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UNCORRECTED PROOFS
Twelfth Volume – First Number

Editorial Paper

Chilean Journal of Statistics: A forum for the

Americas and the World in COVID-19 pandemic

Carolina Marchant1 and V́ıctor Leiva2

1Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
2School of Industrial Engineering, Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile

The first issue of the twelfth volume of the Chilean Journal of Statistics (ChJS) was
published on 30 April 2021. The ChJS has more than a decade of life in its current version
published in English and almost four decades from its origins in the Revista de la Sociedad
Chilena de Estad́ıstica. We have published three issues in times of trial due to the COVID-
19 pandemic. This pandemic has been very relevant for statistics because its use has
allowed di↵erent governments to establish regulations to stop its spread. The World Health
Organization declared a pandemic in March 2020. On 30 April 2021, more than 150 million
cases have been confirmed, with more than 3.16 million deaths attributed to COVID-19,
making it one of the deadliest pandemics in history. Medicine, science, statistics, and
the generation of new knowledge have played a fundamental role, with scientific journals
having a preponderant role in the publication of quality research. We believe that the world
will overcome this situation, but we are sure that the new customs acquired during this
period, such as interconnectivity, teleworking, teleconferencing, and virtuality, will remain
with us forever. Although its development began long before this pandemic, the areas of big
data, data science, machine learning, and statistics rose in prominence in 2020-2021. These
areas play an important role in artificial intelligence, science, and engineering; indeed, in
practically all areas of knowledge.
The scientific and editorial production of this volume would not have been achieved

without the valuable contributions of many people. We are pleased to inform the in-
ternational community that outstanding researchers, this time from the all America,
have honored us by publishing their exciting work in our journal so the we acknowl-
edge their relevant contributions. We are publishing articles written by colleagues from
Argentina, Brazil, Chile, Ecuador, Mexico, Uruguay, Venezuela, and the United States
(USA). We also thank all the anonymous reviewers who have contributed to maintain-
ing ChJS’ high-quality standards. Furthermore, we feel obliged and pleased to thank our
prestigious editorial board, made up of colleagues from the five continents and listed in
http://chjs.mat.utfsm.cl/board.html, who have collaborated from their positions to
increase our visibility and quality of the works published by the ChJS. Of course, we must
also thank the President and the Board of Directors of the Chilean Statistics Society (listed
in https://soche.cl/quienes-somos) and the entire Chilean statistical community for
placing on us, the Editors-In-Chief of The ChJS, their confidence in our work.

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
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http://www.soche.cl/chjs

http://chjs.mat.utfsm.cl/board.html
https://soche.cl/quienes-somos


2 Marchant and Leiva

The first issue of the twelfth volume of the ChJS comprises seven articles written by, as
mentioned, researchers from across the Americas. Details of these papers are as follows:

(i) Our first paper is based on statistical process control and authored by Ruth Burkhalter
and Yuhlong Lio from US, who designed control charts by using bootstrap methods
for monitoring percentiles of the generalized Pareto distribution, and applied them to
engineering data.

(ii) In the second paper, considering non-parametric inference, Carlos López-Vázquez,
Andrómaca Tasistro, and Esther Hochsztain, from Uruguay, presented exact tables for
the Friedman rank test considering the case with ties, and applied them to geoportals
navigation analysis, a web-based solution to provide open spatial data.

(iii) The third paper is authored by Lucas de Oliveira Ferreira de Sales, André Lúıs Santos de
Pinho, Francisco Moisés Cândido de Medeiros, and Marcelo Bourguignon, from Brazil,
who introduced control charts used in the monitoring of the mean when the data are
symmetrically distributed, and applied them to wine production data.

(iv) Based on Bayesian survival analysis, Agatha S. Rodrigues, Vinicius F. Calsavara, Ed-
uardo Bertolli, Stela V. Peres, and Vera L.D. Tomazella, also from Brazil, presented
our fourth paper utilizing a Bayesian long-term survival model including a frailty term,
which was applied to melanoma real data.

(v) The fifth paper is authored by Abraão D.C. Nascimento, Kássio F. Silva, and Alejandro
C. Frery, from Argentina and Brazil, who studied distance-based edge detection on
synthetic aperture radar imagery.

(vi) In the sixth paper, Malinda Coa and Ernesto Ponsot, from Venezuela, investigated
alternatives to the logit model in the situation of factor levels aggregation in binomial
distributed response variables.

(vii) This issue of the ChJS closes with a paper authored by Francisco J. Ariza-Hernandez
and Eduardo Gutiérrez-Peña, from Mexico, who performed a Bayesian analysis of an
item response model with a link function based on the asymmetric exponential power
distribution, and applied it to education data.

As the Chilean Statistics Society, we are proud because we continue to be an open-access
journal, publishing works free of any article processing charges (APC). In addition, we are
happy and pleased to be indexed to the Elsevier Scopus and Clarivate ISI WoS systems.
We are very motivated because, at the beginning of 2021, we have already received 24
submissions from di↵erent countries.
Finally, we would like the international statistical and data-science communities, our

editorial board, and our collaborators to champion the ChJS as a twelve-year, interna-
tional, free of charges, and open-access journal, with fair and high-quality reviews, that
cares about gender equality. Indeed, close to 50% of the papers published in this issue
were authored by women, filling us with pride. We encourage the international scientific
community to submit their works to the ChJS.

Carolina Marchant and Vı́ctor Leiva
Editors-in-Chief
Chilean Journal of Statistics
http://soche.cl/chjs

http://soche.cl/chjs


Chilean Journal of Statistics
Vol. 12, No. 1, April 2021, 3–21

UNCORRECTED PROOFS
Statistical Process Control

Research Paper

Bootstrap control charts for the generalized

Pareto distribution percentiles

Ruth Burkhalter⇤ and Yuhlong Lio

Department of Mathematical Sciences, University of South Dakota, Vermillion, USA

(Received: 24 November 2020 · Accepted in final form: 06 January 2021)

Abstract

Lifetime percentile is an important indicator of product reliability. Recently, numerous
quality control charts have been built for the quantiles of di↵erent distributions. Because
of the positive support and flexibility, the Pareto distribution is one of the useful distri-
butions to model lifetime. But the statistical quality control for the Pareto percentiles
has not been considered. The current work aims to establish quality control charts for
the Pareto distribution percentiles. The least squared error, maximum likelihood and a
modified moment method estimators are proposed for monitoring the Pareto distribu-
tion percentiles. However, the sampling distributions of percentile estimators are neither
known nor bell shape. As a result, the well-known Shewhart-type control chart may not
be appropriately applied to monitor the Pareto distribution percentiles. The bootstrap
procedure and normality approximations are proposed to establish control charts. An
intensive Monte Carlo simulation study is conducted to compare the performance among
the proposed bootstrap and Shewhart-type control charts. The simulation study shows
that the bootstrap control chart based on the maximum likelihood estimator outper-
forms the rest control charts considered. Finally, a numerical example is utilized to
illustrate the application of the bootstrap control chart based on maximum likelihood
estimator.

Keywords: Average run length · False alarm rate · Quality control chart · Parametric
bootstrap · Percentile.

Mathematics Subject Classification: Primary 62F40 · secondary 62P30.

1. Introduction

As product lifetime is a key aspect metric in industry, certain standards for the quality of
a product lifetime are often required to prevent faulty or inferior products from reaching the
consumer (Aykroyd et al., 2019). The statistical quality control charts have been very useful
tools to improve product lifetime quality as well as reliability. Therefore, researchers have
developed percentile control charts for many di↵erent lifetime distributions recently. For
example, Lio and Park (2008) studied control charts for Birnbaum-Saunders percentiles,
Lio and Park (2010) explored control charts for the inverse Gaussian percentiles, Lio et
al. (2014) developed quality control charts for the Burr type-X percentiles, Rezac et al.
(2015) developed percentile control charts for the Burr type-XII distribution that has been

⇤
Corresponding author. Email: Ruth.Burkhalter@usd.edu
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published in the ChJS and Chiang et al. (2017) investigated the percentile control charts
for the generalized exponential distributions.
Since Pickands (1975) introduced the Pareto distribution, many authors have studied

the properties of the Pareto distribution and eventually developed the two-parameter gen-
eralized Pareto distribution that has the rate and shape parameters. Some of these authors
include Hosking and Wallis (1987), Hüsler et al. (2011), Chen et al. (2017) and Salmasi
and Yari (2017). Due to the flexibility of the two-parameter generalized Pareto distribu-
tion with positive support, the generalized Pareto distribution would have been useful for
lifetime modeling. However, based on our best knowledge, no any research work has ad-
dressed the generalized Pareto distribution percentiles. Therefore, the goal of this study is
to investigate the quality control of the generalized Pareto distribution percentiles.
When the exact sampling distribution of the parameter estimator is not available, the

approximated sampling distributions, such as asymptotic normal or bootstrap sample dis-
tribution, would be used to inference the parameter concerned. However, the asymptotic
normal distribution is usually for large sample size case or the bell-shape sampling distri-
bution. For the quality control chart established based on small sample size, the commonly
used Shewhart-type control chart that is based on normal distribution may not be appro-
priate because the sampling distribution of a percentile estimator is usually not either
known nor near a bell shape one. Hence, the parametric bootstrap procedure has been
proposed to approximate the sampling distribution of the percentile estimator such that
the control chart could be built. For more information, readers may refer to the afore-
mentioned works on percentile quality control charts. For a thorough introduction to the
bootstrap method, see Gunter (1992), Efron and Tibshirani (1993) and Young (1994).
One distinct advantage of the bootstrap method is it allows the establishment of control
chart limits when the sampling distribution of an estimator is unknown. This paper uses
this fact extensively while using the least square error (LSE), maximum likelihood (ML)
and modified moment method (MMM) estimations, respectively. A minor disadvantage
could be the computational time of the bootstrap method. Recently, with access to more
powerful computers, the runtime can be reduced to a reasonable amount.
While studying in di↵erent areas, many authors confirmed the superiority of the boot-

strap method to the Shewhart chart and shown significant characteristics of bootstrapping.
To name a few, Nichols and Padgett (2005) found that a parametric bootstrap chart could
detect an out of control process faster than a Shewhart-type chart. Lio and Park (2008),
Lio and Park (2010), Lio et al. (2014), Rezac et al. (2015) and Chiang et al. (2017) showed
that bootstrap charts based on the maximum likelihood estimate or the moment method
estimate performed better than the Shewhart-type chart when monitoring the lifetime
percentiles. The above discussions motivate the current investigation of the parametric
bootstrap control charts based on the ML, MMM and LSE estimators, respectively, for
the generalized Pareto percentiles. Then, all the proposed parametric bootstrap control
charts and the Shewhart-type chart are compared using the computer simulation.
In order to create the control charts, Section 2 presents the three di↵erent estimation

methods, which include the ML, MMM and LSE methods, for the unknown distribution
parameters. The procedures of the Shewhart-type and parametric bootstrap charts are
addressed in Section 3. After the control charts are developed based on the aforementioned
four di↵erent estimation methods, the average of run lengths (ARLs), standard error of
the ARL (SEARL) as well as the average of upper control limits (UCLs) and lower control
limits (LCLs), and their respective standard deviations, are obtained through a simulation
study and used to compare and determine which method is the best for monitoring the
generalized Pareto percentiles in Section 4. In this same section, a numerical example is
given for the illustration purpose. Finally, some remarks and suggestions is addressed in
Section 5.
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2. Parameter estimation

In this section, we introduce the two-parameter generalized Pareto distribution and three
di↵erent estimation methods.

2.1 The generalized Pareto distribution

Let X be the random variable of the two-parameter generalized Pareto distribution that
has the probability density function (PDF), cumulative distribution function (CDF) and
percentile function respectively given as,

f(x;↵,�) = ↵�(1 + x�)�(↵+1), x > 0,

F (x;↵,�) = 1� (1 + x�)�↵, x > 0 (1)

Q(p;↵,�) =
1

�
((1� p)�1/↵ � 1), 0 < p < 1,

where � > 0 is the rate parameter and ↵ > 0 is the shape parameter. Three estimation
procedures for the unknown distribution parameters and percentiles is presented next.

2.2 The ML estimators

Let X1, . . . , Xn be a random sample of size n from the generalized Pareto distribution
given in Equation (1). The corresponding log-likelihood function is given as

l(↵,�) = n log(↵) + n log(�)� (↵+ 1)
nX

i=1

log(1 +Xi�).

Setting the partial derivative of l(↵,�) with respect to ↵ and � equal to zero, respectively,
two normal equations are obtained as

n

↵
=

nX

i=1

log(1 +Xi�)

n

�
= (↵+ 1)

nX

i=1

Xi

1 +Xi�
. (2)

The system of Equation (2) produces

↵ =
n

nP
i=1

log(1 +Xi�)
(3)

and

n

�
=

0

BB@
n

nP
i=1

log(1 +Xi�)
+ 1

1

CCA
nX

i=1

Xi

1 +Xi�
. (4)
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The solution of � to Equation (4) could be obtained by the unit-root function, unit-root,

in R and labeled by b�n. Plugging b�n into Equation (3), the solution b↵n is obtained. The

solutions, b↵n and b�n, are called the ML estimates of ↵ and �, respectively. b↵n and b�n may
also be simultaneously obtained by optimization function optim of R. The ML estimate of
the pth quantile can be stated as

bQn(p; b↵n, b�n) =
1
b�n

⇣
(1� p)�1/b↵n�1

⌘
, 0 < p < 1.

However, the exact sampling distributions of b↵n, b�n and bQn(p; b↵n, b�n) are unknown.
Therefore, the exact quality control chart for Q(p;↵,�) cannot be established through
bQn(p; b↵n, b�n). It can be shown that

p
n((b↵n, b�n) � (↵,�)) ! N2(0, I�1(↵,�)) where N2is

the bivariate normal distribution with mean vector as the two-dimension zero vector, 0
and two by two variance covariance matrix as the inverse of the Fisher information matrix,
I(↵,�), given as

I(↵,�) = � 1

n

2

4
E(@

2l(↵,�)
@↵2 ) E(@l(↵,�)@↵@� )

E(@l(↵,�)@�@↵ ) E(@
2l(↵,�)
@�2 )

3

5 =

"
I11 I12

I21 I22

#
=

2

6664

1

↵2

1

�(↵+ 1)

1

�(↵+ 1)

1

�2
� 2

�2(↵+ 2)

3

7775
.

More detail calculation procedures for the four entries of I(↵,�) are as follows. The Fisher
information matrix is presented as

I(↵,�) =

2

4
I11 I12

I21 I22

3

5 ,

where I11, I12, I21, I22 can be obtained through

I11 = � 1

n
E

✓
@2l(↵,�)

@↵2

◆
=

1

↵2

I12 = I21 = � 1

n
E

✓
@l(↵,�)

@↵@�

◆
= � 1

n
E

 
�

nX

i=1

xi
1 + xi�

!

=
1

n

nX

i=1

Z 1

0

x

1 + x�
f(x)dx = ↵�

Z 1

0

x(1 + x�)�↵�2dx =
1

�(↵+ 1)
,

I22 = � 1

n
E

✓
@2l(↵,�)

@�2

◆
= � 1

n
E

 
� n

�2
+ (↵+ 1)

nX

i=1

Xi
2

(1 + xi�)2

!
=

1

�2
� 2

�2(↵+ 2)

It can be shown that

bQn(p; b↵n, b�n)�Q(p;↵,�)

�p,n
! N(0, 1), 0 < p < 1,

where �2
p,n = (1/n)rQ(p;↵,�)>I�1(↵,�)rQ(p;↵,�), for 0 < p < 1, andrQ(p;↵,�) is the

gradient of Q(p,↵,�) with respect to ↵ and �. Thus, a Shewhart chart can be constructed
using the asymptotic normal distribution to monitor the generalized Pareto percentile.
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2.3 The MMM estimators

Given n sample observations, x1, . . . , xn, from the generalized Pareto distribution. In
order to find the moment method estimates of ↵ and �, let the first order sample moment
about zero be equal to the population mean and the second order sample moment about
zero be equal to the population second moment about zero. Then, two required equations
for moment method estimates can be expressed as

E(X) =
1

n

nX

i=1

xi, E(X2) =
1

n

nX

i=1

x2i , (5)

where X is the generalized Pareto distribution random variable. However, the solutions
to the system of Equation (5) are di�cult to obtain. Also the ↵ solution is restricted to
↵ > 2 to ensure E(X2) finite. Hence, a modified moment method is needed so that the
solutions are easier to solve and there is no restriction on ↵.
Let U = ↵ log(1 + �X), then it can be easily shown that U has exponential distribution

with mean equal 1. Let X(1) < · · · < X(n) be the ordered statistic of X1, . . . , Xn. Then,
U(1) < · · · < U(n) is the ordered statistic of Ui = ↵ log(1 + �Xi) for i = 1, . . . , n. Denote
Y1 = nU(1), . . . , Yn = U(n) � U(n�1) or alternatively, Y1 = n↵ log(1 + �X(1)), Y2 = (n �
1)↵(log(1+�X(2))� log(1+�X(1))), . . . , Yn = ↵(log(1+�X(n))� log(1+�X(n�1))). It can
be shown that Y1, . . . , Yn are random sample from the exponential distribution with mean
equal to one. Let g(�) = 2

Pn�1

i=1
(log(Tn)�log(Ti)), where Ti =

Pi
j=1

Yj/↵. It can be shown
that g(�) has a chi-square distribution with degree of freedom 2n�2 and ↵Tn has a gamma
distribution G(1, n). Following Wang (2008) and Rezac et al. (2015), � can be estimated
by the unique solution of g(�̃) = 2(n � 2) and ↵ can be estimated by ↵̃ = (n � 1)/Tn.
The estimates, �̃n and ↵̃n, are called MMM estimations of � and ↵, respectively. Then,
the MMM estimator of the generalized Pareto percentile Q(p,↵,�) based on the MMM
estimators, ↵̃n and �̃n, is defined as Q̃n(p; ↵̃n, �̃n) = (1/�̃n)

�
(1� p)�1/↵̃n � 1

�
, for 0 < p <

1. However, the exact sampling distributions of ↵̃n, �̃n and Q̃n(p; ↵̃n, �̃n) are unknown.

2.4 The LSE estimators

The LSE estimators of the generalized Pareto distribution parameters are obtained by
minimizing the following sum of squares with respect to ↵ and �,

nX

i=1

✓
F (X(i);↵,�)�

i

n+ 1

◆2

,

where F (X(i);↵,�) = 1 � (1 + X(i)�)
�↵ for i = 1, . . . , n. The solutions of ↵ and � can

be obtained simultaneously by optimization function, optim, in R and are labeled by ↵n

and �n, respectively. Then, the LSE estimator of Q(p;↵,�) is defined as Qn(p;↵n,�n) =
(1/�n)((1� p)�1/↵n � 1), for 0 < p < 1. Again, the exact sampling distributions of ↵n,�n

and Qn(p;↵n,�n), respectively, are unknown.

3. Statistical control charts

In this section, we perform the Shewhart-type and parametric bootstrap charts.
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3.1 Assumptions

In Phase I, there are several assumptions, which are that the k in-control subgroup
samples of size m are randomly collected from the generalized Pareto PDF of Equation
(1) for the control chart setting. Let n = m⇥ k denote the total sample size used in Phase

I and b↵n and b�n be the ML estimates of ↵ and �, respectively. The process for creating
the Shewhart-type and parametric bootstrap charts is illustrated in the following sections.

