t, t = m + p + 1, . . . , n,

where “t is the indicator function such that “t≠i = 1 if t ≠ i Æ m and “t≠i = 0 if t ≠ i > m.
‘t ≥ N(0, ‡

2

1
), for t = 1, . . . , m and ‘t ≥ N(0, ‡

2

2
), for t = m + 1, . . . , n. The parameters

µi œ R, ‡i > 0), for i = 1, 2, and „i, Âi, for i = 1, . . . , p, are assumed to be unknown, and m =
1, . . . , n ≠ 2 is the change point assumed also unknown. If „i ”= Âi for some i = 1, . . . , p, the
structure of the series has changed from an AR(p) model with coe�cient „i to another AR(p)
model with coe�cient Âi. We assume that the autoregressive parameters correspond to
stationary processes in the sense that the parameter vector „

(p) = („1, „2, . . . , „p) lies in the
stationary region �(p)

1
= {z/1≠„1z≠„2z

2≠· · ·≠„pz
p = 0}, which implies |z|> 1, and likewise

Â
(p) = (Â1, Â2, . . . , Âp) lies in the stationary region �(p)

2
= {z/1≠Â1z≠Â2z

2≠· · ·≠Âpz
p = 0},

which implies |z|> 1. The quantities y1≠p, . . . , y≠1, y0 are the initial observations assumed
to be stated.

The model given in Equation (1) is more general than the model considered in Slama and
Saggou (2017). In Slama and Saggou (2017), the mean µ is assumed to be constant and equal
to 0. Whereas, in Equation (1) the mean is assumed unknown and changes at an unknown
time point m, which increases the size of the parameter space. The parameter space for the
model given in Equation (1) is � = {◊ = (m, µ1, µ2, „1, „2, . . . , „p, Â1, . . . , Âp, r1, r2)}, where
ri = 1/‡

2

i , i = 1, 2, with m = 1, . . . , n ≠ 2, µ1, µ2 œ R, r1, r2 œ Rú
+

, and „i, Âi œ �(p), for
i = 1, . . . , p.
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We want to test whether or not a change-point occurs in the autoregressive param-
eters. Thus, we build an inference about testing the hypotheses: H0: ” = µ2 ≠ µ1 =
0 and flj = Âj ≠ „j = 0, ’j = 1, . . . , p and · = ‡

2

2
/‡

2

1
= 1, against H1: ” = µ2 ≠ µ1 ”=

0 or for at least one flj = Âj ≠ „j ”= 0, j = 1, . . . , p, or · = ‡
2

2
/‡

2

1
”= 1. Hence, under the

alternative hypothesis, there is a change in at least one of the 2p + 5 parameters at an
unknown time point. The proposed test is based on the posterior distribution of the shift
” = µ2 ≠ µ1, flj = Âj ≠ „j and of the ratio · = ‡

2

2
/‡

2

1
. The hypothesis meaning “no change”

is equivalent to H
Õ
0
: m = n and H1 is equivalent to H

Õ
1

: m ”= n.
For the rest of the paper, we consider the notations: „

(p) = („1, . . . , „p), Â
(p) =

(Â1, . . . , Âp), fl
(p) = (fl1, . . . , flp), „

(≠j) = („1, . . . , „j≠1, „j+1, . . . , „p) and fl
(≠j) =

(fl1, . . . , flj≠1, flj+1, . . . , flp), where flj = Âj ≠ „j , j = 1, . . . , p. The functional forms fi(·)
and fi(· | ·) represent a prior and a posterior distribution, respectively.

The parameter set ◊ = (m, µ1, µ2, „
(p)

, Â
(p)

, r1, r2), where ri = 1/‡
2

i , for i = 1, 2, is a
vector of dimension (2p + 5). The conditional likelihood function based on the observations
y = (y1, . . . , yn) is given by

l(y|◊) Ã r

m
2

1
r

n≠m
2

2
exp

Y
]

[≠r1

2

C
mÿ

t=1

(yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
D

2
Z
^

\ (2)

exp

Y
]

[≠r2

2

C m+pÿ

t=m+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi

1
yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)µ2

2D2
Z
^

\

exp

Y
]

[≠r2

2

S

U
nÿ

t=m+p+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi(yt≠i ≠ µ2)

T

V
2
Z
^

\ .

The conditional likelihood approach is based on the assumption that the initial observa-
tions y0, y≠1, . . . , y1≠p are also available (Reinsel, 1997). Moreover, if the sample size n is
su�ciently large, the first observation makes a negligible contribution to the total likelihood
(Hamilton, 1994).

3. Bayesian analysis

In this section, the conditional posterior distribution of the shift in the mean ”, in the
autocorrelation coe�cients flj , j = 1, . . . , p, of the variance ratio · and of the change point
m are derived. These distributions are used to define an unconditional Bayesian significance
test of change in the parameters of an AR(p).