3.2 The Shewhart-type charts

Using the ML estimation procedure described in Section 2.2, the ML estimate of the
100pth percentile for 0 < p < 1 based on each subgroup sample of size m from the Phase I
process is bQm(p; b↵m, b�m) = (1/b�m)((1� p)�1/b↵m � 1) where (b↵m, b�m) is the ML estimates
of (↵,�). Then, the Shewhart-type chart for monitoring the 100pth percentile, Q(p;↵,�),

by using bQm(p; b↵m, b�m) for 0 < p < 1 can be constructed with the steps:

(1) Using all n sample observations from Phase I in-control process, the ML esti-
mates of ↵ and � were obtained above. Then the asymptotic standard error of
bQm(p; b↵m, b�m) can be estimated by

b� bQm
=

r
1

m
rQ>(p; b↵n, b�n)bI�1

n (b↵n, b�n)rQ(p; b↵n, b�n).

(2) For the jth subgroup sample of size m, the ML estimates of ↵, � and Q(p;↵,�)

are found by using the procedure of Section 2.2 and denoted by b↵j
m, b�j

m and
bQj
m(p; b↵j

m, b�j
m), respectively, for j = 1, . . . , k. The sample mean, b̄Qm(p), of

bQj
m(p; b↵j

m, b�j
m) for j = 1, . . . , k is obtained as

b̄Qm(p) =
1

k

kX

j=1

bQj
m(p; b↵j

m, b�j
m).

(3) The control limits of the Shewhart-type chart are given as

LCLSH = b̄Qm(p)� z(1��/2)b� bQm
, UCLSH = b̄Qm(p) + z(1��/2)b� bQm

,

where b̄Qm(p) is the center line (CL), z1��/2 satisfies �(z1��/2) = 1 � �/2 with
0 < � < 1, � is the standard normal CDF and � is the false alarm rate (FAR).

After the control limits of the Shewhart-type chart are determined, future samples of size
m (Phase II samples) are drawn from the generalized Pareto process to compute the plot

statistic bQm(p; b↵m, b�m). If bQm(p; b↵m, b�m) is between the control limits found above, then
the process is assumed to be in control. If not, signal that the process is out-of-control.

3.3 Parametric bootstrap charts

The parametric bootstrap chart based on the ML estimation method is constructed as

(1) Using all n observations collected during the Phase I in-control process, the ML

estimates, b↵n and b�n, of ↵ and � were obtained above.
(2) Generate m parametric bootstrap observations from the generalized Pareto distri-

bution given in Equation (1), with ↵ = b↵n and � = b�n. Denote the parametric
bootstrap observations by x⇤

1
, . . . , x⇤m.
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(3) Find the ML estimates of ↵ and � using x⇤
1
, . . . , x⇤m from Step 2. The obtained ML

estimates of ↵ and � are labeled by b↵⇤
m and b�⇤

m, respectively.
(4) Find the bootstrap estimate of the 100pth percentile, denoted bQ⇤

m(p; b↵⇤
m, b�⇤

m) by

plugging b↵⇤
m and b�⇤

m into the quantile function, Q(p;↵,�), that is,

bQ⇤
m(p; b↵⇤

m, b�⇤
m) = Q(p; b↵⇤

m, b�⇤
m) =

1
b�⇤
m

((1� p)�1/b↵⇤
m � 1).

(5) Repeat Steps 2 through 4 M times to obtain a size M bootstrap sample,
bQ⇤
m,j(p; b↵⇤

m,j ,
b�⇤
m,j), j = 1, . . . ,M , where M is a given large positive integer.

(6) Given a FAR,�, find the (�/2)th and (1-�/2)th empirical quantiles of the bootstrap
sample from Step 5 as the LCL and UCL, respectively, where the empirical quantiles
can be obtained by using R quantile function. The CL is given as

b̄Q
⇤
m(p) =

1

M

MX

j=1

bQ⇤
m,j(p; b↵⇤

m,j , b�⇤
m,j).

The LCL and UCL developed above and the plot statistic, bQ⇤
m(p; b↵⇤

m, b�⇤
m) is called the ML

bootstrap chart. Following the same steps established in this section and replacing b↵(b↵⇤)

and b�(b�⇤) by ↵̃(↵̃⇤) and �̃(�̃⇤), respectively. Then, the corresponding MMM bootstrap

chart is obtained. Similarly, replacing b↵(b↵⇤) and b�(b�⇤) by ↵(↵⇤) and �(�
⇤
), respectively.

Then, the corresponding LSE bootstrap chart is developed.

4. Numerical studies

In this section, based on the aforementioned four di↵erent estimation methods, we ob-
tain the ARL, SEARL, UCL, LCL, and their respective standard deviations, through a
simulation study and used to compare and determine which method is the best for moni-
toring the generalized Pareto percentiles. We close this section with a numerical example
to show potential applications.

4.1 Simulation scenario

To compare the performance among the proposed generalized Pareto distribution quan-
tile control charts for monitoring lower quantiles below median, a Monte Carlo simulation
study was executed using R, a programming language and environment originally developed
by Ihaka and Gentleman (1996). The R code is available from the authors on request.
The performance quality of the control charts was based on the ARL and its SEARL.

The average LCL and average UCL and their corresponding standard errors were also
recorded for each method discussed in Section 2. From a practical standpoint, very few
samples are available for lifetime testing in industry for quality control because the lifetime
test is destructive and expensive. Hence, in the simulation, only sample sizes of m = 4, 5
and 6 with k = 20 subgroups were collected randomly. This simulation also considered a
variety of false alarm rates (FARs), specifically, 0.1, 0.01, 0.0027, and 0.002. The control
limits of 100pth percentiles, where p = 0.01, 0.05, 0.10 and 0.25, were found using the em-
pirical distribution of M = 10, 000 bootstrap observations for bootstrap control charts.
The simulation process was repeated 10,000 times to find an accurate estimation of the
ARL, SEARL, average of LCL, average of UCL and their respective standard errors run-
ning a self developed R program through the hp laptop with window 10. It took about 16.5
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hours to run each one submission of R program for monitoring one percentile to product
10, 000 LCLs, UCLs and run lengths for four control charts with FAR = 0.1, 0.01, 0.0027
and 0.002, respectively. The ARL, average LCL and average UCL are the average of 10, 000
run lengths, LCLs and UCLs, respectively. The SEARL and standard deviations of the av-
erage of LCL and UCL are calculated by using standard deviations of 10, 000 run lengths,
LCLs and UCLs divided by squared root of 10, 000, respectively.

4.2 Simulation results

In Tables 1 through 4, the ARLs and SEARLs are compared. An appropriate control
chart has ARL near 1/FAR that is also known as the nominal ARL. The simulated ARLs
and SEARLs for the Shewhart-type chart are shown in Table 1. The Shewhart-type chart
overestimates the nominal ARL for FAR=0.1 and underestimates for FAR=0.01, 0.0027,
and 0.002. That indicates overall narrow control limits except the case of FAR = 0.1.
Table 2 shows the simulated ARLs and SEARLs for the LSE bootstrap chart. This process
highly overestimates the nominal ARL. Table 3 shows the simulated ARLs and standard
deviations for the MMM bootstrap chart. This chart is simply inconsistent. For FAR=0.1,
it does fairly well across the percentiles tested. However, for smaller FAR, it underestimates
the nominal ARL for smaller percentiles and overestimates for larger percentiles. Finally,
Table 4 shows the simulated ARLs and SEARLs for the ML bootstrap chart. The ARLs in
this chart stay close to the nominal ARL with small SEARL relative to the corresponding
ARL across all percentiles and sample sizes used. All SEARLs shown in Tables 1 through
4 are very small compared with their respective ARLs. In Tables 5 through 8, the averages
of LCLs and UCLs of each chart are compared. In Table 5, notice that the Shewhart-type
chart has a negative average lower bound. Since the charts are used to monitor lifetime
data, a negative lower bound implies that the normal approximation is not appropriate
and the Shewhart-type chart is not appropriate for detecting a low percentile deteriorate.
Also note that some of the average LCLs shown in Table 7 for the MMM bootstrap charts
are set at 0+. Actually those numbers are very small positive. Again, the MMM bootstrap
charts are not appropriate to use particularly monitoring a low percentile deteriorate. The
calculated standard errors of average LCLs and UCLs for each control chart from 10, 000
simulation runs are displayed in Tables 9 through 12. Some calculated standard errors
for the LCLs and UCLs of the MMM bootstrap chart shown in Table 11 are 0+ that
are actually very small positive numbers. Tables 9 through 12 show all standard errors
are very small. As the Shewhart-type chart, the LSE bootstrap chart, and the MMM
bootstrap chart have all been eliminated from consideration, the only chart left is the ML
bootstrap chart. This chart’s ARL stays close to the nominal ARL (Table 4) with small
SEARL relative to the corresponding ARL, its LCLs and UCLs are reliable (Table 8), and
the standard error for the averages of LCLs and UCLs are small. As a result, the ML
bootstrap chart is assessed for monitoring the out of control.
Out of control testing analyzes how quickly the ML bootstrap chart detects a downward

shift in the distribution percentiles. This type of downward shift indicates a product’s
lifetime is shortening. Looking at the Pareto quantile function, it is clear that as the ↵
and (or) � increase, the quantile function decreases. As a result, when running the out of
control testing on ML bootstrap chart, the parameters ↵ and (or) � were shifted upwards.
The results of this test are mainly based on the ARL and SEARL. To calculate ARL
and SEARL for each out of control setting, the simulation study were conducted 10, 000
runs and each run with 10, 000 bootstrap sample observations. Table 13 through Table
15 display the simulation results. In Table 13, both ↵ and � shifted upwards. Let ↵0 and
�0 be the in-control parameter inputs and increase the values of ↵0 and �0 to ↵1 and �1.
In Table 14, �0 from the in-control process is fixed and ↵0 from the in-control process
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is increased to ↵1. In Table 15, ↵0 from the in-control process is fixed and �0 from the
in-control process is increased to �1. In viewing of Table 13 through Table 15, it can been
seen that all ARLs are relatively small compared to the nominal ARL and all SEARLs are
very small, too. These results confirm that the ML bootstrap control chart is reliable for
monitoring generalized Pareto percentiles.

Table 1. Shewhart-type in-control ARL estimates and corresponding standard deviations for generalized

Pareto percentiles with ↵ = 2.5 and � = 1.0.
Parameters n = 4 n = 5 n = 6

ARL SEARL ARL SEARL ARL SEARL
�0 = 0.1 (FAR) 1/�0 = 10

p = 0.01 15.4038 0.3053 16.1360 0.2922 15.7627 0.2674
p = 0.05 15.2520 0.3026 15.9680 0.2886 15.6154 0.2619
p = 0.10 15.2592 0.3036 15.6528 0.2785 15.3232 0.2564
p = 0.25 14.6227 0.2501 15.1762 0.2680 14.6056 0.2441

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 37.9077 0.8082 43.0204 0.8511 45.0765 0.8593
p = 0.05 37.4736 0.7973 42.5070 0.8302 44.4339 0.8347
p = 0.10 37.0809 0.7489 41.5448 0.7988 43.4403 0.8132
p = 0.25 35.0311 0.6345 39.4974 0.7754 40.9858 0.7740

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 55.3873 1.1429 65.0647 1.3018 70.2976 1.3643
p = 0.05 54.7378 1.1404 64.7746 1.3200 70.2678 1.3980
p = 0.10 53.9932 1.1237 63.4313 1.2958 68.8031 1.3463
p = 0.25 50.3986 0.9611 59.6773 1.2202 64.3715 1.2834

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 59.9459 1.2528 70.5459 1.4171 78.2119 1.5724
p = 0.05 59.0701 1.2362 70.0550 1.4683 77.8436 1.5785
p = 0.10 58.2528 1.2071 68.6909 1.4198 76.4253 1.5344
p = 0.25 54.0512 1.0232 64.5977 1.3066 71.1732 1.4163

Table 2. LSE bootstrap in-control ARLs estimates and corresponding standard deviations for the gener-

alized Pareto percentiles with ↵ = 2.5 and � = 1.0.
Parameters n = 4 n = 5 n = 6

ARL SEARL ARL SEARL ARL SEARL
�0 = 0.1 (FAR) 1/�0 = 10

p = 0.01 12.740 0.1918 12.7904 0.1954 12.7874 0.1900
p = 0.05 12.7783 0.1901 12.7938 0.1982 12.7571 0.1914
p = 0.10 12.7063 0.1947 12.9092 0.1978 12.8133 0.1892
p = 0.25 13.1900 0.2027 13.1257 0.2076 13.2774 0.2036

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 179.819 3.4544 186.3573 3.6381 189.9276 3.8459
p = 0.05 180.4755 3.4162 185.7970 3.7856 195.4479 4.1130
p = 0.10 180.9999 3.4464 187.6843 3.7808 190.5604 3.9170
p = 0.25 184.2501 3.6159 188.6343 3.7525 194.9903 4.0870

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 788.459 17.7730 812.0935 18.4439 844.5480 19.1808
p = 0.05 788.6242 17.1870 821.3853 18.4914 870.5871 19.7251
p = 0.10 771.9857 16.2963 819.5059 17.9659 852.3299 19.8192
p = 0.25 796.4193 17.0323 807.9862 17.5517 872.3674 21.6409

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 1120.381 24.9256 1165.7726 29.7523 1234.9286 30.7898
p = 0.05 1127.6833 24.9995 1172.5420 28.1306 1245.6503 29.3309
p = 0.10 1101.3921 23.7495 1193.0949 29.3921 1221.7993 28.5823
p = 0.25 1118.6962 24.9399 1148.6458 27.4038 1272.1061 31.8478
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Table 3. MMM bootstrap in-control ARL estimates and corresponding standard deviations for the gener-

alized Pareto percentiles with ↵ = 2.5 and � = 1.0.

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 9.6570 0.1335 9.7628 0.1373 9.6871 0.1332
p = 0.05 9.3388 0.1352 11.6867 0.1609 10.9639 0.1515
p = 0.10 8.7744 0.1272 13.2327 0.2123 10.3124 0.1400
p = 0.25 9.6432 0.1406 12.4179 0.2023 10.7797 0.1503

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 49.7678 0.7441 55.1232 0.8122 58.5411 0.8671
p = 0.05 89.8256 1.2590 116.3314 1.5610 88.5108 1.2978
p = 0.10 109.3266 1.9285 102.2867 1.2401 114.7982 1.6952
p = 0.25 102.24451 1.8508 113.6496 1.4729 137.2954 2.4680

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 60.9588 0.8813 68.8012 0.9745 74.45920 1.0695
p = 0.05 147.0226 2.2652 191.4860 3.0285 186.7040 2.4625
p = 0.10 445.3300 8.0744 383.9819 7.0894 427.8512 6.3043
p = 0.25 377.1021 7.2660 452.4614 7.5417 467.0340 7.4687

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 62.1741 0.8982 70.4454 0.9950 76.7008 1.1057
p = 0.05 156.1286 2.3482 201.7414 2.9981 202.7630 2.5971
p = 0.10 561.8492 10.0323 720.5037 14.6875 564.9076 9.8149
p = 0.25 589.4910 9.4193 606.7636 9.4168 576.9963 10.5925

Table 4. ML bootstrap in-control ARL estimates and corresponding standard deviations for generalized

Pareto percentiles with ↵ = 2.5 and � = 1.0.

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 9.3209 0.1309 9.0851 0.1250 9.2029 0.1266
p = 0.05 9.2294 0.1313 9.2691 0.1294 9.2289 0.1295
p = 0.10 9.2964 0.1316 9.1935 0.1302 9.3212 0.1292
p = 0.25 9.1746 0.1280 9.3039 0.1285 9.2309 0.1278

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 91.6366 1.6801 89.7949 1.5565 88.8241 1.4242
p = 0.05 90.2183 1.6010 90.1718 1.5683 88.2176 1.4181
p = 0.10 90.3458 1.6343 91.3064 1.5865 90.5653 1.4959
p = 0.25 93.2211 1.6978 90.6854 1.5839 87.6807 1.4678

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 343.0466 7.0766 336.3652 6.4181 335.8107 6.2239
p = 0.05 339.5141 6.7849 333.6685 6.5899 328.6546 6.2053
p = 0.10 337.7009 6.8637 339.3910 6.4750 340.7111 6.4211
p = 0.25 355.4715 7.5188 340.8538 6.7502 330.1604 6.1004

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 472.3910 10.1697 456.5624 9.1939 449.1549 8.4255
p = 0.05 470.6944 10.0895 452.7038 9.4391 445.0275 8.8036
p = 0.10 459.5464 9.7480 464.8904 9.3621 458.1780 8.9725
p = 0.25 488.0070 10.7023 464.8904 10.4099 450.7093 8.8848
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Table 5. Shewhart-type in-control LCL and UCL for generalized Pareto percentiles with ↵ = 2.5 and

� = 1.0.
Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 -0.0008 0.0104 -0.0003 0.0097 0.0001 0.0092
p = 0.05 -0.0037 0.0533 -0.0013 0.0495 0.0005 0.0469
p = 0.10 -0.0073 0.1096 -0.0022 0.1019 0.0016 0.0966
p = 0.25 -0.0152 0.3002 -0.0018 0.2800 0.0085 0.2658

�0 = 0.01 (FAR)
p = 0.01 -0.0039 0.0136 -0.0031 0.0125 -0.0025 0.0118
p = 0.05 -0.0199 0.0694 -0.0157 0.0639 -0.0126 0.0601
p = 0.10 -0.0403 0.1427 -0.0316 0.1314 -0.0253 0.1235
p = 0.25 -0.1044 0.3894 -0.0814 0.3597 -0.0643 0.3386

�0 = 0.0027 (FAR)
p = 0.01 -0.0054 0.0151 -0.0044 0.0138 -0.0037 0.0129
p = 0.05 -0.0272 0.0768 -0.0222 0.0705 -0.0186 0.0660
p = 0.10 -0.0554 0.1578 -0.0451 0.1448 -0.0376 0.1357
p = 0.25 -0.1451 0.4301 -0.1177 0.3961 -0.0974 0.3718

�0 = 0.002 (FAR)
p = 0.01 -0.0057 0.0154 -0.0047 0.0141 -0.0039 0.0132
p = 0.05 -0.0288 0.0784 -0.0236 0.0719 -0.0199 0.0673
p = 0.10 -0.0586 0.1610 -0.0479 0.1477 -0.0402 0.1383
p = 0.25 -0.1538 0.4387 -0.1254 0.4038 -0.1045 0.3788

Table 6. LSE bootstrap in-control LCL and UCL for the generalized Pareto percentiles with ↵ = 2.5 and

� = 1.0.
Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 0.0011 0.0104 0.0012 0.0094 0.0014 0.0088
p = 0.05 0.0057 0.0538 0.0064 0.0486 0.0070 0.0454
p = 0.10 0.0117 0.1127 0.0133 0.1021 0.0146 0.0948
p = 0.25 0.0313 0.3344 0.0378 0.3008 0.0417 0.2779

�0 = 0.01 (FAR)
p = 0.01 0.0005 0.0221 0.0006 0.0183 0.0007 0.0160
p = 0.05 0.0025 0.1142 0.0031 0.0940 0.0038 0.0826
p = 0.10 0.0051 0.2376 0.0065 0.1970 0.0078 0.1714
p = 0.25 0.0142 0.6872 0.0181 0.5679 0.0219 0.4937

�0 = 0.0027 (FAR)
p = 0.01 0.0003 0.0329 0.0004 0.0257 0.0005 0.0215
p = 0.05 0.0016 0.1697 0.0022 0.1314 0.0027 0.1115
p = 0.10 0.0033 0.3523 0.0044 0.2756 0.0056 0.2307
p = 0.25 0.0091 1.0105 0.0124 0.7889 0.0158 0.6608

�0 = 0.002 (FAR)
p = 0.01 0.0003 0.0354 0.0004 0.0274 0.0005 0.0227
p = 0.05 0.0014 0.1825 0.0019 0.1399 0.0025 0.1178
p = 0.10 0.0029 0.3791 0.0040 0.2932 0.0052 0.2437
p = 0.25 0.0081 1.0857 0.0112 0.8393 0.0145 0.6969
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Table 7. MMM bootstrap in-control LCL and UCL for the generalized Pareto percentiles with ↵ = 2.5
and � = 1.0.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 0.0005 0.0140 0.0006 0.0122 0.0007 0.0112
p = 0.05 0.0044 0.0577 0.0036 0.0633 0.0044 0.0577
p = 0.10 0.0070 0.1491 0.0084 0.1307 0.0098 0.1186
p = 0.25 0.0248 0.4184 0.0284 0.3636 0.0323 0.3306

�0 = 0.01 (FAR)
p = 0.01 0.0000+ 0.0254 0.0000+ 0.0210 0.0000+ 0.0183
p = 0.05 0.0004 0.0961 0.0002 0.1096 0.0004 0.0961
p = 0.10 0.0010 0.2700 0.0016 0.2247 0.0022 0.1943
p = 0.25 0.0051 0.7561 0.0069 0.6235 0.0091 0.5396

�0 = 0.0027 (FAR)
p = 0.01 0.0000+ 0.0336 0.0000+ 0.0269 0.0000+ 0.0230
p = 0.05 0.0000+ 0.1195 0.0000+ 0.1391 0.0000+ 0.1195
p = 0.10 0.0002 0.3583 0.0005 0.2878 0.0008 0.2443
p = 0.25 0.0019 1.0049 0.0029 0.8000 0.0042 0.6782

�0 = 0.002 (FAR)
p = 0.01 0.0000+ 0.0353 0.0000+ 0.0282 0.0000+ 0.0239
p = 0.05 0.0000+ 0.1240 0.0000+ 0.1456 0.0000+ 0.1241
p = 0.10 0.0001 0.3773 0.0004 0.3005 0.0006 0.2541
p = 0.25 0.0015 1.0573 0.0023 0.8373 0.0034 0.7046

Table 8. ML bootstrap in-control upper and lower control limits for generalized Pareto percentiles with

↵ = 2.5 and � = 1.0.
Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 0.0011 0.0116 0.0012 0.0106 0.0013 0.0099
p = 0.05 0.0057 0.0595 0.0064 0.0546 0.0070 0.0510
p = 0.10 0.0120 0.1225 0.0134 0.1127 0.0146 0.1055
p = 0.25 0.0346 0.3408 0.0388 0.3166 0.0424 0.2918

�0 = 0.01 (FAR)
p = 0.01 0.0006 0.0210 0.0007 0.0181 0.0008 0.0161
p = 0.05 0.0030 0.1072 0.0036 0.926 0.0041 0.0828
p = 0.10 0.0062 0.2207 0.0075 0.1913 0.0085 0.1713
p = 0.25 0.0176 0.6149 0.0214 0.5284 0.0245 0.4729

�0 = 0.0027 (FAR)
p = 0.01 0.0004 0.0278 0.0005 0.0232 0.0006 0.0202
p = 0.05 0.0022 0.1418 0.0028 0.1185 0.0032 0.1039
p = 0.10 0.0045 0.2918 0.0058 0.2452 0.0068 0.2148
p = 0.25 0.0126 0.8144 0.0163 0.6761 0.0192 0.5923

�0 = 0.002 (FAR)
p = 0.01 0.0004 0.0292 0.0005 0.0242 0.0006 0.0211
p = 0.05 0.0020 0.1492 0.0026 0.1239 0.0031 0.1081
p = 0.10 0.0041 0.3068 0.0054 0.2564 0.0064 0.2238
p = 0.25 0.0116 0.8567 0.0151 0.7071 0.0181 0.6168
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Table 9. The Shewhart-type chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 7.39⇥ 10�6 2.33⇥ 10�5 5.55⇥ 10�6 1.97⇥ 10�5 4.40⇥ 10�6 1.69⇥ 10�5

p = 0.05 3.69⇥ 10�5 1.18⇥ 10�4 2.74⇥ 10�5 1.02⇥ 10�4 2.22⇥ 10�5 8.63⇥ 10�5

p = 0.10 7.31⇥ 10�5 2.42⇥ 10�4 5.52⇥ 10�5 2.07⇥ 10�4 4.50⇥ 10�5 1.77⇥ 10�4

p = 0.25 1.82⇥ 10�4 6.58⇥ 10�4 1.40⇥ 10�4 5.55⇥ 10�4 1.16⇥ 10�4 4.76⇥ 10�4

�0 = 0.01 (FAR)
p = 0.01 1.23⇥ 10�5 3.02⇥ 10�5 9.09⇥ 10�6 2.54⇥ 10�5 6.84⇥ 10�6 2.15⇥ 10�5

p = 0.05 6.15⇥ 10�5 1.53⇥ 10�4 4.51⇥ 10�5 1.31⇥ 10�4 3.40⇥ 10�5 1.10⇥ 10�4

p = 0.10 1.22⇥ 10�4 3.14⇥ 10�4 9.02⇥ 10�5 2.66⇥ 10�4 6.80⇥ 10�5 2.25⇥ 10�4

p = 0.25 3.03⇥ 10�4 8.47⇥ 10�4 2.20⇥ 10�4 7.08⇥ 10�4 1.67⇥ 10�4 6.01⇥ 10�4

�0 = 0.0027 (FAR)
p = 0.01 1.52⇥ 10�5 3.34⇥ 10�5 1.13⇥ 10�5 2.80⇥ 10�5 8.61⇥ 10�6 2.36⇥ 10�5

p = 0.05 7.59⇥ 10�5 1.70⇥ 10�4 5.67⇥ 10�5 1.44⇥ 10�4 4.30⇥ 10�5 1.21⇥ 10�4

p = 0.10 1.52⇥ 10�4 3.47⇥ 10�4 1.13⇥ 10�4 2.92⇥ 10�4 8.60⇥ 10�5 2.46⇥ 10�4

p = 0.25 3.79⇥ 10�4 9.34⇥ 10�4 2.79⇥ 10�4 7.78⇥ 10�4 2.13⇥ 10�4 6.59⇥ 10�4

�0 = 0.002 (FAR)
p = 0.01 1.58⇥ 10�5 3.41⇥ 10�5 1.18⇥ 10�5 2.85⇥ 10�5 9.01⇥ 10�6 2.41⇥ 10�5

p = 0.05 7.91⇥ 10�5 1.73⇥ 10�4 5.92⇥ 10�5 1.47⇥ 10�4 4.50⇥ 10�5 1.23⇥ 10�4

p = 0.10 1.58⇥ 10�4 3.54⇥ 10�4 1.19⇥ 10�4 2.98⇥ 10�4 9.01⇥ 10�5 2.51⇥ 10�4

p = 0.25 3.96⇥ 10�4 9.52⇥ 10�4 2.92⇥ 10�4 7.93⇥ 10�4 2.24⇥ 10�4 6.71⇥ 10�4

Table 10. The LSE bootstrap chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 2.29⇥ 10�6 2.98⇥ 10�5 2.31⇥ 10�6 2.37⇥ 10�5 2.28⇥ 10�6 1.96⇥ 10�5

p = 0.05 1.18⇥ 10�5 1.56⇥ 10�4 1.21⇥ 10�5 1.22⇥ 10�4 1.19⇥ 10�5 1.03⇥ 10�4

p = 0.10 2.48⇥ 10�5 3.29⇥ 10�4 2.51⇥ 10�5 2.64⇥ 10�4 2.52⇥ 10�5 2.17⇥ 10�4

p = 0.25 7.17⇥ 10�5 1.01⇥ 10�3 7.35⇥ 10�5 7.94⇥ 10�4 7.37⇥ 10�5 6.50⇥ 10�4

�0 = 0.01 (FAR)
p = 0.01 1.16⇥ 10�6 1.15⇥ 10�4 1.33⇥ 10�6 7.85⇥ 10�5 1.41⇥ 10�6 5.86⇥ 10�5

p = 0.05 5.93⇥ 10�6 5.97⇥ 10�4 6.85⇥ 10�6 3.99⇥ 10�4 7.32⇥ 10�6 3.08⇥ 10�4

p = 0.10 1.24⇥ 10�5 1.24⇥ 10�3 1.41⇥ 10�5 8.55⇥ 10�4 1.53⇥ 10�5 6.37⇥ 10�4

p = 0.25 3.47⇥ 10�5 3.61⇥ 10�3 4.06⇥ 10�5 2.48⇥ 10�3 4.39⇥ 10�5 1.84⇥ 10�3

�0 = 0.0027 (FAR)
p = 0.01 8.45⇥ 10�7 2.36⇥ 10�4 1.04⇥ 10�6 1.46⇥ 10�4 1.16⇥ 10�6 1.03⇥ 10�4

p = 0.05 4.33⇥ 10�6 1.22⇥ 10�3 5.30⇥ 10�6 7.36⇥ 10�4 6.00⇥ 10�6 5.40⇥ 10�4

p = 0.10 8.92⇥ 10�6 2.54⇥ 10�3 1.09⇥ 10�5 1.57⇥ 10�3 1.25⇥ 10�5 1.12⇥ 10�3

p = 0.25 2.49⇥ 10�5 7.25⇥ 10�3 3.09⇥ 10�5 4.56⇥ 10�3 3.54⇥ 10�5 3.17⇥ 10�3

�0 = 0.002 (FAR)
p = 0.01 7.90⇥ 10�7 2.69⇥ 10�4 9.79⇥ 10�7 1.64⇥ 10�4 1.11⇥ 10�6 1.13⇥ 10�4

p = 0.05 4.05⇥ 10�6 1.39⇥ 10�3 5.01⇥ 10�6 8.22⇥ 10�4 5.80⇥ 10�6 6.01⇥ 10�4

p = 0.10 8.33⇥ 10�6 2.90⇥ 10�3 1.03⇥ 10�5 1.76⇥ 10�3 1.20⇥ 10�5 1.24⇥ 10�3

p = 0.25 2.32⇥ 10�5 8.23⇥ 10�3 2.92⇥ 10�5 5.10⇥ 10�3 3.40⇥ 10�5 3.50⇥ 10�3
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Table 11. The MMM bootstrap chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)

p = 0.01 1.51⇥ 10�6 3.12⇥ 10�5 1.71⇥ 10�6 2.42⇥ 10�5 1.92⇥ 10�6 2.03⇥ 10�5

p = 0.05 1.03⇥ 10�5 2.02⇥ 10�4 1.05⇥ 10�5 1.47⇥ 10�4 1.21⇥ 10�5 1.20⇥ 10�4

p = 0.10 2.43⇥ 10�5 4.08⇥ 10�4 2.41⇥ 10�5 2.98⇥ 10�4 2.69⇥ 10�5 2.35⇥ 10�4

p = 0.25 8.02⇥ 10�5 1.15⇥ 10�3 7.74⇥ 10�5 8.30⇥ 10�4 8.39⇥ 10�5 6.58⇥ 10�4

�0 = 0.01 (FAR)

p = 0.01 0.00+ 6.96⇥ 10�5 0.00+ 4.69⇥ 10�5 0.00+ 3.58⇥ 10�5

p = 0.05 8.13⇥ 10�7 3.70⇥ 10�4 1.47⇥ 10�6 2.53⇥ 10�4 2.50⇥ 10�6 2.07⇥ 10�4

p = 0.10 3.97⇥ 10�6 7.83⇥ 10�4 4.81⇥ 10�6 5.46⇥ 10�4 6.99⇥ 10�6 4.12⇥ 10�4

p = 0.25 1.71⇥ 10�5 2.27⇥ 10�3 1.89⇥ 10�5 1.54⇥ 10�3 2.59⇥ 10�5 1.14⇥ 10�3

�0 = 0.0027 (FAR)

p = 0.01 0.00+ 1.10⇥ 10�4 0.00+ 7.13⇥ 10�5 0.00+ 5.24⇥ 10�5

p = 0.05 0.00+ 5.36⇥ 10�4 0.00+ 3.72⇥ 10�6 0.00+ 2.45⇥ 10�4

p = 0.10 1.64⇥ 10�6 1.11⇥ 10�3 2.35⇥ 10�6 7.89⇥ 10�6 3.49⇥ 10�6 5.40⇥ 10�4

p = 0.25 7.87⇥ 10�6 3.22⇥ 10�3 1.08⇥ 10�5 2.22⇥ 10�6 1.36⇥ 10�5 1.55⇥ 10�3

�0 = 0.002 (FAR)

p = 0.01 0.00+ 1.19⇥ 10�4 0.00+ 7.71⇥ 10�5 0.00+ 5.63⇥ 10�5

p = 0.05 0.00+ 5.76⇥ 10�4 0.00+ 3.98⇥ 10�4 0.00+ 2.69⇥ 10�4

p = 0.10 1.25⇥ 10�6 1.20⇥ 10�3 1.71⇥ 10�6 8.37⇥ 10�4 3.01⇥ 10�6 5.78⇥ 10�4

p = 0.25 6.53⇥ 10�6 3.40⇥ 10�3 9.26⇥ 10�6 2.34⇥ 10�3 1.13⇥ 10�5 1.63⇥ 10�3

Table 12. The ML bootstrap chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 2.10⇥ 10�6 2.70⇥ 10�5 2.23⇥ 10�6 2.15⇥ 10�5 2.39⇥ 10�6 1.79⇥ 10�5

p = 0.05 1.09⇥ 10�5 1.38⇥ 10�4 1.15⇥ 10�5 1.10⇥ 10�4 1.24⇥ 10�5 9.28⇥ 10�5

p = 0.10 2.30⇥ 10�5 2.85⇥ 10�4 2.44⇥ 10�5 2.30⇥ 10�4 2.60⇥ 10�5 1.92⇥ 10�4

p = 0.25 6.98⇥ 10�5 7.98⇥ 10�4 7.25⇥ 10�5 6.33⇥ 10�4 7.49⇥ 10�5 5.36⇥ 10�4

�0 = 0.01 (FAR)
p = 0.01 1.19⇥ 10�6 6.53⇥ 10�5 1.17⇥ 10�6 4.63⇥ 10�5 1.15⇥ 10�6 3.50⇥ 10�5

p = 0.05 6.17⇥ 10�6 3.33⇥ 10�4 6.04⇥ 10�6 2.37⇥ 10�4 6.07⇥ 10�6 1.82⇥ 10�4

p = 0.10 1.29⇥ 10�5 4.95⇥ 10�4 1.29⇥ 10�5 4.95⇥ 10�4 1.29⇥ 10�5 3.78⇥ 10�4

p = 0.25 3.82⇥ 10�5 1.95⇥ 10�3 3.90⇥ 10�5 1.37⇥ 10�3 3.95⇥ 10�5 1.06⇥ 10�3

�0 = 0.0027 (FAR)
p = 0.01 1.00⇥ 10�6 1.04⇥ 10�4 1.01⇥ 10�6 7.03⇥ 10�5 1.01⇥ 10�6 5.07⇥ 10�5

p = 0.05 5.18⇥ 10�6 5.32⇥ 10�4 5.22⇥ 10�6 3.57⇥ 10�4 5.31⇥ 10�6 2.64⇥ 10�4

p = 0.10 1.08⇥ 10�5 1.10⇥ 10�3 1.11⇥ 10�5 7.45⇥ 10�4 1.12⇥ 10�5 5.46⇥ 10�4

p = 0.25 3.08⇥ 10�5 3.12⇥ 10�3 3.27⇥ 10�5 2.05⇥ 10�3 3.36⇥ 10�5 1.52⇥ 10�4

�0 = 0.002 (FAR)
p = 0.01 9.67⇥ 10�7 1.14⇥ 10�4 9.95⇥ 10�7 7.60⇥ 10�5 9.90⇥ 10�7 5.46⇥ 10�5

p = 0.05 4.97⇥ 10�6 5.80⇥ 10�4 5.11⇥ 10�6 3.86⇥ 10�4 5.21⇥ 10�6 2.84⇥ 10�4

p = 0.10 1.03⇥ 10�5 1.20⇥ 10�3 1.08⇥ 10�5 8.04⇥ 10�4 1.10⇥ 10�5 5.87⇥ 10�4

p = 0.25 2.93⇥ 10�5 3.40⇥ 10�3 3.18⇥ 10�5 2.22⇥ 10�3 3.28⇥ 10�5 1.63⇥ 10�3
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Table 13. Out of control ML estimate chart for the generalized Pareto distribution with out of control

parameters ↵ = 5.0 and � = 2.5.