Since prior knowledge of ◊
Õ = (µ1, µ2, r1, r2) is often vague or di�use, we employ a di�use

prior for ◊
Õ. Assume that the priors of the change-point m, of „

(p) and of Â
(p) are given by

fi(m) Ã 1
n ≠ 2; m = 1, . . . , n ≠ 2,

fi(„(p)) Ã constant in �(p)
,

fi(Â(p)) Ã constant in �(p)
,

where �(p) = �(p)

1
fl �(p)

2
.
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The parameters m, „
(p) and ◊

Õ being assumed independent. The prior distribution of ◊ is,
therefore, stated as

fi(◊) Ã 1
r1r2

, (3)

where m = 1, . . . , n ≠ 2, µ1, µ2 œ R, r1, r2 œ Rú
+

and „i, Âi œ �(p) for i = 1, . . . , p. The
posterior distribution of ◊, obtained by combination of Equations (2) and (3) is formulated
as

fi(◊|y) Ã r

m
2 ≠1

1
r

n≠m
2 ≠1

2
exp

Y
]

[≠r1

2

C
mÿ

t=1

(yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
D

2
Z
^

\

exp

Y
]

[≠r2

2

C m+pÿ

t=m+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi

1
yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)µ2

2D2
Z
^

\

exp

Y
]

[≠r2

2

S

U
nÿ

t=m+p+1

(yt ≠ µ2 ≠
pÿ

i=1

Âi(yt≠i ≠ µ2)

T

V
2
Z
^

\ .

In the following, we give the joint posterior distribution of the parameter � =
(m, µ1, ”, „

(p)
, fl

(p)
, ·). By transforming the parameter set � = (m, µ1, µ2, „

(p)
, Â

(p)
, r1, r2)

into � = (m, µ1, ”, „
(p)

, fl
(p)

, ·), we can form the joint posterior distribution of �, that is, we
have

fi(� | y) =
⁄

r2
fi(m, µ1, ” + µ1, „1, fl

(p) + „
(p)

, r2·, r2/y) | r2 | dr2, (4)

·
m
2 ≠1

Y
]

[·

mÿ

t=1

A

yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
B

2

+
m+pÿ

t=m+1

A

yt ≠ ” ≠ µ1 ≠
pÿ

1

(fli + „i)(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
B

2

+
nÿ

t=m+p+1

A

yt ≠ ” ≠ µ1 ≠
pÿ

1

(fli + „i)(yt≠i ≠ ” ≠ µ1)
B

2
Z
^

\

≠ n
2

.

The posterior conditional distribution of ” is stated as follows. Equation (4) can be written
as

fi(� | y) Ã ·
m
2 ≠1

;
·SS1(m, µ1, „

(p)) + SS2(m, µ1, „
(p)

, fl
(p)) + �1

1
” ≠ ‚”

1
m, µ1, „

(p)
, fl

(p)

22
2
<≠ n

2
,

(5)
where

�1 =
m+pÿ

m+1

A

1 ≠
pÿ

1

(1 ≠ “t≠i)(fli + „i)
B

2

+ (n ≠ m ≠ p)
A

1 ≠
pÿ

1

(fli + „i)
B

2

,
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‚”(m, µ1, „
(p)

, fl
(p)) = �2/�1, with

�2 =
m+pÿ

m+1

(1 ≠ (1 ≠ “t≠i)(fli + „i))
A

yt ≠ µ1 ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ µ1

B

+
A

1 ≠
pÿ

i=1

(fli + „i)
B Q

a
nÿ

m+p+1

(yt ≠ µ1 ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ µ1)

R

b ,

and

SS1(m, µ1, „
(p)) =

mÿ

t=1

A

yt ≠ µ1 ≠
pÿ

i=1

„i(yt≠i ≠ µ1)
B

2

, (6)

SS2(m, µ1, „
(p)

, fl
(p)) =

nÿ

t=m+1

A

yt ≠ µ1 ≠
pÿ

1

(fli + „i)(yt≠i ≠ µ)

B
2

≠ �2

2

�1

. (7)

Following the Bayes theorem, the conditional posterior distribution of ” is given by

fi(”|m, µ1, „
(p)

, fl
(p)

, ·, y) Ã

Y
]

[1 +
(” ≠ ‚”

1
m, µ1, „

(p)
, fl

(p)

2
)2

(n ≠ 1)S2
1
(m, µ1, „(p), fl(p), ·)

Z
^

\

≠ n
2

,

where S
2

1
(m, µ1, „

(p)
, fl

(p)
, ·) = (·SS1(m, µ1, „

(p)) + SS2(m, µ1, „
(p)

, fl
(p)))/((n ≠ 1)�1).

Given m, µ1, „
(p), fl

(p) and · , the conditional posterior distribution of ” is dis-
tributed as a Student-t distribution with location parameter ‚”(m, µ1, „

(p)
, fl

(p)), precision
S

2

1
(m, µ1, „

(p)
, fl

(p)
, ·) and (n ≠ 1) degrees of freedom. Equivalently, the quantity

T (”) =
” ≠ ‚”

1
m, µ1, „

(p)
, fl

(p)

2

S1

!
m, µ1, „(p), fl(p), ·

" ,

is distributed a posteriori as a conditional Student-t distribution with (n ≠ 1) degrees of
freedom.