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 1.3464 0.00706 1.2344 0.00562 1.1528 0.00435
p = 0.05 1.3357 0.00689 1.2183 0.00535 1.1515 0.00432
p = 0.10 1.3276 0.00686 1.2051 0.00505 1.1248 0.00383
p = 0.25 1.2960 0.00653 1.1751 0.00471 1.1023 0.00349

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 3.0699 0.02886 2.3627 0.01966 1.9373 0.01421
p = 0.05 3.0619 0.02866 2.3092 0.01887 1.9441 0.01416
p = 0.10 3.0602 0.02856 2.2908 0.01862 1.8689 0.01348
p = 0.25 2.9571 0.02707 2.1870 0.01750 1.1782 0.01260

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 6.3779 0.07389 4.0018 0.03924 2.9852 0.02778
p = 0.05 6.3924 0.07448 3.9766 0.03851 2.9838 0.02724
p = 0.10 6.4617 0.07726 3.9563 0.03936 3.69870 0.02615
p = 0.25 6.3339 0.07325 3.8642 0.03799 2.7893 0.02583

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 7.9494 0.09725 4.7668 0.04981 3.4133 0.03319
p = 0.05 7.9494 0.09697 4.7029 0.04788 4.99500 0.03261
p = 0.10 8.2089 0.10630 4.7029 0.04931 3.3173 0.03219
p = 0.25 7.9494 0.09476 4.6614 0.05051 4.99500 0.03142

Table 14. Out of control ML estimate charts for the generalized Pareto distribution with out of control

parameters ↵ = 5.0 and � = 1.0

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 4.5318 0.0438 4.0891 0.0391 3.8218 0.0349
p = 0.05 4.5271 0.0439 4.0515 0.0386 3.6853 0.0338
p = 0.10 4.4212 0.0429 3.9901 0.0375 3.6906 0.0344
p = 0.25 4.2499 0.0413 3.6662 0.0352 3.3230 0.0307

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 25.8143 0.3380 20.2286 0.2511 16.6361 0.1876
p = 0.05 25.5503 0.3208 20.1428 0.2450 16.5277 0.1892
p = 0.10 25.5291 0.3254 19.6476 0.2364 16.0774 0.1877
p = 0.25 25.1304 0.3175 19.1412 0.2393 15.3536 0.1731

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 82.2897 1.1592 58.3665 0.8167 43.1321 0.5541
p = 0.05 80.8592 1.0892 57.2253 0.7818 43.2578 0.5656
p = 0.10 82.1383 1.1715 57.2081 0.7799 43.2304 0.5705
p = 0.25 81.1916 1.1376 56.9895 0.8237 41.4291 0.5506

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 114.3089 1.7078 78.5059 1.1334 57.2333 0.8035
p = 0.05 112.5334 1.6530 78.3478 1.1540 57.5751 0.7900
p = 0.10 115.9670 1.7793 78.3478 1.1379 57.8656 0.8186
p = 0.25 112.5334 1.6395 78.3928 1.2019 55.6368 0.7737
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Table 15. Out of control ML estimate charts for the generalized Pareto distribution with out of control

parameters ↵ = 2.5 and � = 2.0

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 4.8353 0.0463 4.4966 0.0442 4.1259 0.0390
p = 0.05 4.8245 0.0471 4.3706 0.0429 4.0561 0.0376
p = 0.10 4.7334 0.0447 4.3496 0.0420 3.9753 0.0373
p = 0.25 4.6432 1.7211 4.1408 0.0401 3.7211 0.0352

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 28.5761 0.3498 23.0087 0.2683 19.8312 0.2316
p = 0.05 28.6142 0.3493 22.8181 0.2667 19.6298 0.2276
p = 0.10 28.1088 0.3444 23.4356 0.2844 19.3925 0.2204
p = 0.25 28.5066 0.3539 22.4157 0.2812 18.4769 0.2127

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 88.7289 0.3498 67.6586 0.9705 52.6793 0.6839
p = 0.05 89.0722 1.2382 66.6053 0.8885 52.3929 0.6743
p = 0.10 88.4970 1.2085 66.2546 0.8827 50.8437 0.6362
p = 0.25 88.8254 1.2125 65.7238 0.9371 50.2462 0.6486

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 122.4647 1.9951 93.4767 1.4172 69.6476 0.9444
p = 0.05 122.9314 1.7426 90.2651 1.2825 69.6476 0.9432
p = 0.10 120.3574 1.6882 90.2651 1.2781 68.2267 0.8971
p = 0.25 122.3561 1.7211 89.0618 1.2991 67.4059 0.9072

4.3 Illustrative example

Assume certain machine parts have failure times in terms of years that have a gener-
alized Pareto distribution with ↵ = 2.5 and � = 1.0. Since no real-world data could be
obtained during this study, an R program was created to generate twenty subgroups with
six machine part lifetimes a piece. Since � is a rate parameter, without the loss of gener-
ality � can be selected as one with a reasonable measurement unit in lifetime measure. ↵
is the shape parameter that should not be too large or too small. These subgroups were
made independently from the in-control generalized Pareto distribution with ↵ = 2.5 and
� = 1.0. These twenty subgroups are reported in Table 16. The designer of the parts is
concerned about the tenth percentile of the lifetime of his parts, Q(0.10;↵0,�0). After
the first twenty subgroups, assume that the process was shifted to out of control where
↵1 = 5.0 and �1 = 2.5 and another twenty subgroups were generated with six machine
part lifetimes a piece. These twenty subgroups are displayed in Table 17. The ML boot-
strap chart was developed based on the twenty in-control subgroups in Table 16 where the
FAR=0.0027 and B=10,000. The control limits were are LCL = 0.0129 and UCL = 0.1646.
The center line is CL = 0.06007. Figure 1 (top) shows the control chart for the in-control
percentiles and Figure 1 (bottom) shows the same control chart for monitoring the out of
control tenth percentile. In Figure 1 (top) all of the tenth percentiles calculated based on
twenty subgroups, respectively, are within the control limits and spread around the CL. In
Figure 1 (bottom), notice that the first tenth percentile signals an out of control process.
While not all of the tenth percentiles are outside of the control chart limits in this figure,
they are grouped rather tightly and are all well below the CL. Thus, the ML bootstrap
chart is successful in indicating that a process is out of control.
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Table 16. Twenty subgroups of machine part lifetimes generated from the generalized Pareto distribution

with ↵0 = 2.5 and �0 = 1.0.

Subgroup number Lifetime observations

1 0.5819 2.3860 0.1465 0.2941 0.3153 0.1461
2 1.1770 0.0462 0.1149 0.7403 0.2062 1.8740
3 0.0467 0.1225 0.0617 0.2224 0.9333 0.4332
4 5.2410 0.8200 0.4782 0.5241 0.0439 1.3510
5 0.6481 0.0607 0.1688 0.1478 0.8709 0.2992
6 0.9731 0.0956 0.0493 1.6600 0.3200 0.3037
7 0.1695 0.0998 1.2960 0.0525 0.0936 1.3860
8 0.2028 0.0197 0.8517 0.7443 0.6432 0.1275
9 0.0614 0.1126 0.1307 0.0167 0.5010 1.2790
10 0.6115 0.5098 1.0260 0.9001 0.2065 0.0695
11 1.7350 2.1580 1.1040 0.2383 0.3030 0.1099
12 0.0758 0.4705 0.0119 0.1444 0.0568 0.8328
13 1.2990 0.6935 0.2923 0.7409 0.4427 0.8387
14 0.7045 0.1364 3.5530 0.0713 0.1115 0.5185
15 0.2578 0.4141 0.2453 1.6400 0.2592 0.3155
16 1.3130 0.0240 1.1280 0.0591 0.1310 0.0676
17 0.5947 0.0189 0.4675 0.0356 1.4630 0.0643
18 0.2588 0.1155 0.4547 1.2500 0.7298 0.1451
19 0.1267 1.2390 0.0508 0.2061 0.2859 1.2500
20 0.3479 0.0243 0.2715 0.0724 0.0877 1.3420

Table 17. Twenty subgroups of machine part lifetimes generated from the generalized Pareto distribution

with ↵1 = 5.0 and �1 = 2.5.

Subgroup number Lifetime observations

1 0.0342 0.0787 0.2626 0.0460 0.0135 0.0040
2 0.2904 0.0627 0.0198 0.0252 0.0727 0.1682
3 0.0049 0.2299 0.0117 0.0375 0.0613 0.0088
4 0.0402 0.2255 0.0342 0.0958 0.1299 0.0905
5 0.0450 0.0422 0.2306 0.1699 0.0893 0.0174
6 0.0170 0.4364 0.2594 0.0518 0.2007 0.1366
7 0.0547 0.0112 0.0004 0.0023 0.0761 0.0094
8 0.0613 0.0013 0.7946 0.0365 0.1964 0.1364
9 0.0018 0.1491 0.0472 0.1392 0.1302 0.0829
10 0.0345 0.0032 0.0227 0.0420 0.0975 0.1786
11 0.0199 0.0141 0.0103 0.0709 0.0095 0.2356
12 0.0220 0.7481 0.0402 0.1396 0.0129 0.0989
13 0.0166 0.0034 0.0148 0.1722 0.2251 0.0620
14 0.0038 0.1211 0.2050 0.0061 0.2040 0.0528
15 0.0093 0.0105 0.0855 0.0156 0.1116 0.0153
16 0.0045 0.0648 0.2079 0.0912 0.0727 0.0258
17 0.1148 0.1332 0.1420 0.2850 0.0859 0.0154
18 0.1863 0.1126 0.2125 0.0102 0.0781 0.1808
19 0.0356 0.2005 0.0333 0.2909 0.1731 0.6069
20 0.0719 0.0411 0.1251 0.0564 0.4224 0.1394
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Figure 1. In control subgroups (top) and out control subgroups with FAR=0.0027.

5. Conclusions

In order to examine the Pareto percentiles, the Shewhart-type chart and three para-
metric bootstrap charts were constructed. As a result of the Monte Carlo simulation, it
was discovered that the Shewhart-type chart was inadequate in providing appropriate
control limits. Two of the parametric bootstrap charts were also shown to be unsuitable
for providing appropriate control limits. The least squared error control chart consistently
overestimated the nominal average run length and the modified moment method chart was
inconsistent. However the maximum likelihood chart was shown to be acceptable choice
for monitoring Pareto percentiles. As it also promptly detects an out of control process,
as shown in the simulation and illustrative example, it is recommended for practical use.
It should be mentioned that the conclusions from the current research may not be applied

to any other case with shape parameter, ↵, or rate parameter, �, too far from the current
values for generalized Pareto distribution. However, the current simulation procedures
provides a guideline to run simulation study for di↵erent ↵ and � to make a selection
of control chart method. When a real word application data are given, it is suggested
to use Kolmogorov-Smirnov test with Akaike and Bayesian information criteria to select
probability model. Then, the practitioners can follow the current research procedure to
decide the control chart method after the lifetime distribution has been decided. Further
research for multivariate control charts under non-normality can be explored (Marchant
et al., 2019, 2018).
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Abstract

Exact tables for the case without ties of the Friedman statistic test proposed have been
available since its inception. A modified statistic suitable for the case with ties has been
derived 30 years later, and it appears in a text book nearly after 40 years. However, exact
tables for the case of ties were never o�ered. Here we present for the first time a reduced
set of exact tables for such a case, thus filling a gap. If a problem allows ties, the proper
exact tables should be used thus disregarding other workarounds commonly suggested
in the literature. The availability of exact tables for the case of ties is relevant for applied
research because an hypothesis test decision when ties occur may be di�erent if tables
for the case without ties are used instead. We illustrate the e�ect of using the correct
tables with both an example and a real data case study in the context of geoportals
navigation analysis.

Keywords: Friedman test · Exact distribution · Non-parametric methods · R
software.

Mathematics Subject Classification: Primary 62G10 · Secondary 62F05.

1. Introduction

The problem of analyzing the rankings resulting from a wine contest with k wines and
N judges has been addressed by Friedman (1937). The null hypothesis is that there is no
di�erence between the wines. In other situations, the wines might be medical treatments
and the judges are patients. Original data might be of type ordinal, or it might be of
continuous type (interval and ratio, as defined by Stevens, 1946). In that case, when ranking,
he circumvents the normality requirements of other parametric tests like analysis of variance.

Tied ranks might appear with ordinal data, but also with continuous one. For example,
if the values arise from a measurement device with finite accuracy, the uncertainty in their
readings leads naturally to possible ties. In his seminal paper Friedman only considered the
case without ties. Under such assumption he o�ered two asymptotic estimates valid for:
a) large N irrespective of k and b) small N and moderate and large k. The asymptotic
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expressions were inaccurate for the case with both k and N small so he o�ered some exact
tables. The set of (k, N) pairs covered was modest, mostly due to the limited computing
facilities of the time. The availability of exact tables and asymptotic approximations for
ranking problems is not unusual; see Sen et al. (2011) for another example.

Exact tables for the case of ties were never published. In this proposal we o�er for the first
time some exact tables for the case of both small k and N . Exact tables for the Friedman
rank test in the case of ties are relevant to applied research. In particular, we will show that
the conclusion of an hypothesis test when ties occur may di�er if tables for the case without
ties are used instead of the ones proposed in this paper.

The paper is organized as follows. Section 2 describes the generalized formulae valid with
or without ties as presented by various authors. On Section 3 we will comment about how
the problem with ties is dealt with in textbooks, tutorials and reference guide. On principle,
ties might be up to couples, triplets, etc. or without restrictions, something to be discussed in
Section 4, showing that the results might vary depending on how many identical elements
are allowed in the ties. Afterwards, in Section 5 an illustrative numerical example taken
from a book will be presented followed by a case study in Section 6 showing the e�ect of
misusing the asymptotic estimate and/or the wrong tables. The computational procedure
will be commented in Section 7, and the new tables are presented in Section 8. Finally, some
conclusions are sketched in Section 9.

2. Related works

2.1 The case without ties

Friedman (1937) proposed a rank test to avoid normality assumptions in analysis of variance.
The method of ranks involves two steps, creating a two-way table: 1) rank data in each row
2) test if the all columns come from the same universe. The null hypothesis is that there are
no di�erences between the columns. It can be proved that the statistic given by

‰2
r = 12

Nk(k + 1)

kÿ

j=1

A
Nÿ

i=1
rij

B2

≠ 3N(k + 1)),

is asymptotically ‰2
k≠1 distributed for large N , and to a normal distribution with mean

k≠1 and standard deviation


2(k ≠ 1)(N ≠ 1)/N for small N and moderate to large k. The
asymptotic estimate must be used if the (k, N) pair of the problem under consideration is not
covered by the available tables. The jump between table values and asymptotic estimate
might be large, so the set of exact tables for given (k, N) pairs steadily grew with time.
Friedman (1937) considered only the cases of k = 3 for N up to 9, and k = 4 for N up to
4. Kendall and Babington-Smith (1939) extended the tables for k = 3 up to N = 10; k = 4
up to N = 6 and analyzed the case k = 5, N = 3. Owen (1962) published exact tables for
k = 3 and N up to 15; k = 4 and N up to 8 without disclosing the computation procedure.
Hollander and Wolfe (1999) provided tables for k = 5 and N up to 5. Odeh (1977) extended
the tables considering the cases k = 5 for N up to 8, and k = 6 for N up to 6. Martin et
al. (1993) extended the case k = 4 up to N = 15. A significant contribution was provided
by van de Wiel (2000), who extended previous work considering the case k = 3 with N up
to 25, k = 4 for N up to 20 and for k = 5 he o�ered tables for N up to 12. More recently
López-Vázquez and Hochsztain (2019) drastically expanded the set of tables using a code in
the R software implemented by Schneider et al. (2016). There, exact tables up to N = 204,
41, 13, 7, 4 and 2 for k = 3, 4, 5, 6, 7 and 8 were performed based on an algorithm proposed
by van de Wiel et al. (1999). All of these e�orts were for the case without ties.
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2.2 The case with ties

In problems with discrete random variables ties are likely to appear, a fact acknowledged
in Friedman (1937). It is di�cult to explain why a correction for ties only was mentioned
for the first time in Marascuilo and McSweeney (1967), and appeared significantly later in
a textbook in Conover (1980). Other equivalent expressions appeared even later, like the
one by Siegel and Castellan (1988) or the one proposed by Corder and Foreman (2009).
Apparently they were derived independently, even though they produced exactly the same
value. Unlike the simple case without ties, the rank for the case with ties has more than one
alternative. Most of the literature used the mid-rank method, which assures that the sum of
ranks for each judge is constant. According to Sprent and Smeeton (2007) the generalized
statistic (now valid either with or without ties) still has the same asymptotic estimate as
the original one proposed by Friedman (1937). However, despite they acknowledge that for
low k and N the asymptotic estimate is not accurate, no exact tables were provided.

The correction for ties proposed by Marascuilo and McSweeney (1967) is stated as

‰2
r =

12
k(k+1)

kq
j=1

R2
j

N ≠ 3N(k + 1)

1 ≠

dq
s=1

(t3
s≠ts)

N(k3≠k)

.

The numerator is the familiar statistic for the case without ties. For the correction term,
d is the number of set of ties and ti is the number of tied scores in the i-th set of ties. If
there are no ties the denominator is 1. The expression was not widely cited in the literature.
Conover (1980) proposed an expression defined as

‰2
r =

(k ≠ 1)
kq

j=1
[Rj ≠ N(k + 1)/2]2

Nq
i=1

kq
j=1

rij
2 ≠ Nk(k + 1)2/4

,

where Rj is the sum of the ranks rij for treatment j. Apparently, a number of alternative
formulations for the same statistic were derived independently. Siegel and Castellan (1988)
proposed a slightly more complicated expression given by

‰2
r =

12
kq

j=1
R2

j ≠ 3N2k(k + 1)2

Nk(k + 1) +

3
Nk≠

Nq
i=1

giq
j=1

t3
i,j

4

k≠1

,

where gi is the number of sets of tied ranks in the i-th group and ti,j is the size of the j-th
set of tied ranks in the i-th group.

Using the same definition for gi and ti,j , Hollander and Wolfe (1999) proposed a di�erent
expression, given by

‰2
r =

12
kq

j=1
R2

j ≠ 3N2k(k + 1)2

Nk(k + 1) ≠

Nq
i=1

;3
giq

j=1
t3
i,j

4
≠k

<

k≠1

.
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Gibbons and Chakraborti (2010) suggested another expression to be written as

S =
Nÿ

i=1

S

U
kÿ

j=1

3
rij ≠ (N + 1)

2

4T

V
2

; ‰2
r = 12(N ≠ 1)S

Nk(N2 ≠ 1) ≠
Nq

i=1

giq
j=1

(t3
i ≠ ti)

,

Buskirk et al. (2013) included other notation established as

‰2
r =

12
kq

j=1
R2

j ≠ 3N2k(k + 1)2

Nk(k + 1) +

Nq
i=1

t3
i ≠ti

k≠1

,

with ti being the number of observations involved in a tie for the i-th case.
Boos and Stefanski (2013) proposed a compact expression, now without the need to count

the number of ties explicitly, given by

‰2
r =

(k ≠ 1)N2
kq

j=1

5
1
N

Nq
i=1

rij ≠ (k+1)
2

62

Nq
i=1

kq
j=1

r2
ij ≠ Nk(k + 1)2/4

.

In our computations, we use the expression from Corder and Foreman (2009), which is
equivalent to the earlier ones, stated by

‰2
r =

N(k ≠ 1)
C

kq
j=1

R2
j

N ≠ CF

D

Nq
i=1

kq
j=1

r2
ij ≠ CF

,

where

CF = Nk(k + 1)2

4 .

3. Recommended strategies for the problem with ties

Without going as deep as Richardson (2019), who compared many aspects of non-parametric
statistics textbooks, it is fit to mention how they treated the case of the Friedman test with
ties. Our search included some of the books considered by Richardson (2019), all of them
intended for a statistical audience, but also some others designed with other communities
in mind. An example for the food industry might be Granato et al. (2014) and we have
included some others in the list. The frontline of science is usually found at papers, not
books. However, papers are typically known only to a very small community. Also, the
textbooks o�er guidelines to a variety of users, not necessarily experts in the field. Thus,
it is important to assess how the case of the Friedman test with ties is considered in the
literature intended to reach a large audience.
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According to the literature, the alternatives at hand for a problem with ties are:

• Use the generalized statistic, and compare it against the asymptotic estimate based upon
the ‰2 approximation thus ignoring the need of exact tables (Plichta and Garzon, 2009;
Alvo and Yu, 2010; Sheskin, 2011; Vidakovic, 1999; Hettmansperger and McKean, 2011;
Buskirk et al., 2013; Boos and Stefanski, 2013; Granato et al., 2014).

• Use the generalized statistic, and acknowledge that the ‰2 approximation will not be
accurate for low k and N . Use as a surrogate the exact table without ties (van Belle
et al., 2004; Zar, 2010; Gibbons and Chakraborti, 2010; Linebach et al., 2014; Chechile,
2020).

• Same as before, but noticing that they lack an exact table for the problem with ties
(Sprent and Smeeton, 2007; Hollander et al., 2014).

• Ignore the e�ects of ties, and use both the traditional Friedman statistic as well as its
associated exact tables (Greene and D’Oliveira, 2005; Daniel and Cross, 2013; Corder and
Foreman, 2009, 2014).

• Break the ties, assigning random ranks through a Monte Carlo experiment, and then use
the standard Friedman statistic (Rayner et al., 2005).

• Assume that the problem with ties can be handled just by using midranks (Lehman, 1975;
Canavos, 1988; Derrac et al., 2011; Liu et al., 2017).

There is no good reason to keep using the traditional statistic as proposed by Friedman,
because the generalized one considers both situations. However, neglecting the fact that the
asymptotic estimate is only valid for mid to large k and N (López-Vázquez and Hochsztain,
2019), or that the exact tables are not valid for cases with ties might have a devastating
e�ect on the conclusions. We will illustrate it with some cases, but before let us analyze a
somewhat subtle detail.

4. Types of ties allowed

In general, ties might involve 2, · · · , k wines, denoted here as p-tuples. The case without
ties is equivalent to set p = 1. If, for some reason the problem of interest just allows ties
of pairs but not triplets, we should use p = 2. The general case “with ties” is equivalent to
set p = k. We have yet to find practical examples where p is not equal to either 1 or k, but
if they exist the distinction might be important because the exact tables are di�erent. We
illustrate it in Table 1, which corresponds to the case k = 5 and N = 4. The possibilities
range from p = 1 (denoted as “no ties”) to p = k = 5 (denoted as “with ties”).

Table 1. E�ect on the critical values when ties are restricted to p-tuples. Case of k = 5 and N = 4.
10 5 2.5 1.0 0.5 0.1

with ties 7.471 8.675 9.699 10.873 11.671 13.105
4-tuples 7.474 8.675 9.699 10.886 11.676 13.111
3-tuples 7.478 8.675 9.699 10.889 11.684 13.143
2-tuples 7.474 8.684 9.707 10.880 11.730 13.143
no ties 7.600 8.800 9.800 11.200 12.000 13.200

This has consequences not considered before by the literature. If the problem under con-
sideration allows tied ranks, the corresponding exact tables must be used even if in the data
under analysis there are no cases with ties. Thus, the strategy of “breaking the ties” with
any procedure, thus reducing the problem to the case without ties, is flawed. The di�erences
will be evident only for low k and N , when exact tables are needed. Otherwise, since the
asymptotic estimate is the same for the case with or without ties there will be no di�erence.
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5. Effect of misusing the standard tables for the problem with ties

Because it appears in a textbook we will first consider an example from Corder and Foreman
(2009). They presented a simple example which is summarized in Table 2. It reports the
ranks of the response of seven employees (N = 7) under three alternatives (k = 3) to deal
with their tardiness: a) do nothing (denoted as baseline), b) one month with a monetary
incentive of $10, and c) another month with double incentive. They want to determine if
either of the payback deduction strategies modified employee tardiness.

Table 2. Rank of tardiness after considering three incentive initiatives (from Corder and Foreman, 2009).
Rank of monthly tardiness

Employee Baseline Month 1 Month 2
1 2 3 1
2 3 2 1
3 2 3 1
4 3 2 1
5 3 1.5 1.5
6 2.5 2.5 1
7 3 2 1

In order to compute the statistic, we first find Ri summing table entries by columns as

R1 = 2 + 3 + 2 + 3 + 3 + 2.5 + 3 = 18.5
R2 = 3 + 2 + 3 + 2 + 1.5 + 2.5 + 2 = 16
R3 = 1 + 1 + 1 + 1 + 1.5 + 1 + 1 = 7.5

The denominator holds the sum of squares of the table entries as well as the CF term

7q
i=1

3q
j=1

r2
ij = 22 + 32 + 12 + 32 + 22 + 12 + 22 + 32 + 12 + 32 + 22 + 12 + 32 + 1.52+

+1.52 + 22 + 2.52 + 12 + 32 + 22 + 12 = 97,

CF = 7 ú 3 ú (3 + 1)2

4 = 84.

Thus the ‰2
r value computation is presented as

‰2
r = 7 ú 2

C
18.52 + 162 + 7.52

7 ≠ 84
DM

(97 ≠ 84) = 133
13 = 10.23.

For – = 0.05 (Corder and Foreman, 2009) stated that the critical value is 7.140. After
a quick check it is possible to confirm that the critical value presented corresponds to
the “without ties” problem (see for example the tables from Martin et al., 1993). If we
choose not to use exact tables, the ‰2 asymptotic approximation provides a critical value
of ‰2

0.05,2 = 4.605. The correct value for the “with ties” problem should have been 5.769,
taken from our Table 5. In this case the null hypothesis would be rejected using either
critical value, but the di�erences observed are not negligible. An interesting case arises for
– = 0.005; the “without ties” table o�ers 10.286 as the critical value. The critical value ‰2

is now ‰2
0.005,2 = 10.597. Both are larger than the ‰2

r so according to this the null hypothesis
should be rejected. However, using our Table 5 the exact critical value is 9.083, now lower



Chilean Journal of Statistics 29

than the statistic value ‰2
r = 10.23. Thus, according to the correct table, we could not reject

the null hypothesis.

6. Case Study

We present a case study in the context of geoportals navigation analysis. As stated by Jiang
et al. (2020) and Bernabé-Poveda and González (2014) a geoportal is a web-based solution
to provide open spatial data sharing and online geo-information management. The concept
of geoportals has becomed key for spatial data and geoinformation accessing and sharing.
We perform geoportal navigation analysis based on geoportal web server logs (click-stream
data) following the guidelines given by (Markov and Larose, 2007; Bhavani el al., 2017;
Bhuvaneswari and Muneeswaran, 2021).

As indicated by Srivastava et al. (2019), whenever a user requests a particular web resource
on a website, an entry is recorded into a log file which is automatically stored and maintained
by the web server. The log file is named web server log or clickstream. We preprocessed web
server logs and computed three variables to be used in this case study: pages per session,
session duration and average time per page.

The double-entry table presented in Table 3 shows the coe�cient of variation (rounded
to two digits) of pages per session (CVPPS), where rows represent four levels I to IV of
session duration and columns represent three levels I to III of average time per page. Levels
were defined by percentile groups. Rankings by row are presented in Table 4, and we can
observe that one tie occurs for Session duration level II. Figure 1 shows the R output of the
Friedman test.

We want to assess if there is some relationship between the CVPPS and the session
duration levels.

Table 3. Coe�cient of variation of pages per session by session duration and average time per page levels.
Coe�cient of variation

Session duration levels Average time per page levels
I II III

I 0.12 0.08 0.19
II 0.11 0.21 0.21
III 0.08 0.19 0.26
IV 0.13 0.22 0.27

Table 4. Coe�cient of variation of pages per session by session duration and average time per page levels.
Ranking of coe�cient of variation of pages per session

Session duration levels Average time per page levels
I II III

I 2 1 3
II 1 2.5 2.5
III 1 2 3
IV 1 2 3
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> rankeddata
[, 1] [, 2] [, 3]

[1, ] 2 1.0 3.0
[2, ] 1 2.5 2.5
[3, ] 1 2.0 3.0
[4, ] 1 2.0 3.0
> friedman.test(rankeddata)

Friedman rank sum test
data: rankeddata
Friedman chi-squared = 5.7333, df = 2, p-value = 0.05689

Figure 1. Friedman test output using R 3.6.3.

Following the same steps as before, we compute intermediate values and the resulting
statistic, considering correction by ties as

R1 = 2 + 1 + 1 + 1 = 5
R2 = 1 + 2.5 + 2 + 2 = 7.5
R3 = 3 + 2.5 + 3 + 3 = 11.5

4ÿ

i=1

3ÿ

j=1
r2

ij = 22 + 12 + 12 + 12 + 12 + 2.52 + 22 + 22 + 32 + 2.52 + 32 + 32 = 55.5,

CF = 4 ú 3 ú (3 + 1)2

4 = 48.

Thus, the ‰2
r value is

‰2
r = 4 ú (3 ≠ 1)

C
52 + 7.52 + 11.52

4 ≠ 48
DM

(55.5 ≠ 48) = 43
7.5 = 5.733,

The null hypothesis is that there are no di�erences between the columns, that is, for any
given level of session duration, the coe�cient of variation of pages per session (CVPPS) is
the same at all levels of average time per page.

Friedman ‰2
r statistic value is 5.733. At 5% significance level, if we consider exact tables

without ties as provided by López-Vázquez and Hochsztain (2019) or Martin et al. (1993)
the critical value for k=3 N=4 is 6.500, and therefore the decision is not to reject the null
hypothesis. The same holds true if we consider the ‰2

0.05,2 value for k = 3 (7.815), as the
statistic value (5.733) is again less than the critical value. Considering the R-output shown
in Figure 1, as p-value 0.05689 is larger than 0.05 we should conclude that the decision is
not to reject the null hypothesis. However, when there are ties, as we can see in Table 3 it
is necessary to use the exact tables presented in this paper. As we can see in Table 5, the
correct critical value in this case at the 5% significance level is 5.571, and as a consequence
the decision is to reject the null hypothesis. Therefore, using either the wrong exact table
or the chi-square approximation results in a di�erent decision than using the correct exact
table presented in this paper. We can acknowledge the practical importance of using the
proper tables for the Friedman Rank-Test in the case of ties, leading to a correct decision in
the hypothesis test. And thus concluding that the di�erent values of CVPPS have an e�ect
over the Session duration levels.
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7. Computational procedure to produce the tables

The problem of computing the exact tables for this problem has been barely considered in
the literature. To the best of our knowledge, only Hollander and Wolfe (1999) proposed a
brute-force procedure to compute the exact conditional distribution of the Friedman statistic
valid for each particular case. We used instead a two step procedure in order to compute
the general, exact tables, when there are ties among the data values. Firstly, we built the
set of possible cases considering ties (always allowing up to k-tuples), and as a second step
we computed the statistic for all the valid combinations. Hence, this is thus a combinatorial
problem. For very small k computing the first step posed no special requirements. The
computation was carried using the R software version 4.0.0 in a personal computer. The
computation time for the second step was manageable for very small k and N , but the
runtime requirements quickly grow along k and N . For example, for the case of k = 4,
N = 7 the computations using Octave 3.8.2 required over 90 days of wall time using up to 100
nodes in parallel. The valid combinations were arranged in sets and computed independently
using a nearly embarrassingly parallel approach. It is worth mentioning that, due to the
combinatorial nature of the problem, our approach is only capable of dealing with modest
cases in reasonable time. The facility (described by Nesmachnow and Iturriaga, 2019) is a
LINUX-based cluster equipped with Intel Xeon-Gold 6138 2.00GHz processors.

8. Resulting tables

Tables 5, 6, 7, 8, and 9 are o�ered for the case of k = 3, 4, 5, 6 and 7, respectively. Following
the style used by Martin et al. (1993), last row of each table holds the corresponding ‰2

–,k≠1
asymptotic estimate. It illustrates the jump with respect to the exact table values for finite
N .

Table 5. Critical values of the statistic ‰2
r in the case of ties up to k-tuples for k = 3 and N up to 11.

0.100 0.050 0.025 0.010 0.005 0.001
N = 3 4.667 5.000 5.600 5.636 6.000
N = 4 4.667 5.571 6.000 6.857 7.429 7.600
N = 5 4.588 5.647 6.615 7.444 8.316 9.294
N = 6 4.571 5.727 6.778 7.913 8.667 10.174
N = 7 4.560 5.769 6.870 8.222 9.083 10.583
N = 8 4.526 5.793 6.909 8.296 9.250 11.143
N = 9 4.563 5.813 6.968 8.357 9.455 11.467
N = 10 4.563 5.846 7.000 8.471 9.548 11.730
N = 11 4.550 5.850 7.048 8.581 9.657 12.000
‰2

–,2 4.605 5.991 7.378 9.210 10.597 13.816

Table 6. Critical values of the statistic ‰2
r in the case of ties up to k-tuples for k = 4 and N up to 6.

0.100 0.050 0.025 0.010 0.005 0.001
N = 2 5.400 5.842 5.842 6.000
N = 3 5.893 6.692 7.444 8.111 8.379 8.793
N = 4 6.081 7.184 8.100 9.079 9.750 10.784
N = 5 6.136 7.370 8.478 9.652 10.421 11.936
N = 6 6.161 7.446 8.660 10.019 10.964 12.765
‰2

–,3 6.251 7.815 9.348 11.345 12.838 16.266
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Table 7. Critical values of the statistic ‰2
r in the case of ties up to k-tuples for k = 5 and N up to 4.

0.100 0.050 0.025 0.010 0.005 0.001
N = 2 6.703 7.263 7.568 7.789 7.897 8.000
N = 3 7.241 8.267 9.091 9.964 10.400 11.154
N = 4 7.471 8.675 9.699 10.873 11.671 13.105
‰2

–,4 7.779 9.488 11.143 13.277 14.860 18.467

Table 8. Critical values of the statistic ‰2
r in the case of ties up to k-tuples for k = 6 and N up to 3.

0.100 0.050 0.025 0.010 0.005 0.001
N = 2 8.065 8.710 9.118 9.485 9.688 9.918
N = 3 8.580 9.697 10.637 11.634 12.255 13.284
‰2

–,5 9.236 11.070 12.833 15.086 16.750 20.515

Table 9. Critical values of the statistic ‰2
r in the case of ties up to k-tuples for k = 7 and N = 2.

0.100 0.050 0.025 0.010 0.005 0.001
N = 2 9.303 10.073 10.624 11.094 11.345 11.725
‰2

–,6 10.645 12.592 14.449 16.812 18.548 22.458

9. Conclusions

The Friedman rank test for the case without ties has been used for decades, but only until
recently the case with ties was considered. Despite a correction for the original formulae is
available, and that the asymptotic approximations are the same, no exact tables for low k
and N have been published. Here we present the first ones, and illustrate its importance by
showing that even a simple case published in a book su�ers badly for using the wrong table
in the computations. In addition, we consider that the tables for the case without ties are
only applicable for problems which cannot accept ties, and not merely because the data do
not show ties. This questioned some strategies that propose to break the ties reducing the
problem to one without ties. In addition, the type of ties allowed (only pairs, only triplets,
etc.) have a noticeable e�ect on the final decision, at least for small k and N . To build the
exact tables we used a naive approach, which is combinatorial and can only deal with very
small k and N . Further expansion of the exact tables will require using di�erent algorithms,
in the line of those of van de Wiel (2000) or van de Wiel et al. (1999).

Future works include expanding the exact tables and develop an R package to calculate
Friedman rank test p-value based in the exact tables for the case of ties as described in this
paper.
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Abstract

The control charts are the main tools used for monitoring quality characteristic. Usually
the monitored characteristic is the process mean and the most used control charts for
such monitoring are Shewhart X, CUSUM and EWMA, which are based on two as-
sumptions: independence between monitored samples and that the monitored variable
follows a normal distribution. However, deviations from any of these assumptions imply
poor control chart performance. Considering this, the present work proposes a control
chart to monitoring the mean, based on the bootstrap method, for data that follows
a distribution that belongs to the symmetric class of distributions. Simulation studies
are performed for the proposed method, in order to evaluate the in-control and the
out-of-control average run length, to evaluate the behavior of the control limits and to
compare the proposed method with the traditional Shewhart X. The simulation study
indicates that the proposed approach presents better in-control average run length than
the usual Shewhart X. Regarding the power of detection, the proposed method presents
good performance, being comparable to Shewhart X, but with the advantage of a better
in-control average run length. Practical use of the proposed approach is illustrated with
a real example of pH of red wines.

Keywords: Bootstrap · Heavy-tailed distribution · Light-tailed distribution
· Statistical Process control · Symmetric distributions.

Mathematics Subject Classification: 62P30 · 62F99

1. Introduction

Competition in manufacturing industries has been growing around the world to achieve
ever higher quality standards. Naveed et al. (2020) mentioned that the main concern of
the companies is to maintain a positive reputation in the market. The authors also state
that a key aspect to enable this goal is through the quality of the products. In this context,
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statistical process control (SPC) is a powerful set of techniques to meet this end. More
specifically, control charts are the most common tools in SPC used to monitor processes.
The control chart proposed by Shewhart (1931), called the X chart, is the most known and
used SPC technique. The standard assumptions of this technique are: (i) the collections of
independent samples over time, (ii) the monitored control characteristic follows a normal
distribution. This method has the purpose of detecting shifts in the mean of magnitude
greater than 1.5 standard deviation of the mean.
Chakraborti et al. (2008) emphasized the need to ascertain precisely if the monitored

data follow the assumptions of the employed chart. However, in many practical situations,
when verifying whether the data follow the standard assumptions, it is considered that the
data are normally distributed just because they have a symmetrical shape. Schilling and
Nelson (1976), Borror et al. (1999), Calzada and Scariano (2001), and Noorossana et al.
(2011) commented that when the monitored data do not follow a normal distribution, the
usual Shewhart X chart shows low performance in the monitoring, by generating more
false alarms or by not detecting deviations from the true mean with the usual precision
(da Silva et al., 2019).
It is in this context of low performance of the usual charts, under non-normal sym-

metrical distribution (Rezac et al., 2015), that arise alternatives methods to monitoring
symmetrical data. For example, correction factors in quantiles of the distribution or in
the form of control limits of the usual method (Bai and Choi, 1995; Tadikamalla and
Popescu, 2007; Tadikamalla et al., 2008). Other approaches considered to solve the prob-
lem of non-normality are the non-parametric techniques (Haq and Khoo, 2019; Willemain
and Runger, 1996; Chakraborti et al., 2001)), and data transformation (Qiu and Zhang,
2015). There are also alternative procedures based on quantiles of distributions with a
heavier tail than the tail of the normal distribution (Calzada and Scariano, 2001; Tsai
et al., 2005; Zhang et al., 2009) and control charts via intensive computational methods
(Bajgier, 1992; Seppala et al., 1995; Liu and Tang, 1996).
More recently, Ahmed et al. (2019) proposed a technique based on a more comprehensive

class of distribution, known as the long-tailed symmetric (LTS), but in the context of small
and moderate mean deviations. Nonetheless, there is a wider class of distributions, in which
the LTS is a particular case, the symmetrical class of distributions or univariate elliptical
(Berkane and Bentler, 1986; Fang et al., 1990; Rao, 1990).
Considering this scenario, this work has the objective of proposing, via parametric boot-

strap method, a monitoring chart for the process mean for changes greater than 1.5 stan-
dard deviations. The underling feature of the data distribution is the symmetric one.
Besides, we focus on a wide class of symmetrical distribution known as the symmetrical
distribution class. The in-control and out-of-control average run length (ARL0 and ARL1,
respectively) of the proposed method are evaluated through simulations and compared
with the ARL0 and ARL1 of the standard Shewhart X chart in di↵erent scenarios of the
symmetrical class. The practical application of the method is illustrated by monitoring
the pH of red wines. Finally, we argue that having a proposed method that provides a
general framework for any member of the symmetric distribution class, regardless of the
tail weight, leads to a better decision making.
This paper is organized as follows: this introductory section. Section 2 presents briefly the

symmetrical class of distributions. Section 3 presents the proposed approach for monitoring
changes in the process mean in symmetric data. Section 4 presents the Average Run
Length (ARL) performance of the proposed charts under di↵erent combinations of the
model parameters based on simulation studies. Application to a real data set is presented
in Section 5. Final considerations are reported in Section 6.
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2. Symmetrical distribution class

In this section, we presents background on the symmetrical class of distributions.
Let X be a random variable, with X 2 . The distribution of X belongs to the class of

symmetric distributions with location parameter µ 2 and scale parameter � > 0, if its
probability density function is of the form:

f(x;µ,�) =
1p
�
h

✓
(x� µ)2

�

◆
, x 2 ,

for some function h(u) > 0, for u > 0, such that
R1
0

u�
1
2h(u)du = 1. The conditions

imposed on h, guarantee that f(x;µ,�) is, in fact, a probability density function. The
function h is called the density-generating function and it may depend on other parameters
than µ and �, which is the case of the Student-t and power-exponential distributions, for
example.
We denote X ⇠ S(µ,�), if X belongs to the symmetric distributions class of parameters

µ and �. Some examples of distributions that belong to this class are shown in Table 1,
as presented in Medeiros and Ferrari (2017), there are distributions with heavier tails (for
example, Student-t distributions and type II logistic) and lighter tails (for example, power-
exponential distribution with �1 <  < 0 and type I logistic) than the normal distribution.
Moreover, the class of symmetric distributions considers also bimodal distributions such
as the generalized Kotz distribution.
Let us assume that E(X) = µ and Var(X) = ⇠� exist, for some constant ⇠ > 0. Further-

more, if X ⇠ S(µ,�), then a+ bX ⇠ S(a+ bµ, b2�) with a 2 and b 2 � {0}, that is,
the distribution of any linear transformation of a random variable, which its distribution
belongs to the symmetrical class, also belongs to the symmetrical class. Particularly, if
Z = (X � µ)/

p
�, then Z ⇠ S(0, 1) and the probability density function of Z is given by

f(z) = f(z; 0, 1) = h(z2), z 2 ,

where h is the density generating function of X. In order to estimate the parameters of
these models, we adopt the maximum likelihood method. For more details on properties,
demonstrations and theoretical results for the symmetric distribution class (Berkane and
Bentler, 1986; Fang et al., 1990; Rao, 1990).