The posterior conditional distributions of flj is formulated as follows. Equation (4) can
also be written as

fi(� | y) Ã ·
m
2 ≠1

I

�5j ≠
�2

4j

�3j
+ �3j

1
flj ≠ ‚flj

1
m, µ1, ”, „

(p)
, fl

(≠j)

22
2

J≠ n
2

,
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where, ‚flj

1
m, µ1, ”, „

(p)
, fl

(≠j)

2
= �4j/�3j , with

�3j =
m+pÿ

t=m+1

(yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1))2 +
nÿ

t=m+p+1

(yt≠j ≠ ” ≠ µ1)2 ;

�4j =
m+pÿ

m+1

Ë
yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1)

È

Ë
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
pÿ

i”=j

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
È

nÿ

m+p+1

[yt≠j ≠ ” ≠ µ1])
Ë
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ ” ≠ µ1) ≠
pÿ

i”=j

fli(yt≠i ≠ ” ≠ µ1)
È
;

�5j = ·

mÿ

t=1

1
yt ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ µ1)
22

+
m+pÿ

m+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

1

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
pÿ

i”=j

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1)
22

+
nÿ

m+p+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

„i(yt≠i ≠ ” ≠ µ1) ≠
pÿ

i”=j

fli(yt≠i ≠ ” ≠ µ1)
22

.

Following the Bayes theorem, the posterior conditional distribution of flj , for j = 1, . . . , p,
is given by

fi(flj |m, µ1, „
(p)

, ”, fl
(≠j)

, ·, y) Ã
I

1 + (flj ≠ ‚flj(m, „
(p)

, µ1, ”, fl
(≠j))2

(n ≠ 1)S2

2j(m, „(p), µ1, ”, fl(≠j), ·)

J≠ n
2

,

where

S
2

2j(m, „
(p)

, µ1, ”, fl
(≠j)

, ·) =
�5j ≠

�2

4j

�3j

(n ≠ 1)�3j
.

For j = 1, . . . , p, given m, µ1, „
(p), ”, fl

(≠j) and · , the conditional posterior distribution of
flj is distributed as a Student-t distribution with location parameter ‚flj(m, „

(p)
, µ1, ”, fl

(≠j)),
precision S2j(m, „

(p)
, µ1, ”, fl

(≠j)
, ·) and (n ≠ 1) degrees of freedom. Thereby, the quantity,

Sj(flj) = flj ≠ ‚flj(m, „
p
, µ1, ”, fl

(≠j))
S2(m, „(p), µ1, ”, fl(≠j), ·) ,

is distributed a posteriori as a conditional Student-t distribution with (n ≠ 1) degrees of
freedom.
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The posterior conditional distributions of · is expressed as follows. The integration of
Equation (5) with respect to ” gives the joint posterior distribution of m, µ1, „

(p), fl
(p) and

· by

fi(m, µ1, „
(p)

, fl
(p)

, · |y) Ã ·
m
2 ≠1�≠1/2

1

Ó
·SS1

1
m, µ1, „

(p)

2
+ SS2

1
m, µ1, „

(p)
, fl

(p)

2Ô≠ (n≠1)
2

,

(8)
by application of the Bayes theorem, the conditional posterior distributions of · is given by

fi (· |m, µ1, „1, fl, y) Ã ·
m
2 ≠1

Ó
·SS1(m, µ1, „

(p)) + SS2(m, µ1, „
(p)

, fl
(p))

Ô≠ (n≠1)
2

,

where SS1(m, µ1, „
(p)) and SS2(m, µ1, „

(p),fl(p)) are given in Equations (6) and (7), respec-
tively. Given m, µ1, „

(p), fl
(p), the quantity

F (·) = ·

SS1

1
m, µ1, „

(p)

2
/m

SS2(m, µ1, „(p), fl(p))/ (n ≠ m ≠ 1) ,

is distributed a posteriori as a conditional F distribution with (m, n ≠ m ≠ 1) degrees of
freedom.

The posterior conditional distribution of „j , for j = 1, . . . , p, is considered as follows. Still,
the formula in Equation (4) can be written as

fi(� | y) Ã ·
m
2 ≠1

I

�8j ≠
�2

7j

�6j
+ �6

1
„j ≠ ‚„j

1
m, µ1, ”, „

(≠j)
, fl

(p)

22
2

J≠ n
2

,

where

�6j = ·

mÿ

1

(yt≠j ≠ µ1)2 +
m+pÿ

m+1

(yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1))2

+
nÿ

m+p+1

(yt≠j ≠ ” ≠ µ1)2;

�7j = ·

mÿ

1

(yt≠j ≠ µ1)(yt ≠ µ1 ≠
ÿ

i”=j

„i(yt≠i ≠ µ1))

+
m+pÿ

m+1

(yt≠j ≠ “t≠jµ1 ≠ (1 ≠ “t≠j)(” + µ1))

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
ÿ

i”=j

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
2

+
nÿ

m+p+1

(yt≠j ≠ ” ≠ µ1)(yt ≠ ” ≠ µ1 ≠
pÿ

i=1

fli(yt≠i ≠ ” ≠ µ1) ≠
ÿ

i”=j

„i(yt≠i ≠ ” ≠ µ1));
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�8j = ·

mÿ

1

(yt ≠ µ1 ≠
ÿ

i”=j

„i(yt≠i ≠ µ1)2

+
m+pÿ

m+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

fli(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))

≠
ÿ

i”=j

„i(yt≠i ≠ “t≠iµ1 ≠ (1 ≠ “t≠i)(” + µ1))
22

+
nÿ

m+p+1

1
yt ≠ ” ≠ µ1 ≠

pÿ

i=1

fli(yt≠i ≠ ” ≠ µ1) ≠
ÿ

i”=j

„i(yt≠i ≠ ” ≠ µ1)
22

;

and ‚„j(m, µ1, ”, „
(j)

, fl
(p)) = �7/�6. Following the Bayes theorem, the posterior conditional

distribution of „j , for j = 1, . . . , p, is given by

fi(„j |m, fl
(p)

, µ1, „
(≠j)

, ”, ·, y) Ã
I

1 + („j ≠ ‚„j(m, fl
(p)

, µ1, „
(≠j)

, ”, ·))2

(n ≠ 1)S2

3j(m, fl(p), µ1, „(≠j), ”, ·)

J≠
n

2
,

where S
2

3j(m, fl
(p)

, µ1, „
(≠j)

, ”, ·) = (�8j ≠ �2

7j/�6j)/((n ≠ 1)�6j). For j = 1, . . . , p, given
m, µ1, „

(≠j), fl
(p), ”, and · , the conditional posterior distribution of „j is distributed

as a Student-t distribution with location parameter ‚„j(m, fl
(p)

, µ1, „
(≠j)

, ”, ·), precision
S3j(m, fl

(p)
, µ1, „

(≠j)
, ”, ·) and (n ≠ 1) degrees of freedom.

The posterior conditional distribution of µ1 is given next. We can write Equation (4) as

fi(� | y) Ã ·
m
2 ≠1

I

�11 ≠ �2

10

�9

+ �9

1
µ1 ≠ ‚µ1

1
m, „

(p)
, fl

(p)
, ”, ·

22
2

J≠ n
2

,

where

�9 = m·

A

1 ≠
pÿ

i=1

„i

B
2

+ (n ≠ m)
A

1 ≠
pÿ

i=1

(fli + „i)
B

2

;

�10 = ·(1 ≠
pÿ

i=1

„i)
mÿ

1

A

yt ≠
pÿ

i=1

„iyt≠i

B

+(1 ≠
pÿ

i=1

(fli + „i)
m+pÿ

m+1

A

yt ≠ ” ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ (1 ≠ “t≠i)”
B

(1 ≠
pÿ

i=1

(fli + „i))
nÿ

m+p+1

A

yt ≠ ” ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ ”)
B

;

�11 = ·

mÿ

1

A

yt ≠
pÿ

i=1

„iyt≠i

B
2

+
m+pÿ

m+1

A

yt ≠ ” ≠
pÿ

i=1

(fli + „i)(yt≠i ≠ (1 ≠ “t≠i)”)
B

2

nÿ

m+p+1

A

yt ≠ ” ≠
pÿ

i=1

(fl + „i)(yt≠i ≠ ”)
B

2

;

and ‚µ1(m, „
(p)

, fl
(p)

, ”, ·) = �10/�9. By the Bayes theorem, the posterior conditional distri-
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bution of µ1 is given by

fi(µ1|m, „
(p)

, fl
(p)

, ”, ·, y) Ã
I

1 + (µ1 ≠ ‚µ1(m, „
(p)

, fl
(p)

, ”, ·))2

(n ≠ 1)S2
4
(m, fl(p), „(p), ”, ·)

J≠
n

2
,

where S
2

4
(m, fl

(p)
, „

(p)
, ”, ·) = (�11 ≠ �2

10
/�9)/((n ≠ 1)�9). Given m, „

(p), fl
(p), ” and · ,

the conditional posterior distribution of µ1 is distributed as a Student-t distribution with
location parameter ‚µ1(m, fl

(p)
, „

(p)
, ”, ·), precision S4(m, fl

(p)
, „

(p)
, ”, ·) and (n ≠ 1) degrees

of freedom.
The posterior conditional distributions of m is stated next. From the joint posterior distri-

bution of m, µ1, „
(p), fl

(p) and · given in Equation (8), the conditional posterior distributions
of m is given by

fi(m|µ1, „
(p)

, fl
(p)

, ·, y) Ã ·
m
2 ≠1�≠1/2

1

Ó
·SS1

1
m, µ1, „

(p)

2
+ SS2

1
m, µ1, „

(p)
, fl

(p)

2Ô≠ (n≠1)
2

,

where SS1(m, µ1, „
(p)) and SS2(m, µ1, „

(p),fl(p)) are given in Equations (6) and (7), respec-
tively.