3. Proposed approach

In this section, we propose a control chart using a parametric bootstrap method for a class
of symmetric distributions. Our method is based on the work of Bajgier (1992) and Liu
and Tang (1996), who used a non-parametric approach. Here, we make some modifications
to use on a parametric bootstrap, since we are establishing theoretical results. When
the distribution of the data is correctly identified, we generate samples of the suitable
distribution in order to capturing the real nature of the data. As commented in Efron and
Tibshirani (1994) and Davison and Hinkley (1997), when we fit a suitable distribution,
the parametric bootstrap provides better results to estimate the quantiles, in our case the
control limits, than the non-parametric bootstrap.
Before establishing results for the proposed control charts, we need to specify some

notation and quantities such as sample size (m), subsample size (n), the frequency (s)
(assumed here as s = 1), statistic used in the monitoring (in this case, X), and lower and
upper control limits (LCL and UCL). When X > UCL or X < LCL, an action to search
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Table 1. Density-generating function and ⇠ values, for some symmetric distributions.

Distribution h(u), u > 0 ⇠

Normal 1p
2⇡
e�u/2 1

Student-t ⌫⌫/2

B(1/2,⌫/2)(⌫ + u)�
⌫+1
2 , ⌫ > 0 ⌫

⌫�2
, ⌫ > 2

Type I logistic c e
�u

(1+e�u)
2 , c ⇡ 1.4843 0.7957

Type II logistic e
�

p
u

(1+e�
p

u)2
⇡2

3

Kotz r(2N�1)/2

�( 2N�1
2 )

, r > 0, N � 1 2N�1

2r

Power-exponential 1 1

c()e
�
�1

2
u1/(1+)

 
,�1 <   1 21+ �(1,5(1+))

�(
1+
2

)

where � is the gamma functions and c() = �(1 + 1+
2

)21+(1+)/2.

for special causes in the process must be taken. Thus, when the process is in-control, it
is desirable to have few false alarms to reduce the number of unnecessary stops in the
process. In SPC, the usual metric to measure the performance of a control chart is the
ARL until an out-of-control point is detected. When the process is in control, a large ARL0

is desirable. Let us choose ↵, the probability of a type I error such that

↵ = P (X > UCL | µ = µ0) + P (X < LCL | µ = µ0) (1)

with µ0 the value of µ when the process is in-control.
On other hand, if the process is out-of-control, it is desirable that the control chart

signals very soon, that is, a low ARL1. The power of a control chart expressed as 1� � is

P (X > UCL | µ = µ1) + P (X < LCL | µ = µ1), (2)

where µ1 = µ0+ � �/
p
m is the mean when the process is out-of-control, � is the standard

deviation of the characteristic of interest, � is the shift size expressed in units of the
standard deviation of the mean and � is the probability of a type II error. Moreover,

ARL0 =
1

↵

and

ARL1 =
1

1� �
.

Note that from Equations (1) and (2) the control limits can be seen as quantiles of the
distribution of the statistic used to monitor the process that provide a certain probability
(↵ or 1 � �). Thus, by fixing either (↵ or 1 � �) or (ARL0 or ARL1), we get the control
limits as the quantiles of the mean distribution. That said, based on the bootstrap method
for control charts, proposed by Bajgier (1992) and Gandy and Kvaløy (2013), we obtain
the control limits to monitor the process mean according to Algorithm 1.
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Algorithm 1 Control limits to monitor the process mean.
1: Generate a n⇥m observation matrix of the considered symmetrical distribution, where

n is the size of the subsample. Calculate

Xi =
1

n

inX

l=(i�1)n+1

Xl, i = 1, . . . ,m.

2: Using the empirical distribution of X, obtained using the samples of the symmetrical
distribution in Step 1, obtain the quantiles of order ↵/2 and 1 � ↵/2, referred here,
respectively, as bq↵

2
and bq(1�↵

2
).

3: Repeat Step 1 and 2 B times using the quantities

dLCL =
1

B

BX

i=1

bq↵
2
,i and [UCL =

1

B

BX

i=1

bq(1�↵
2
),i

as the control limits.

Algorithm 1, described previously, can be schematically depicted as

Replicate 1 Replicate 2 . . . Replicate B
x1 x1 . . . x1
...

...
...

...
xm xm . . . xm

bq↵
2
,1 bq↵

2
,2 . . . bq↵

2
,B ! dLCL =

1

B

BX

i=1

bq↵
2
,i

bq(1�↵
2
),1 bq(1�↵

2
),2 . . . bq(1�↵

2
),B ! [UCL =

1

B

BX

i=1

bq(1�↵
2
),i.

Since this is a computationally intensive method, in order to obtain the control limits,
we recommend simulated samples of sizes m � 2, 000 and B � 5, 000, aiming to obtain
more accurate results, without possible bootstrap quantile bias. These values of m and B
are suggested based on previous studies; see for more on the suggested values of m and
B in Davison and Hinkley (1997). In practical situations, where the parameters of the
process distribution are most likely unknown, we recommend the following procedure to
estimate the control limits:

(1) Obtain observed values x = (x1, . . . , xk)> (from sample of size k, under statistical
control, of your population of interest) and adjust possible models for the data. Use
the AIC (Akaike information criterion) and BIC (Bayesian information criterion)
for selected model and goodness-of-fit techniques in order to evaluate the chosen
distribution;

(2) If the most suitable model belongs to the symmetric class, use b✓(x), the maximum
likelihood estimate of the parameters of the distribution, identified in Step (1), to
obtain the control limits using Algorithm 1.

For more details on the computationally intensive and resampling procedure, see Davison
and Hinkley (1997).
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4. Chart performance evaluation and comparison

In this section, a detailed simulation study is conducted in order to gain insight into the
detection abilities in the proposed control charts when we compare with the usual Shewhart
charts.
The simulation study considers two distributions, Student-t and power-exponential. The

Student-t distribution is usually used as an alternative to the normal distribution when
the behavior of the data suggests a symmetrical distribution, but with tails heavier than
the normal distribution. Lange et al. (1989) commented that the Student-t model can be
seen as a robust parametric extension of the normal model, since it allows to reduce the
influence of aberrant observations. On top of that, the Student-t allows the adjustment of
the kurtosis of the data distribution through the ⌫ parameter, which represents its degrees
of freedom. For the purpose of evaluating the performance of the proposed chart, values
of ⌫ = {3, 5, 10} and 20 are considered in the simulation study. Additionally, the power-
exponential distribution is also used because its  parameter allows it to have both lighter
and heavier tails than the normal distribution, thus making it a good alternative for non-
normal symmetric data. The simulation study has lighter tail ( = {�0.45,�0.25}) and
heavier tail ( = {0.3, 0.4}) scenarios than the normal distribution.
Furthermore, the scenarios are evaluated considering the following subsample size: n =

{1, 2, 3, 10, 100, 500}. Bearing in mind that the proposed method is compared to the usual
Shewhart chart, and we consider deviations in the mean of � = {0.0,⌥1.5,⌥2.0,⌥3.0}
standard deviations. The analyzes presented below are based on the assessments of the
ARL0, ARL1 and the asymptotic behavior of the control limits, represented by n = 100
and 500. The parameter settings µ and � adopted are intended to simulate several practical
situations such as small (1, 2, 5) and large (100 and 200) values of process mean, in addition
to considering the data dispersion index, which is given by

Id =
Var(X)

E(X)

and represents the variability of the data in relation to the mean. Regarding the dispersion
index, we considered four categories: very underdispersed (Id ⇡ 0.033), moderate underdis-
persed (Id ⇡ 0.67), moderate overdispersed (Id ⇡ 1.67) and very overdispersed (Id ⇡ 3.33).
The target value set for ARL0 is 370.40 samples, which is equivalent to ↵ = 0.0027 (refer-
ence value of the Shewhart X chart).
The computational routines were developed using the R software (R Core Team, 2018)

version 3.6.2 for Windows platform and are available at:

https://github.com/lucasdofs/Control-Chart-Symmetrical.

The Shewhart LCL and UCL considered in the simulation are given by

LCL = µ0 �
�0p
n

and UCL = µ0 +
�0p
n
,

where µ0 and �0 are the in-control mean and in-control standard deviation, respectively.
Algorithm 2 proposes a way for estimating ARL0 and ARL1.

https://github.com/lucasdofs/Control-Chart-Symmetrical
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Algorithm 2 Procedure to estimate ARL0 and ARL1.

1: Generate x(n⇥5000) = (x1, . . . , xn⇥5000)>, a column vector of size n ⇥ 5000 of the
distribution of interest, and calculate

Xi =
1

n

inX

l=(i�1)n+1

Xl, i = 1, . . . , 5000.

2: The control limits are compared with the 5000 sample-shifted mean (shifted factor =
�⇥ �0/

p
n and store the position of the first out of control sample, in which the value

of the sample-shifted mean is higher than UCL or lower than LCL.
3: Steps 1 and 2 are repeated 10000 times independently, and ARL0 or ARL1 is calculated

based on the average of the positions obtained in Step 2.

The diagram below illustrates Algorithm 2:

Replicate 1 Replicate 2 . . . Replicate 10000
x1 + � �0p

n
x1 + � �0p

n
. . . x1 + � �0p

n
...

...
...

...
x5000 + � �0p

n
x5000 + � �0p

n
. . . x5000 + � �0p

n

a1 a2 . . . a10000

Then, we estimate ARL0 and ARL1 by means of

[ARLj =

10000P
i=1

ai

10000
, j = 0, 1,

where ai, for i = 1, . . . , 10000, represents the position of the first sample in which the value
of the sample mean, plus � standard deviations, is higher than UCL or lower than LCL.
Tables 2 to 5 and Tables 6 to 9 present the results of the computational study carried out

for the Student-t and power-exponential distributions, respectively. The estimated results

are expressed in terms of the quantities [ARL0, [ARL1 and the control limits, in addition,

in parentheses are [ARL0, [ARL1 for the usual Shewhart control limits.

Table 2. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 3

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

0.2cm=5pt

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 1.00

1 90.91 109.07 64.95 (4.08) 164.1 (10.72) 228.45 (23.58) 361.92 (72.68) 231.61 (23.52) 163.78 (10.75) 64.99 (4.08)

�2 = 3.00. Id = 0.03

2 94.05 105.95 4.89 (1.56) 49.31 (2.48) 114.55 (7.78) 349.38 (79.85) 110.93 (7.72) 48.71 (2.45) 4.87 (1.07)
3 95.36 104.63 1.31 (1.01) 12.18 (1.48) 49.36 (3.37) 356.23 (85.81) 49.54 (3.30) 11.92 (1.35) 1.31 (1.01)
10 97.78 102.22 1.00 (1.00) 1.02 (1.00) 1.28 (1.00) 360.63 (112.37) 1.28 (1.00) 1.01 (1.00) 1.00 (1.00)
100 99.41 100.58 1.00 (1.00) 1.00 (1.00) 1.03 (1.00) 375.41 (175.90) 1.03 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.30 (273.51) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 9.00. � = 2.00

1 �3.82 21.81 64.37 (2.25) 162.81 (10.67) 226.73 (23.37) 351.00 (75.69) 220.81 (24.18) 158.93 (11.05) 62.39 (2.12)

�2 = 6.00. Id = 0.67

2 0.58 17.40 4.98 (1.06) 49.48 (2.47) 113.92 (7.77) 348.40 (79.97) 112.77 (7.76) 48.99 (2.46) 4.83 (1.07)
3 2.44 15.58 1.32 (1.00) 12.03 (1.48) 49.55 (4.43) 360.44 (85.84) 50.98 (4.43) 12.58 (1.50) 1.32 (1.00)
10 5.85 12.15 1.00 (1.00) 1.01 (1.00) 1.29 (1.00) 351.47 (110.05) 1.28 (1.00) 1.01 (1.00) 1.00 (1.00)
100 8.18 9.82 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 358.47 (188.19) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 8.66 9.34 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 352.07 (228.52) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 1.00

1 �7.08 11.04 65.10 (2.02) 161.00 (11.04) 224.12 (23.95) 349.92 (72.56) 226.8 (23.83) 160.31 (10.86) 63.45 (1.98)

�2 = 3.00. Id = 1.50

2 �3.94 7.95 4.88 (1.04) 49.01 (2.46) 113.9 (7.76) 349.15 (79.81) 113.53 (7.53) 48.74 (2.47) 4.92 (1.00)
3 �2.64 6.64 1.31 (1.01) 12.18 (1.37) 49.65 (3.32) 354.25 (84.79) 49.65 (3.31) 12.18 (1.37) 1.31 (1.00)
10 �0.23 4.23 1.00 (1.00) 1.01 (1.00) 1.27 (1.00) 358.13 (110.50) 1.30 (1.00) 1.01 (1.00) 1.00 (1.00)
100 1.42 2.58 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 361.87 (178.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.76 2.24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.46 (271.31) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 3.00. � = 3.00

1 �12.72 18.70 64.45 (2.01) 162.61 (10.57) 226.07 (24.34) 354.34 (71.58) 224.67 (23.21) 161.73 (10.74) 63.65 (1.98)

�2 = 9.00. Id = 3.00

2 �7.28 13.29 4.88 (1.00) 49.05(3.21) 113.15(8.12) 354.46 (79.59) 112.42 (7.98) 48.27 (2.59) 4.93 (1.08)
3 �5.04 11.04 1.32 (1.00) 12.23 (1.24) 49.34 (4.02) 358.24 (84.78) 49.85 (3.31) 12.54 (1.12) 1.32 (1.02)
10 �0.86 6.87 1.00 (1.00) 1.01 (1.00) 1.30 (1.00) 352.81 (108.88) 1.30 (1.00) 1.02 (1.00) 1.00 (1.00)
100 2.00 4.00 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.31 (191.45) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 2.66 3.44 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.63 (262.68) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
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Table 3. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 5

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 2.00

1 92.31 107.69 11.22 (2.03) 55.72 (7.13) 112.49 (17.93) 352.56 (87.86) 112.53 (17.71) 54.76 (7.87) 10.98 (1.97)

�2 = 3.33. Id = 0.03

2 95.07 104.93 1.48 (1.00) 7.15 (1.08) 23.83 (5.97) 352.57 (108.37) 23.90 (6.01) 7.13 (2.10) 1.47 (1.00)
3 96.17 103.83 1.06 (1.01) 2.38 (1.44) 7.42 (3.23) 348.02 (125.75) 7.37 (3.44) 2.32 (1.92) 1.05 (1.00)
10 98.12 101.88 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 349.26 (199.15) 1.07 (1.00) 1.00 (1.00) 1.00 (1.00)
100 99.45 100.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 342.54 (342.54) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 364.02 (364.02) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 5.00. � = 2.00

1 �2.67 12.68 11.05(2.00) 54.23 (7.98) 108.10 (17.77) 339.16 (85.71) 108.00 (17.83) 54.50 (7.93) 10.98 (2.02)

�2 = 3.33. Id = 0.67

2 0.07 9.93 1.46 (1.02) 7.10 (2.35) 23.98 (5.99) 344.71 (126.00) 23.82 (6.02) 7.18 (2.49) 1.44 (1.01)
3 1.69 8.83 1.06 (1.00) 2.31 (1.00) 7.49 (3.18) 352.36 (125.04) 7.39 (3.00) 2.33 (1.00) 1.06 (1.00)
10 3.12 6.88 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 342.91 (193.58) 1.06 (1.00) 1.00 (1.00) 1.00 (1.00)
100 4.45 5.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 341.06 (341.44) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 4.75 5.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.70 (363.70) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 2.00

1 �5.69 9.68 11.41 (2.03) 55.49 (7.95) 110.58 (17.58) 350.81 (84.80) 109.42 (17.05) 55.32 (7.76) 11.29 (1.99)

�2 = 3.33. Id = 1.67

2 �2.93 6.93 1.47 (1.01) 7.18 (2.37) 24.03 (5.98) 342.45 (108.11) 24.07 (5.96) 7.17 (2.34) 1.45 (1.02)
3 �1.83 5.83 1.07 (1.00) 2.37 (1.44) 7.43 (2.99) 353.08 (125.57) 7.51 (3.04) 2.32 (1.43) 1.06 (1.00)
10 0.12 3.88 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 344.14 (195.11) 1.07 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.45 2.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 342.59 (342.65) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.75 2.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 364.85 (364.85) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 2.00

1 �6.68 8.69 11.21 (2.00) 54.34 (7.98) 111.25 (17.82) 354.89 (86.91) 112.53 (17.86) 55.20 (7.99) 10.98 (2.00)

�2 = 3.33. Id = 3.33

2 �3.93 5.93 1.21 (1.10) 3.82 (2.35) 11.45 (5.94) 342.45 (108.01) 23.73 (6.05) 7.07 (2.40) 1.47 (1.11)
3 �2.83 4.83 1.06 (1.00) 2.37 (1.45) 7.52 (3.12) 353.08 (125.33) 7.53 (2.87) 2.42 (2.00) 1.06 (1.00)
10 �0.87 2.87 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 350.42 (201.52) 1.07 (1.01) 1.00 (1.00) 1.00 (1.00)
100 0.45 1.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 346.90 (346.90) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.02 (363.02) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 4. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 10

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 40.00. � = 1.00

1 36.08 43.91 3.88 (2.03) 16.22 (6.93) 41.07 (16.02) 349.80 (137.94) 40.03 (17.02) 15.69 (6.83) 3.38 (2.00)

�2 = 1.25. Id = 0.03

2 37.41 42.59 1.98 (1.00) 3.13 (2.33) 8.44 (5.56) 344.73 (185.14) 8.51 (5.60) 3.09 (2.33) 1.20 (1.00)
3 37.94 42.06 1.02 (1.00) 1.63 (1.12) 3.65 (2.94) 348.76 (211.11) 3.73 (2.93) 1.65 (1.21) 1.02 (1.00)
10 38.92 41.08 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 368.43 (309.80) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 39.66 40.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.57 (360.57) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 39.95 40.15 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.60 (368.60) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 1.00

1 �1.91 5.92 3.39 (2.01) 16.02 (5.84) 40.76 (16.05) 350.40 (137.34) 40.56 (16.05) 16.05 (5.85) 3.41 (1.98)

�2 = 1.25. Id = 0.63

2 �0.60 4.59 1.19 (1.02) 3.14 (2.36) 8.67 (5.57) 353.52 (183.05) 8.68 (5.53) 3.13 (2.32) 1.19 (1.00)
3 �0.06 4.06 1.02 (1.00) 1.66 (1.43) 3.73 (2.94) 347.79 (209.95) 3.74 (2.97) 1.64 (1.49) 1.02 (1.00)
10 0.92 3.08 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 362.89 (308.87) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.66 2.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 359.04 (359.04) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.85 2.15 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.82 (372.82) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 3.00. � = 4.00

1 �4.68 10.80 3.38 (2.08) 15.69 (6.88) 40.23 (17.23) 350.53 (138.37) 40.46 (16.98) 16.15 (6.22) 3.42 (2.42)