Remark 1 As the degrees of freedom m and n ≠m ≠1 of F distribution are greater or equal
to 1, this implies that the change point m belongs to {1, n ≠ 2}.

The unconditional posterior distributions of T (”), Sj(flj), for j = 1, . . . , p, and F (·) are
given, respectively, by

fi(T (”)|y) =
ÿ

m

⁄

·

⁄

fl(p)

⁄

„(p)

⁄

µ1
fi(T (”)|m, µ1, „

(p)
, fl

(p)
, ·, y)fi(µ1|m, „

(p)
, fl

(p)
, ·, y) (9)

fi(„(p)|m, fl, „
(p)

, ·, y)fi(fl(p)|m, fl
(p≠1)

, ·, y)fi(· |m, y)fi(m|y)dµ1d„
(p)dfl

(p)d·,

fi(Sj(flj)|y) =
ÿ

m

⁄

·

⁄

”

⁄

fl(j)

⁄

„(p)

⁄

µ1
fi(Sj(flj)|m, µ1, „

(p)
, ”, ·, y)fi(µ1|m, „

(p)
, ”, ·, y) (10)

fi(„(p)|m, ”, ·, y)fi(fl(≠j)|m, fl
(p≠j)

, ”, ·, m)fi(”|m, ·, y)

fi(· |m, y)fi(m|y)dµ1d„
(p)dfl

(≠j)d”d·, j = 1, . . . , p,

fi(F (·)|y) =
ÿ

m

⁄

”

⁄

fl(p)

⁄

„(p)

⁄

µ1
fi(F (·)|m, µ1, „

(p)
, fl

(p)
, ”, y)fi(µ1|m, „

(p)
, fl

(p)
, ”, y) (11)

fi(„(p)|m, fl
(p)

, ”, y)fi(”|m, fl
(p)

, y)fi(fl(p)|m, fl
(p≠j)

, y)fi(m|y)dµ1d„
(p)dfl

(p)d”,

where

fi(fl(p)|—, fl
(p≠1)

, y) = fi(fl1|—, fl2, . . . , flp, y)fi(fl2|—, fl1, fl3, . . . , flp, y), . . . , fi(flp|—, fl1, . . . , flp≠1, y),
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and fi(fl(≠j)|—, fl
(p≠j)

, y) =

Y
___]

___[

fi(fl2|—, fl3, . . . , flp, y)fi(fl3|—, fl2, fl4, . . . , flp, y), . . . , fi(flp|—, fl2, . . . , flp≠1, y), j = 1;
fi(fl1|—, fl3, . . . , flp, y)fi(fl3|—, fl1, fl4, . . . , flp, y) . . . fi(flp|—, fl1, fl3, . . . , flp≠1, y), j = 2;
...

...
fi(fl1|—, fl2, . . . , flp≠1, y)fi(fl2|—, fl1, fl3, . . . , flp≠1, y), . . . , fi(flp≠1|—, fl1, fl2, . . . , flp≠2, y), j = p.

The null hypothesis H0 can be divided into p + 2 sub-hypotheses H01: ” = µ2 ≠ µ1 = 0,
H02j : flj = „j ≠ Âj = 0, and H03: · = ‡

2

2
/‡

2

1
= 1, and H0 could be rejected if either of these

p + 2 sub-hypotheses is rejected. The separation of the null into several sub-hypotheses
would be helpful to determine which parameters have been changed at time m. One defines
separately the HPD credible sets of T (”), Sj(flj) and F (·) based on conditional distributions.
The credible set are used to define the unconditional p-value and thereby an unconditional
test, the bayesian significance test of change in the parameters of autoregressive time series.

Given m, µ1, „
(p), fl

(p) and · the (1 ≠ –)-credible set for T (”) is defined as

C” =
Ó

T (”) | T (”)| < t–/2 (n ≠ 1)
Ô

,

where t–/2 (n ≠ 1)) is the 100(1 ≠ –/2)th quantile of a Student-t distribution with (n ≠ 1)
degrees of freedom. Hence, given m, µ1, „

(p), fl
(p) and · the decision rule for H01 is to reject

if T (0) œ C”, where C” is the complement of C”.
The unconditional p-value of the hypothesis H01 calculated from Equation (9) yields

P”=0|y = 2
ÿ

m

⁄

·

⁄

fl(p)

⁄

„(p)

⁄

µ1
{1 ≠ Tn≠1 (| T (0) |)} (12)

fi(m, µ1, „
(p)

, ”, fl
(p)

, · |y)dµ1d„
(p)dfl

(p)d·,

= 2EmE· Efl(p)Eµ1E„(p) {1 ≠ Tn≠1 (| t (0) |)} ,

The sub-hypothesis H01 is rejected unconditionally at – significance level if P”=0|y < –.
The unconditional p-value of the hypothesis H02j , for j = 1, . . . , p, calculated from Equa-

tion (10), is given by

Pflj=0|y = 2
ÿ

m

⁄

·

⁄

µ1

⁄

”

⁄

fl(≠j)

⁄

„(p)

⁄

µ1
{1 ≠ Tn≠1 (| Sj (0) |)} (13)

fi(m, µ1, „
(p)

, ”, fl
(≠j)

, · |y)dµ1d„
(p)dfl

(≠j)d”d·,

= 2EmE· Eµ1E”Efl(≠j)E„(p) {1 ≠ Tn≠1 (| t (0) |)} ,

where Tn≠1 is the cumulative distribution function of the Student-t distribution with (n ≠ 1)
degrees of freedom. For j = 1, . . . , p, the sub-hypothesis H02j is rejected unconditionally at
– significance level if Pflj=0|y < –. Where, the sub-hypothesis H02 is rejected unconditionally
at – significance level if

Pfl=0|y := min
1ÆjÆp

{Pflj=0|y} < –.
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Likewise, the unconditional p-value of H03 calculated from Equation (11) is stated as

P·=1|y = 2
ÿ

m

⁄

fl(p)

⁄

„(p)

⁄

µ1
{1 ≠ Fm,n≠m≠1[max (F (1), 1/F (1))]} (14)

fi

1
m, µ1, „

(p)
, fl

(p)|y
2
dµ1d„1dfl,

= 2EmEfl(p)E„(p)Eµ1 {1 ≠ Fm,n≠m≠1[max (F (1), 1/F (1))]} ,

where Fm,n≠m≠1 is the cumulative distribution function of the Fisher F distribution with
(m, n ≠ m ≠ 1) degrees of freedom. The sub-hypothesis H03 is rejected unconditionally
at – significance level if P·=1|y < –. Therefore, the null hypothesis H0 well be rejected
unconditionally at – significance level if min{P”=0|y, Pfl=0|y, P·=0|y} < –, and thus define the
bayesian significance test of change in the parameters of autoregressive time series AR(p)
of known order p. The test allows to test the change in the p + 2 parameters of the AR(p)
model in an individual way.

The notations Eµ1 , E„(p) , Efl(p) , Efl(≠j) , E”, E· and Em are the expectations taken with
respect to µ1, „

(p), fl
(p), fl

(≠j), ”, · , and m, respectively.
The quantities given in Equations (12), (13) and (14) are evaluated numerically by the

Gibbs sampler algorithm using the conditional posterior distributions given in Section 3.
The Gibbs sampler was introduced by Geman and Geman (1984) as a way of simulating

from high-dimensional complex distributions arising in image restoration, is a Markovian
updating scheme enabling one to obtain samples from a joint distribution via iterated sam-
pling from full conditional distributions. Although most applications of Gibbs sampler have
been in Bayesian models, it is also extremely useful in classical (likelihood) calculations
Casella and George (1992). In Bayesian framework, the common objective is to produce
posterior densities for, or estimate of, parameters of interest. The algorithm is also very
useful for the calculation of high dimensional integrals. Therefore, the use of Gibbs sampler
algorithm allows us to reduce in a huge way the calculation of complex high-dimensional
integration in Equations (12), (13) and (14). Detailed investigation of the Gibbs sampler
applied to general Bayesian calculation is given by Gelfand and Smith (1990), Gelfand et
al. (1990) and Gelfand (2000).

4. Simulation results

In this section we conduct a set of controlled simulation studies to evaluate the performance
of the proposed test presented in Section 3. We simulated a sample from the model given
in Equation (1) with p = 1, n = 200, m = 100, µ1 = 0.0, µ2 = 0.5, „1 = 0.3, „2 = ≠0.2,
‡

2

1
= 1.0 and ‡

2

2
= 0.5. The assumed values for y0 is 1. From these observations, by the

application of the Gibbs sampler algorithm with 10,000 repetitions, we approximate the
posterior density of the change point m, the posterior density of ”, the posterior density
of fl, of the variance ratio · and the unconditional p-values for the hypothesis H01: ” = 0,
H012: fl = 0 and H03: · = 1. The results are given in Tables 1-3.

Tables 1 and 2 list the posterior density of the change point at values around the true
value of m and the unconditional p-values for the sub-null-hypotheses H01, H02 and H03.
From Table 1, we can readily see that the posterior mode is equal to the true value of the
change point m. Based on the unconditional p-values given in Table 2 the no change in ”, fl

and · is obviously rejected at 1% significance levels, respectively.
Tables 3 summarize the posterior estimates of the parameters m, ”, fl and · . The estimates

for the parameters of the series in Figure 1 are generally close to the true values. Also, we
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Figure 1. Simulated observations yt.