�2 = 5.00. Id = 1.67

2 �2.19 8.19 1.19 (1.02) 3.16 (1.98) 8.64 (5.45) 353.80 (183.80) 8.58 (5.39) 3.12 (2.43) 1.19 (1.03)
3 �1.12 7.12 1.02 (1.00) 1.62 (1.00) 3.69 (2.81) 349.12 (215.11) 3.69 (2.90) 1.63 (1.00) 1.02 (1.00)
10 0.84 5.16 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 348.58 (302.91) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 2.33 3.67 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 379.51 (379.51) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 2.70 3.30 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 362.18 (362.18) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 5.00

1 �6.76 10.76 3.46 (2.04) 16.28 (6.11) 41.22 (17.07) 351.44 (135.79) 40.95 (16.97) 16.02 (5.94) 3.49 (1.99)

�2 = 6.25. Id = 3.13

2 �3.80 7.81 1.19 (1.00) 3.22 (1.98) 8.60 (5.21) 351.04 (185.96) 8.60 (4.99) 3.17 (1.49) 1.18 (1.00)
3 �2.61 6.60 1.03 (1.00) 1.65 (1.02) 3.71 (2.38) 340.71 (211.32) 3.65 (2.61) 1.63 (1.02) 1.03 (1.01)
10 �0.41 4.41 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 354.67 (303.27) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.25 2.75 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 379.97 (379.98) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.67 2.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 345.63 (345.63) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

For both distributions considered, as n increases, the control limits get closer to the true
value of the mean (process under control), regardless of the ⌫ parameter, for the Student-t
distribution, and the  parameter for the power-exponential distribution. Furthermore,
as expected, for the Student-t distribution, when n and ⌫ increase, the sample mean
distribution approaches a normal distribution. Thus, the control limits by the proposed
method tend to approach the Shewhart’s usual control limits. This behavior is also seen
for the power-exponential distribution when n increases and  approaches 0. This fact is
noticeable when we observe the proximity of the ARL0 values and considering the control
limits using the proposed method and the usual Shewhart method. Moreover, the observed
behavior of the proposed control limits occurs independently of the process dispersion
index, thus showing the robustness in relation to this index.
Based on the ARL0 for heavy-tailed data distribution, see Tables 2 to 5 and Tables 8

and 9, regardless of the scenario, the proposed method presents ARL0 around 340 to 380
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Table 5. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 20

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 3.00

1 94.12 105.88 2.47 (2.00) 9.35 (6.49) 23.63 (15.54) 370.34 (205.13) 23.33 (15.48) 9.33 (6.54) 2.43 (2.00)

�2 = 3.33. Id = 0.03

2 95.99 104.01 1.15 (1.12) 2.59 (2.30) 6.31 (5.30) 338.44 (255.64) 6.22 (5.39) 2.59 (2.34) 1.14 (1.12)
3 96.77 103.23 1.00 (1.00) 1.10 (1.02) 1.48 (1.13) 350.19 (293.38) 3.13 (1.10) 1.15 (1.01) 1.01 (1.00)
10 98.27 101.73 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 340.78 (336.88) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 99.45 100.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.70 (363.70) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.64 (368.64) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 5.00. � = 3.00

1 �0.87 10.87 2.43 (2.02) 9.21 (6.56) 23.22 (15.63) 345.35 (205.13) 23.60 (15.49) 9.33 (6.60) 2.43 (2.00)

�2 = 3.33. Id = 0.67

2 0.99 10.10 1.15 (1.12) 2.60 (3.25) 6.32 (5.37) 350.44 (260.74) 6.21 (5.44) 2.55 (2.30) 1.15 (1.12)
3 3.27 7.73 1.02 (1.02) 1.48 (1.09) 3.04 (2.95) 352.36 (284.71) 3.39 (2.93) 2.33 (1.46) 1.06 (1.02)
10 3.27 7.73 1.05 (1.00) 1.00 (1.00) 1.00 (1.00) 341.78 (338.52) 1.03 (1.00) 1.00 (1.00) 1.00 (1.00)
100 4.45 5.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.48 (368.48) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 4.75 5.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.81 (370.81) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 3.00

1 �3.87 7.87 2.43 (1.99) 9.30 (6.59) 23.22 (15.41) 349.33 (206.78) 23.35 (15.47) 9.19 (6.61) 2.42 (2.03)

�2 = 3.33. Id = 1.67

2 �2.00 6.00 1.14 (1.08) 2.55 (2.36) 6.29 (5.41) 342.47 (257.90) 6.25 (5.40) 2.56 (2.33) 1.14 (1.02)
3 �1.23 5.23 1.02 (1.01) 1.52 (1.46) 3.17 (2.93) 345.04 (285.07) 3.15 (2.95) 1.52 (1.47) 1.01 (1.00)
10 0.27 3.73 1.03 (1.00) 1.00 (1.00) 1.00 (1.00) 347.54 (343.02) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.45 2.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 347.78 (347.65) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.75 2.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.84 (370.84) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 3.00

1 �4.87 6.87 2.43 (2.00) 9.29 (6.74)) 23.19 (15.76) 344.41 (205.14) 23.23 (15.17) 9.25 (6.58) 2.49 (2.00)

�2 = 3.33. Id = 3.33

2 �3.00 5.00 1.14 (1.00) 2.58 (2.34) 6.31 (5.32) 342.45 (259.21) 6.33 (5.44) 2.56 (2.38) 1.14 (1.01)
3 �2.23 4.23 1.02 (1.00) 1.52 (1.34) 3.18 (2.83) 345.04 (285.07) 3.15 (2.90) 1.52 (1.39) 1.01 (1.00)
10 �0.73 2.73 1.05 (1.00) 1.00 (1.00) 1.00 (1.00) 347.54 (343.02) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 0.45 1.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 371.68 (371.68) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.84 (370.84) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 6. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = �0.45 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 50.00. � = 3.00

1 47.03 52.97 1.43 (1.97) 2.69 (5.42) 4.72 (14.95) 331.28 (2453.04) 4.83 (14.94) 2.75 (5.53) 1.47 (2.09)

�2 = 1.52. Id = 0.03

2 47.68 52.32 1.06 (1.13) 1.79 (2.31) 3.32 (4.98) 334.62 (1674.89) 3.30 (5.05) 1.76 (2.29) 1.06 (1.12)
3 48.02 51.98 1.00 (1.01) 1.34 (1.48) 2.35 (2.93) 347.29 (978.20) 2.30 (2.87) 1.34 (1.49) 1.00 (1.01)
10 48.86 51.14 1.00 (1.00) 1.00 (1.00) 1.03 (1.04) 357.29 (475.48) 1.04 (1.04) 1.00 (1.00) 1.00 (1.00)
100 49.63 50.37 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 362.80 (429.02) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 49.83 50.17 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 371.77 (371.77) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 3.00. � = 4.00

1 �0.43 6.43 1.43 (1.98) 2.70 (5.44) 4.74 (15.15) 338.91 (2353.73) 4.76 (14.82) 2.69 (5.50) 1.45 (2.01)

�2 = 2.03. Id = 0.67

2 0.32 5.68 1.06 (1.13) 1.77 (2.30) 3.29 (4.96) 342.17 (1629.00) 3.47 (5.09) 1.77 (2.30) 1.06 (1.13)
3 0.72 5.28 1.01 (1.01) 1.34 (1.48) 2.33 (2.84) 342.95 (975.43) 2.27 (2.86) 1.33 (1.50) 1.01 (1.01)
10 1.68 4.32 1.00 (1.00) 1.00 (1.00) 1.03 (1.05) 366.09 (463.89) 1.04 (1.04) 1.00 (1.00) 1.00 (1.00)
100 2.58 3.43 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.78 (360.78) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 2.81 3.19 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.59 (372.59) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 3.00

1 �1.97 3.97 1.43 (2.00) 2.74 (5.42) 4.71 (14.83) 348.63 (2510.84) 4.84 (14.76) 2.79 (5.55) 1.45 (2.04)

�2 = 1.52. Id = 1.52

2 �1.32 3.32 1.07 (1.13) 1.80 (2.30) 3.29 (4.97) 353.29 (961.80) 3.28 (5.03) 1.77 (2.27) 1.06 (1.12)
3 �0.98 2.89 1.00 (1.01) 1.36 (1.50) 2.32 (2.89) 353.29 (961.80) 2.27 (2.86) 1.34 (1.48) 1.00 (1.01)
10 �0.14 2.14 1.00 (1.00) 1.00 (1.00) 1.04 (1.03) 358.79 (474.93) 1.03 (1.05) 1.00 (1.00) 1.00 (1.00)
100 0.46 1.54 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 425.74 (425.74) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.57 (365.57) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 6.00

1 �3.20 5.20 1.45 (2.01) 2.75 (5.53) 4.89 (14.85) 357.02 (2453.02) 4.79 (14.76) 2.71 (5.48) 1.46 (2.00)

�2 = 3.04. Id = 3.04

2 �2.28 4.28 1.07 (1.14) 1.78 (2.31) 3.30 (5.02) 338.52 (1653.62) 3.81 (5.05) 1.79 (2.32) 1.06 (1.13)
3 �1.79 3.79 1.00 (1.00) 1.33 (1.33) 2.34 (2.33) 342.48 (990.77) 2.31 (2.88) 1.32 (1.48) 1.00 (1.00)
10 �0.61 2.61 1.00 (1.00) 1.00 (1.00) 1.04 (1.05) 347.92 (450.07) 1.05 (1.04) 1.00 (1.00) 1.00 (1.00)
100 0.48 1.52 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 393.67 (393.67) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.77 1.23 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.62 (365.62) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

samples. Considering subsample sizes n = {1, 2, 3} (most used in practical situations) the
proposed method presents ARL0 closer to 370.40 (target value) than the usual Shewhart
method (see column � = 0 of Tables 2 to 5 and Tables 8 and 9). This behavior occurs
independently of the dispersion index, showing the flexibility of the method for di↵erent
situations. Considering the power of detection of the proposed method, for heavy-tailed
distributions, some patterns are observed for all scenarios, they are: (i) for a fixed deviation
�, as n increases, the ARL1 decreases, approaching one sample; (ii) for a fixed subsample
size n, as � increases, ARL1 decreases, also approaching one sample.
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Table 7. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = �0.25 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 20.00. � = 1.00

1 17.82 22.18 1.63 (2.04) 3.73 (5.83) 7.78 (14.85) 353.72 (1475.83) 7.61 (14.66) 3.68 (5.62) 1.61 (1.98)

�2 = 0.67. Id = 0.03

2 18.38 21.62 1.09 (1.13) 1.96 (2.30) 4.01 (5.11) 348.92 (785.06) 3.88 (5.00) 1.96 (2.28) 1.08 (1.12)
3 18.65 21.35 1.00 (1.00) 1.37 (1.05) 2.56 (2.92) 354.29 (583.45) 2.51 (2.86) 1.37 (1.47) 1.00 (1.00)
10 19.24 20.76 1.00 (1.00) 1.00 (1.00) 1.03 (1.04) 361.93 (414.45) 1.04 (1.04) 1.00 (1.00) 1.00 (1.00)
100 19.76 20.24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 373.80 (373.80) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 19.89 20.11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.77 (370.77) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 1.00

1 �1.18 3.18 1.61 (2.01) 3.73 (5.87) 7.74 (14.62) 356.99 (1468.41) 7.75 (14.84) 3.75 (5.85) 1.60 (1.99)

�2 = 0.67. Id = 0.67

2 �0.62 2.62 1.08 (1.13) 1.97 (2.30) 3.93 (5.04) 356.25 (783.09) 4.00 (5.11) 1.97 (2.30) 1.09 (1.26)
3 �0.34 2.35 1.01 (1.01) 1.38 (1.48) 2.52 (2.84) 352.44 (580.43) 2.53 (2.86) 1.39 (1.50) 1.00 (1.01)
10 0.24 0.76 1.00 (1.00) 1.00 (1.00) 1.03 (1.04) 362.04 (413.75) 1.05 (1.04) 1.00 (1.00) 1.00 (1.00)
100 0.76 0.24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 377.50 (377.50) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.89 1.11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 373.80 (373.80) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 5.00

1 �2.87 6.87 1.62 (2.01) 3.72 (5.89) 7.72 (14.82) 347.26 (1474.67) 7.62 (14.95) 3.68 (5.90) 1.61 (2.03)

�2 = 3.34. Id = 1.67

2 �1.62 5.62 1.08 (1.12) 1.94 (2.30) 3.85 (5.04) 343.57 (765.80) 3.94 (5.11) 1.98 (2.34) 1.08 (1.29)
3 �1.02 5.02 1.01 (1.01) 1.39 (1.48) 2.52 (2.52) 352.94 (588.16) 2.54 (2.91) 1.39 (1.49) 1.00 (1.00)
10 0.30 3.70 1.00 (1.00) 1.00 (1.00) 1.04 (1.05) 346.49 (414.75) 1.04 (1.05) 1.00 (1.00) 1.00 (1.00)
100 0.46 2.54 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 353.19 (353.19) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.75 2.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 374.40 (374.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 3.00

1 �3.87 5.87 1.61 (2.00) 3.64 (5.75) 7.55 (14.84) 344.61 (1447.16) 7.61 (14.76) 3.69 (5.80) 1.60 (2.00)

�2 = 3.34. Id = 3.34

2 �2.62 4.62 1.08 (1.12) 1.95 (2.34) 3.92 (5.17) 342.42 (774.74) 3.98 (5.08) 1.98 (2.94) 1.09 (1.12)
3 �2.02 4.02 1.00 (1.00) 1.38 (1.49) 2.50 (2.88) 350.27 (589.64) 2.51 (2.91) 1.38 (1.50) 1.00 (1.00)
10 �0.70 2.70 1.00 (1.00) 1.00 (1.00) 1.04 (1.05) 353.87 (422.70) 1.03 (1.04) 1.00 (1.00) 1.00 (1.00)
100 1.46 2.54 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 347.99 (347.99) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.62 (365.62) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 8. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = 0.30 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 2.00

1 93.77 106.23 2.84 (1.99) 11.75 (6.99) 27.49 (15.43) 342.60 (156.80) 27.98 (15.35) 11.64 (6.99) 2.85 (2.00)

�2 = 3.48. Id = 0.03

2 95.80 104.20 1.16 (1.00) 2.79 (2.31) 7.24 (5.57) 339.54 (211.36) 7.26 (5.63) 2.82 (2.33) 1.16 (1.00)
3 96.63 103.37 1.02 (1.00) 1.57 (1.10) 3.37 (1.85) 345.02 (243.33) 2.94 (1.98) 1.46 (1.10) 1.04 (1.00)
10 98.21 101.78 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 341.86 (328.73) 1.04 (1.01) 1.00 (1.00) 1.00 (1.00)
100 99.44 100.56 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 379.83 (379.83) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.01 (368.01) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 5.00. � = 2.00

1 �1.23 11.23 2.86 (2.00) 11.42 (7.04) 27.82 (15.48) 344.63 (159.19) 27.85 (15.68) 11.73 (7.02) 2.87 (1.98)

�2 = 3.48. Id = 0.69

2 0.80 9.20 1.16 (1.00) 2.81 (2.01) 7.13 (4.88) 345.25 (213.12) 7.33 (4.65) 2.84 (1.66) 1.17 (1.00)
3 1.64 8.36 1.03 (1.00) 1.56 (1.00) 3.41 (2.01) 337.44 (245.43) 3.37 (1.98) 1.56 (1.02) 1.02 (1.00)
10 3.22 6.78 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 331.18 (317.76) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 4.43 5.57 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.24 (360.24) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 4.75 5.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 373.15 (373.15) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 1.00

1 �3.41 5.41 2.85 (2.00) 11.78 (6.21) 28.40 (15.38) 340.78 (154.31) 28.40 (16.98) 11.79 (6.82) 2.90 (1.99)

�2 = 1.74. Id = 1.74

2 �1.97 3.97 1.16 (1.00) 2.76 (2.33) 7.22 (5.49) 343.14 (210.14) 7.16 (4.44) 2.82 (2.01) 1.16 (1.0 0)
3 �1.38 3.38 1.02 (1.00) 1.56 (1.12) 3.40 (2.88) 345.69 (245.38) 3.31 (2.53) 1.56 (1.24) 1.02 (1.00)
10 �0.26 3.38 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 336.31 (317.73) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 0.61 1.39 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.30 (365.30) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.69 (370.69) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 2.00

1 �5.23 7.23 2.84 (2.01) 11.85 (6.33) 28.50 (16.22) 341.77 (156.24) 27.70 (15.99) 11.64 (7.01) 2.86 (2.12)

�2 = 3.48. Id = 3.48

2 �3.20 5.20 1.16 (1.00) 2.82 (1.87) 7.23 (3.34) 342.88 (212.48) 7.30 (3.88) 2.81 (1.97) 1.16 (1.00)
3 �2.36 4.37 1.02 (1.00) 1.57 (1.21) 3.43 (1.87) 346.42 (249.51) 3.43 (2.01) 1.56 (1.21) 1.02 (1.00)
10 �0.79 2.78 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 345.99 (319.95) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 0.61 1.39 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 361.58 (362.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.47 (363.47) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

For the Student-t distribution in the most extreme scenarios (⌫ = 3 and 5; see Tables
2 and 3), due to the behavior of the distribution, using the subsample size n = 1 does
not prove to be the most recommended in these situations. However, when n = 2 the
ARL0 reduces considerably (about 50% or more), mainly when � = 3. In view of this,
in situations where the data distribution have very heavy tails, we recommend the use of
n � 3, as these subsample sizes have excellent ARL0, closer to the target value 370.40 than
the usual Shewhart method. Regarding the heavy-tailed power-exponential distribution
(Tables 8 and 9), the method shows excellent detection power, compatible with the usual
Shewhart chart. Still on ARL1, for the power-exponential distribution with 0 <  < 1, it
takes, on average, 30 samples to detect a shift of 1.5 standard deviations in the process
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Table 9. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = 0.40 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 200.00. � = 3.00

1 192.27 208.74 3.38 (2.09) 14.31 (8.01) 33.75 (15.95) 343.75 (128.71) 34.42 (16.01) 14.33 (7.87) 3.29 (1.99)

�2 = 6.38. Id = 0.03

2 194.19 205.81 1.18 (1.00) 3.06 (2.04) 8.11 (5.98) 339.18 (183.49) 8.24 (5.78) 3.09 (2.09) 1.19 (1.00)
3 195.37 204.65 1.02 (1.00) 1.61 (1.21) 3.62 (2.44) 350.76 (220.57) 3.58 (2.68) 1.60 (1.10) 1.02 (1.00)
10 197.57 202.43 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 341.72 (301.71) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 199.25 200.75 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.53 (363.53) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 199.66 200.34 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 369.43 (369.43) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 6.00. � = 2.00

1 �1.13 13.13 3.38 (1.89) 14.49 (7.55) 34.42 (15.92) 352.32 (131.78) 33.83 (15.09) 14.32 (7.82) 3.67 (2.41)

�2 = 4.25. Id = 0.69

2 1.25 10.74 1.18 (1.00) 3.03 (1.89) 8.18 (5.87) 344.72 (186.21) 8.28 (5.91) 3.03 (2.01) 1.18 (1.00)
3 2.22 9.78 1.07 (1.00) 1.63 (1.12) 3.69 (2.56) 344.36 (217.27) 3.61 (2.57) 1.60 (1.10) 1.02 (1.00)
10 4.02 7.98 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 338.18 (299.91) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 5.38 6.61 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.11 (365.11) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 5.72 6.28 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 369.66 (369.66) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 4.00. � = 3.00