Table 1. The posterior density of m.
m fi(m|y) m fi(m|y)
89 0.0000 100 0.2321
90 0.0017 101 0.1396
91 0.0040 102 0.0782
92 0.0304 103 0.0541
93 0.0404 104 0.0311
94 0.0368 105 0.0192
95 0.0551 106 0.0120
96 0.0313 107 0.0378
97 0.0214 108 0.0274
98 0.0363 109 0.0154
99 0.0368 110 0.0107

Table 2. The unconditional p-values of the hypothesis H01, H02 and H03.
Sub-null-hypothesis H01 H02 H03

p-values 4.8452 ◊ 10≠5 0.0027 0.0017

clearly see that, all the 95% HPD sets of the parameters contain the true value of all the
parameters.

Table 3. Posterior estimates of the parameters m, ”, fl and · .
Parameters True values Median Mean (SD) 2.5% 97,5%

m 100 100 100.56(4.9418) 92 111
” = µ2 ≠ µ1 0.5 0.4872 0.4869(0.1115) 0.2709 0.7098
fl = „2 ≠ „1 ≠0.5 ≠0.4230 ≠0.4239(0.1368) ≠0.6897 ≠0.1515
· = ‡

2

2
/‡

2

1
0.5 0.5023 0.5138(0.1129) 0.3291 0.7649

Figures 2-5 give the posterior distribution of the parameters m, ”, fl and · . They indicate
that the posterior mode is around the true values of the parameters. Thus, an estimate of
the true values of the parameters is given by the posterior mode of the respective posterior
distributions.
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Figure 2. Posterior density function of the change

point m.
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Figure 3. Histogram of posterior distribution of the

parameter ”.
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Figure 4. Histogram of posterior distribution of the

parameter fl.
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Figure 5. Histogram of posterior distribution of the

parameter · .

Furthermore, Table 4 presents the unconditional p-values of the sub-null-hypotheses H01,
H02 and H03 for n = 200, m = 100 and di�erent values of the parameters µ1, µ2, „1, „2,
‡

2

1
and ‡

2

2
. Several cases are considered, stability in one of the parameters and change in

the other two and in the last case the three parameters are stable (without change). The
results show that the p-values of sub-hypotheses corresponding to the stable parameters do
not allow to reject the corresponding sub-hypothesis. While, for the other sub-hypotheses
where the parameters exhibiting changes, the corresponding p values make it possible to
reject these sub-hypotheses at 5% significance level. For example, with µ1 = 0.0, µ2 = 0.5,
„1 = 0.3, „2 = 0.3 and ‡

2

1
= 1.0, ‡

2

2
= 0.5, the p-values P”=0|y and P·=1|y are respectively

0.0187 and 0.0146. Thus, the sub-hypotheses H01 and H03 are rejected at 5% significance
level. The p-value Pfl=0|y is 0.4134, therefore, the sub-hypothesis H02 cannot be rejected.
Note that the parameter „ is stable, that is, fl = „2 ≠ „1 = 0.

To study the performance of the Bayesian significance test for detecting structural changes
in the parameters of autoregressive AR(p), we simulated 1000 samples from the model given
in Equation (1) with p = 1 and di�erent values of n, m, µ1, µ2, „1, „2, ‡

2

1
and ‡

2

2
and

we computed the rejection rates (the number of times the hypothesis is rejected divided by
the total number of samples) of sub-hypotheses H01, H02 and H03 at 5% significance level.
The results are obtained by Gibbs sampler algorithm with 5000 repetitions and are given in
Table 5.

Table 5 illustrates that, for n = 100 and m = 50, the rejection rates of sub-hypotheses
H01, H02 and H03 are more than 60% at 5% level when the parameter exhibits a change,
while it is only 6.6% when the parameter is stable (without change). For example, for the
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set of parameters µ1 = 0.0, µ2 = 0.5, „1 = 0.3, „2 = 0.3 and ‡
2

1
= 1.0, ‡

2

2
= 0.5, the

rejection rate of the sub hypothesis H01 is 0.630, for H02 is 0.004 and for H03 is 0.711. We
note that the parameter „ is stable. For the last set of parameters, µ1 = 0.0, µ2 = 0.0,
„1 = 0.3, „2 = 0.3 and ‡

2

1
= 0.5, ‡

2

2
= 0.5, the three parameters are assumed to be stable,

the rejection rate of sub hypotheses H01, H02 and H03 are respectively 0.006, 0.009 and
0.066. Therefore, the test detects well the autoregressive parameters that are subjects to a
change.

It can be seen that the rejection rates of sub-hypotheses H01, H02 and H03 of AR(1)
model increases with the sample size. For n = 200, m = 100, µ1 = 0.0, µ2 = 0.5, „1 = 0.3,
„2 = 0.3 and ‡

2

1
= 1.0, ‡

2

2
= 0.5, the rejection rate of the sub-hypotheses H01, H02 and H03

of AR(1) are respectively 0.810, 0.018 and 0.877. However, they are respectively only 0.220,
0.007 and 0.516 for n = 50 and m = 25. Therefore, the sample size has a positive impact
on the Bayesian significance test of change in the parameters of autoregressive time series
models.

5. Application

In this section, we illustrate our test procedures using three data sets, which are the monthly
average soybean, corn and wheat prices achieved by farmers in Illinois from one January
1960 to one December 1984. The prices are given in dollars per bushel. The price yt is
observed each month from one January 1960 until one December 1984 with sample of 300
observations. Data used in this analysis cab be found in (https://farmdoc.illinois.edu/
decision-tools/illinois-average-farm-price-received-database). The sample size
is 300. The series are plotted in Figures 6 (a)-(c), Berkes et al. (2011) study two real data
sets. The first sample consists of monthly average corn prices and the second sample consists
of monthly average soybean prices achieved by farmers in Illinois from January 1960 to
November 2008. The results of their statistical test indicate that the changes from an AR(1)
to a threshold AR(1) occurred around July 1971 (Corn) and October 1974 (Soybeans).
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Figure 6. Monthly average for corn prices (a); Soybean prices (b) and wheat prices (c) from 1960 to 1984.

We are interested of wither there is any evidence for the existence of a change in the
parameter of AR(1) model. A visual inspection of this series in Figures 6(a)-(c) seem to
suggest that there might be a change in the parameters of the series. By application of the
Gibbs sampler algorithm with 10,000 repetitions we approximate the unconditional p-values
for the hypothesis H01 : ” = 0, H012 : fl = 0 and H03 : · = 1 and the posterior estimates of
the change point m. The results are given in Tables 6.

https://farmdoc.illinois.edu/decision-tools/illinois-average-farm-price-received-database
https://farmdoc.illinois.edu/decision-tools/illinois-average-farm-price-received-database
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Table 6. Unconditional p-values of the hypothesis H01, H02 and H03 and posterior mode and median of
change point m for monthly average for soybeans, for corn and for wheat prices.

Dataset mode median P”=0|y Pfl=0|y P·=1|y

Soybean 154 155 0.2001 0.0866 0.0220
Corn 155 155 0.3641 0.1066 0.0390

Wheat 163 163 0.2832 0.2809 0.0014

Table 6 shows some numerical results of the series of monthly average soybeans, corn and
wheat prices from one January 1960 to one December 1984. Posterior mode of the change
point m indicates that the changes occurred at time m = 154, that corresponds to around
October 1972 for Soybeans, at time m = 155, that corresponds to November 1972 for Corn
and at time m = 163, that corresponds to around July 1973 for Wheat. As, the smaller the
p-value, more the strength of the evidence against H0 is significant, the values of the p-values
indicate that there is evidence against the equality of the variances of the three series of
observations. Thus, the unconditional p-values P”=0|y, Pfl=0|y and P·=1|y of the hypotheses
H01, H02 and H03, respectively, indicate that the no change in the variance of the series of
Saybeans, Corn and Wheat is rejected at 5% significance level. While, the no change in the
mean cannot be rejected even at 20% significance level for the three crops. For the change
in the autocorrelation coe�cient it can be rejected at 10% significance level for Saybeans
and it can hardly be rejected at 10% significance level for Corn, and cannot be rejected even
at 20% significance level for Wheat. Consequently, the results in Table 6 indicate that the
prices of Soybeans, Corn and wheat have undergone a significant variation in the variance
parameter since October 1972 for Soybeans, since November 1972 for Corn and since July
1973 for Wheat. Period which corresponds to the beginning of the world food crisis of the
1970s (FAO (2009)), a time from mid-1972 to mid-1975 (Gerlach (2015)).

6. Conclusions, limitations, and future research
In this paper, we have investigated a Bayesian detection of change in the parameters of
an autoregressive process of known order p. The model is subjected to a change in p + 2
parameters, the mean, the variance of the error terms and the p autoregressive parameters
at an unknown time point. We derived the conditional posterior distributions of the change
point, of the magnitude of the shift in the mean, of the magnitude of the shift in the
autocorrelation coe�cients and of the variance ratio. An unconditional Bayesian significance
test of change based on the calculation of the p-values is determined. The test detects
separately the autoregressive parameters which are subject to a change at an unknown
time m. The Gibbs sampler algorithm is employed to estimate the model parameters. The
performance of the test has been investigated on simulated and real data sets. We showed
how inferences can be made readily by using the Bayesian significance test based on the
highest posterior density credible sets for detecting a change of an individual parameter of
autoregressive models. Also, we have showed the impact of the sample size on the Bayesian
significance test of change. We have illustrated the application of the methods using three
real datasets available in the literature. The datasets are the monthly average soybean, corn
and wheat prices achieved by farmers in Illinois from one January 1960 to one December
1984. Results obtained report the existence of a change point in all three datasets. The
change points obtained correspond exactly to the beginning of the food crisis which occurred
in the early 1970s. A possible limitation of the adopted approach might be associated with
the estimation of all the parameters of the model, a similar approach could be adopted
to estimate all the parameters to performance residual analysis. Moreover, it would be
interesting to extend the study to examine the problem of multiple structural change points
and to study the case where the order of the autoregressive model is unknown.
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Husková, M., Praskova Z., and Steinebach, J., 2007. On the detection of changes in autore-
gressive time series. I. Asymptotics. Journal of Statistical Planning and Inference, 137,
1243–1259.
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