1 �4.73 12.73 3.40 (2.02) 14.33 (7.20) 33.99 (15.50) 344.13 (128.67) 33.75 (16.01) 14.29 (7.92) 3.39 (2.11)

�2 = 6.38. Id = 1.60

2 �1.81 9.81 1.17 (1.00) 3.05 (2.15) 8.23 (6.21) 340.18 (184.24) 8.17 (6.64) 3.08 (2.65) 1.18 (1.00)
3 �0.63 8.63 1.02 (1.00) 1.61 (1.04) 3.61 (2.44) 347.98 (218.82) 3.65 (2.44) 1.62 (1.13) 1.02 (1.00)
10 1.57 6.43 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 340.06 (298.09) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 3.21 4.76 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 359.28 (359.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 3.66 4.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 371.28(371.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 3.00

1 �6.73 10.73 3.31 (2.00) 14.32 (7.11) 34.18 (15.34) 339.57 (126.84) 34.69 (15.42) 14.62 (7.12) 3.36 (2.00)

�2 = 6.38. Id = 3.19

2 �3.81 7.81 1.18 (1.00) 3.09 (2.31) 8.30 (5.46) 345.06 (193.59) 8.25 (5.45) 3.09 (2.35) 1.18 (1.00)
3 �2.63 6.62 1.02 (1.00) 1.61 (1.10) 3.64 (2.65) 336.19 (215.73) 3.68 (2.67) 1.62 (1.00) 1.02 (1.00)
10 �0.43 4.43 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 344.24 (304.75) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.24 2.74 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.82 (360.82) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.66 2.34 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.28 (368.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

mean, when using n = 1. However, with n = 2, the ARL0 is already reduced to about 8
to 10 samples. This fact only reinforces the excellent applicability of the method for data
with heavy tails.
Considering our method for light-tailed distributions (Tables 6 and 7), which furnishes a

ARL0 around 332 to 370 samples, the ARL0 provided by the usual Shewhart method has
higher values (especially when n < 100), around 360 to 2400 samples. This peculiar fact
of high ARL0 occurs because the tail of the normal distribution is heavier than that of
the power-exponential distribution. Besides, when the process is under control, a sample
(from the power-exponential distribution) will rarely exceed the usual Shewhart limits
(designed to cover 99.73% of the samples when the process is normally distributed and
under control). On the other hand, despite these high ARL0, the usual procedure shows to
detect well large deviations in the process mean, taking a maximum of 16, 6 and 4 samples
to detect shifts of 1.5, 2.0 and 3.0 standard deviations, respectively. Moreover, these ARL0

reduce as n increases. This fact is, at first sight, surprising, as it is expected that the
higher the ARL0, the longer it will take to detect a true alarm. However, as we are in the
situation of large shifts (greater than 1.5 standard deviations), these changes in the mean
are su�cient for the usual Shewhart chart to indicate such changes satisfactorily. Still for
light-tailed distributions, the proposed method meet expectations and provides the ARL1

within the desired range, since the proposed approach is based on the true distribution
of the data (in this case the power-exponential). In addition to that, with regard to the
power of detection, the proposed method always presents ARL1 less than or equal to the
usual method. Furthermore, it is worth mentioning that for both types of tail weights, the
usual method detects changes in the mean almost instantly (ARL1 = 1) when n � 10.
In short, the proposed method presents excellent performance in term of ARL0 and

ARL1, being the most recommended in cases with distributions of heavier tail than the
normal distribution. On the other hand, in the context of light-tailed distributions, the
usual Shewhart method is recommended, because although the proposed method has ex-
cellent performance, the Shewhart X presents ARL0 equal to or greater than that of the
proposed method and it is comparable to the detection power of the proposed approach.
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5. A real example

This section illustrates the applicability of the method proposed in Section 3, when the
data is symmetric, but not necessarily with normal distribution. The data refers to the
result of the pH of 1599 red wines produced by the Portuguese company Vinho Verde, one
of the largest wine producers in Portugal, from May 2004 to February 2007. Cortez et al.
(2009) provided more details about the Vinho Verde company and the specifications of the
data set. The data used are available at https://archive.ics.uci.edu/ml/datasets/
Wine+Quality. In this section we also consider a comparison of the proposed method to
obtain the control limits with the usual Shewhart method.
Based on Cortez et al. (2009), there are strong indications that the 1599 observations

come from a process under control. Therefore, the first thousand observations are consid-
ered for phase I (process of constructing a control chart). In phase I, we perform a visual
graphic analysis (see Figure 1), the descriptive statistics (see Table 10) and a symmetry
test using the symmetry.test function of the lawstat package of R, which is based on
Miao et al. (2006). In the normal boxplot in Figure 1 we note some possible “atypical”
points. However, as the data is under control, it is more likely that these points are just
points in the tail of a heavier tailed distribution than the normal distribution. In Table
10, we can observe that the mean are close to the median, di↵ering just around one stan-
dard deviation (

p
0.249 ⇡ 0.5). Furthermore, the coe�cient of skewness and kurtosis are

both close to zero, which is a indication of symmetry. In addition to the strong suggestion
of symmetry, observed in Figure 1, and a brief analysis of the descriptive statistics, the
symmetry test provides a p-value of 0.74, that is, there is a strong statistical evidence to
not reject the hypothesis of data symmetry.
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Figure 1. PH Histogram and boxplot of the first thousand wines.

Table 10. Descriptive statistics related to the first thousand pH observations (phase I) of the red wines.

Minimum Mean Median Maximum Variance Dispersion index Skewness Kurtosis
2.740 3.299 3.300 3.900 0.249 0.008 0.185 0.417

After the assumption of symmetry is considered reasonable, we perform model adequacy
tests to find out which symmetric distribution best fits the data. Table 11 shows the models
considered, the estimated parameters, AIC and BIC. These measures and estimates are
obtained using the gamlss package (Stasinopoulos et al., 2007) of the R software.
Based on Table 11, we see that the most suitable model for the data is the Student-

t model with bµ = 3.299, b� = 0.007, b⌫ = 2.841 (which provides an estimated standard
error b� = 0.1484), with the lowest AIC and BIC among the concurrent models. In Figure
2, we present the quantile residuals (Dunn and Smyth, 1996) for the Student-t model,
obtained using gamlss function. As expected, the quantile residual for the adjusted model
are independent and normally distributed, which indicates that the postulated model is
reasonable to the data.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Table 11. Parameter estimates, AIC and BIC for the models considered for the pH of red wines.

Distribution Parameter estimates AIC BIC

Normal bµ = 3.299, b� = 0.025 �850.104 �840.288

Student-t bµ = 3.299, b� = 0.007, b⌫ = 2.841 �853.585 �848.862

Power-exponential bµ = 3.299, b� = 0.008, b = 0.558 �852.388 �847.665

Type I logistic bµ = 3.299, b� = 0.031 �849.183 �839.367
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Figure 2. QQ-Plot and dispersion graphic of the quantile residuals for the Student-t model.

Thus, considering the Student-t model and the estimated parameters, we use the proce-
dure described in Section 3 with n = 1 (chosen to preserve the original data monitoring
scale) and a probability of false alarm equal to 0.0027. For this configuration, we obtain
LCL = 2.50, UCL = 4.10 and an estimated ARL0 of 373 samples. We see in Figure 3
(left) that the proposed method do not detect any change in the pH of the monitored
wines. In contrast, in Figure 3 (right) , we see that, even though the data is under control,
the usual method of Shewhart, based on the normal distribution, detects changes in the
average pH of the wines, thus generating false alarms. As expected, the proposed method
performs better than the usual Shewhart method, in relation to the number of samples
until a false alarm, when the data has a heavier tail than the normal distribution (in this
case, Student-t distribution with 2.85 degrees of freedom).
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Figure 3. Control chart for monitoring the average pH of red wines from the Vinho Verde company produced from

May 2004 to February 2007 with by the proposed (left) and he usual Shewhart (right) methods.
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6. Final considerations

In this work, a monitoring method via bootstrap is proposed and evaluated in order to
monitor the mean of symmetric data whose distribution belongs to the symmetric distri-
bution class. This method comes as an alternative to Shewhart X chart when we want
to monitor non-normal symmetric data, especially with heavy-tailed distribution data.
The simulation study (illustrated with the Student-t and power-exponential distribution)
shows that the proposed approach, for ↵ = 0.0027, provides in-control average run length
between 340 and 380 samples and a good detection power, approaching one sample as n
increases. Regarding the behavior of the control limits, for the proposed approach, they
become closer to the mean when n increases.
In the context of light-tailed distribution, the proposed method presents good perfor-

mance in-control average run length close to the desired value and good detection power).
However, it is recommended the usual Shewhart X chart, because in addition to presenting
a detection power comparable to the proposed method, it has a false alarm rate lower than
that of the proposed method. It is worth nothing that the great advantage of using the
proposed method, instead of the usual Shewhart method, is in situations in which the data
distribution has a heavier tail than normal distribution, since the proposed method has a
lower rate of false alarm (being very close to the nominal value) and excellent detection
power, as seen in the simulation study and illustrated in the monitoring of the average
pH of red wines. Finally, the proposed method is robust to dispersion index variation.
As future work we highlight: (i) to analyze the e↵ect of the parameter estimation in the
proposed method, (ii) to consider a joint monitoring of the mean and the standard devia-
tion for symmetric class data and, (iii) to propose an EWMA and CUSUM charts for the
symmetric class to monitor small deviations from the mean.
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Abstract

In this paper, we propose a flexible cure rate model including a frailty term, which
was obtained by incorporating a random e�ect in the risk function of latent competing
causes. The number of competing causes of the event of interest follows a negative bino-
mial distribution, and the frailty variable follows a power variance function distribution,
which includes other frailty models such as gamma, positive stable, and inverse Gaussian
frailty models as special cases. The proposed model takes into account the presence of
covariates and right-censored data, which are suitable for populations with a long-term
survivors. Besides, it allows quantification of the degree of unobserved heterogeneity
induced by unobservable risk factors, which is important to explain the lifetime. Once
the posterior density function is not expressed in the closed form, Markov chain Monte
Carlo algorithms are performed for the estimation procedure. Simulation studies were
considered in order to evaluate the proposed model performance, and its practical rele-
vance was illustrated in a real medical dataset from a population-based study of incident
cases of melanoma diagnosed in the state of São Paulo, Brazil.

Keywords: Competing causes · Frailty models · Markov chain Monte Carlo
· Negative binomial distribution · Power variance function

Mathematics Subject Classification: Primary 62N01 · Secondary 62P10.

1. Introduction

Clinical outcomes in oncology are fundamental for all healthcare providers. Information such
as overall survival, disease-free survival, and cancer-specific survival can be obtained based
on the cancer type and patient features, such as the clinical stage, sex, age, education level,
type of treatment, and other information that is often available in medical records. The
incidence of a tumor is not always related to its severity. For instance, carcinomas of the
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skin are very common worldwide, but their clinical outcomes are among the best in oncology.
Melanoma is not the most common skin malignancy; however, it is one of the most dangerous
ones due to its potential of metastatic dissemination. According to the Brazilian National
Institute of Cancer (INCA), approximately 6,000 new cases were expected in 2018 (INCA,
2018); whereas, according to the International Agency for Research on Cancer (IARC),
approximately 7,000 new cases were reported (IARC, 2021). The number of deaths in Brazil
due to melanoma is estimated to be approximately 2,000 cases per year (INCA, 2018).

The staging system proposed by the American Joint Committee on Cancer (AJCC) is com-
monly used worldwide for melanoma. According to the latest edition (Gershenwald et al.,
2017), clinical stage IV corresponds to metastatic disease, which carries the worst progno-
sis. Even though several new modalities of treatment have been reported recently, treating
these patients is still challenging (Ascierto et al., 2018). Clinical stage III corresponds to
the nodal spreading of the melanoma; in this scenario, surgery is routinely associated with
radiotherapy and/or some modality of systemic treatment such as immunotherapy or tar-
geted therapy (Eggermont and Dummer, 2017). Clinical stages I and II correspond to the
melanoma being limited to the skin, which is associated with a better prognosis. These pa-
tients are normally treated with surgery, and the great majority will be alive after 10 years
of follow-up (Gershenwald et al., 2017).

In the traditional survival analysis approach, it is assumed that all units under study
are susceptible to the event of interest. However, such an assumption is violated in several
situations, such as in melanoma cancer studies, when the event of interest is death by disease.
In the literature, it is known that clinical stages I and II have a better prognosis, meaning
that a proportion of patients will not die from the disease; these patients are termed as having
“immune” elements, “cured”, or long-term survivors. Thus, a class of models, referred to as
cure rate models consider this type of situation and have been studied by several authors.
The Berkson-Gage model (Berkson and Gage, 1952) was probably the first model to propose
the cured fraction, which is based on the assumption that only one cause is responsible for
the occurrence of an event of interest (Cooner et al., 2007).

For melanoma, a patient death can be attributed to latent competing causes as the pres-
ence of cancer cells. These causes are based on the fact that each surviving carcinogenic cell
can be characterized by an unknown time during which the cell could become a definitive
tumor (Tsodikov et al., 2003). The books by Maller and Zhou (1996) and Ibrahim et al.
(2001) as well as the articles by Tsodikov et al. (2003), Chen et al. (1999), Yin and Ibrahim
(2005) and Rodrigues et al. (2009a) are key references.

Di�erent distributions have been considered for the number of competing causes related to
the occurrence of an event of interest. Chen et al. (1999) used Poisson distribution under a
Bayesian approach, Rodrigues et al. (2009a) considered the negative binomial and geometric
distributions, Rodrigues et al. (2009b) utilize the COM-Poisson distribution, Cancho et al.
(2013) employed the power series distribution, Gallardo et al. (2017) considered the Yale-
Simon distribution, Leão et al. (2018) assumed the Birnbaum-Saunders distribution, and
Leão et al. (2020) used the zero-modified geometric distribution.

The promotion times are usually assumed to be independent and identically distributed,
that is, the lifetimes of the carcinogenic cells follow a common distribution function, with the
most common being exponential, piecewise exponential, and Weibull, among others (Cal-
savara et al., 2017). Besides, the long-term survival models implicitly assume a homogeneous
population for the susceptible units. Although covariates can be included in the model in or-
der to explain some observable heterogeneity, there is an unobserved heterogeneity induced
by unobservable risk factors that are not commonly considered in the model (Wienke, 2011).

The models that take into account the unobservable heterogeneity are known as frailty
models (Vaupel et al., 1979). These models are characterized by the inclusion of a random
e�ect, that is, an unobservable random variable that represents the information that cannot
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be observed, such as unobservable risk factors. If an important covariate is not included in
the model, this will increase the unobservable heterogeneity, thus a�ecting the inferences
about the parameters in the model. Therefore, the inclusion of a frailty term can help to
relieve this problem (Hougaard, 1991).

The frailty term can be included in an additive form in the model. However, a multi-
plicative e�ect on the baseline hazard function is often used. Multiplicative frailty models
represent a generalization of the proportional hazards model introduced by Cox (1972), in
which the frailty term acts multiplicatively on the baseline hazard function. This approach
has been studied by several authors, notably Hougaard (1995), Sinha and Dey (1997) and
Balakrishnan and Peng (2006). Other authors, such as Calsavara et al. (2013), Calsavara
et al. (2017), Scudilio et al. (2019) and Calsavara et al. (2020) considered the frailty models
in the presence of long-term survivors.

We propose a class of survival models including a frailty term in the risk function of latent
competing causes (Cancho et al., 2011), where the distribution of the frailty is the power
variance function (PVF) family suggested by Tweedie (1984) and derived independently
by Hougaard (1986). This approach allows that the competitive causes (cancer cells) have
di�erent frailties and that the frailest will fail earlier than those that are less frail. In addition,
we consider that the number of competing causes related to the occurrence of an event of
interest is modeled by the negative binomial distribution. This class of models allows some
well-known models, depending on the parameter values, to be used. Herein, we illustrate
the applicability of the proposed model in a real medical dataset from a population-based
study of incident cases of melanoma diagnosed in the state of São Paulo, Brazil.

The rest of the paper is organized as follows. In Section 2, we present cure rate models
under latent competing causes and the frailty model following a PVF distribution for the
random e�ect, and the proposed model. Bayesian inference and simulation studies are de-
scribed in Section 3. The proposed methodology is illustrated with real melanoma data also
in this section. Finally, some final remarks are considered in Section 4.

2. Background and proposed model

In this section, we provide preliminary notions of long-term survival models under the bio-
logic perspective, considering a negative binomial distribution for latent causes. Also, notions
of the frailty model with their respective unconditional survival and density functions, as
well as the proposed model, are provided here.

2.1 Cure rate models and frailty models

The time for the jth competing cause to produce the promotion time is denoted by Zj ,
j = 1, . . . , N , where N represents the number of cancer cells. The variable N is unobserv-
able with the probability mass function (PMF) pn = P (N = n|�) for n = 0, 1, . . .. We
assume that, conditional on N and on the parameter vector Ï, Zjs are independent and
identically distributed with the cumulative distribution function F (t|Ï) and the survival
function S(t|Ï) = 1≠F (t|Ï). Also, we assume that Z1, Z2, . . . are independent from N . The
observable time of the occurrence of the event of interest is defined as T = min{Z0, Z1, . . .,
ZN }, where P (Z0 = Œ) = 1, which leads to long-term survivors p0 of the population not
susceptible to the event occurrence. According to Rodrigues et al. (2009a), the survival
function of the random variable T , conditional to parameter vector Ë, is given by

Spop(t|Ë) = P (T Ø t|Ë) =
Œÿ

n=0

P (N = n|�)[S(t|Ï)]n = AN [S(t|Ï)],
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where AN is the probability generating function (PGF) of the random variable N , which
converges when s = S(t|Ï) œ [0, 1].

We suppose that the number of cancer cells (N), conditional to � = (÷, ◊)€, follows
a negative binomial distribution (Saha and Paul, 2005) with the PMF and PGF stated,
respectively, as

pn = P (N = n|�) = �(n + ÷
≠1)

n!�(÷≠1)

3
÷◊

1 + ÷◊

4n

(1 + ÷◊)≠1/÷

and

AN (s) =
Œÿ

n=0

pns
n = [1 + ÷◊(1 ≠ s)]≠1/÷

, 0 Æ s Æ 1,

for n = 0, 1, . . . , ◊ > 0, ÷ Ø 0 and 1 + ÷◊ > 0, so that E(N|�) = ◊ and Var(N|�) = ◊ + ÷◊
2.

As discussed by Tournoud and Ecochard (2008), the parameters of the negative binomial
distribution have biological interpretations in which the mean number of competing causes
is represented by ◊, whereas ÷ is the dispersion parameter.

Under this setup, the population survival is given by

Spop(t|Ë) = {1 + ÷◊[1 ≠ S(t|Ï)]}≠1/÷
. (1)

The long-term survivors is determined from Equation (1) as p0 = limtæŒ Spop(t|Ë) =
(1 + ÷◊)≠1/÷

> 0.
Amico and Van Keilegom (2018) reviewed the literature on long-term survival models and

it is a recommended reference about the subject.
The frailty model considers a proportional hazard structure conditional on the random

e�ect V . The random e�ect, called frailty, is a nonnegative variable that indicates the
fragility of the unit. According to proportional hazard approach described by Cox and
Oakes (1984), the conditional hazard is expressed as h(t|V ) = V h0(t), where h0 is the
baseline hazard function.

The survival function of T conditional to V = v is given by

S(t|V, Ï) = S0(t|Ï)V
, (2)

where S0 denotes the baseline survival function.
In this paper, we suppose that the frailty variable V in Equation (2) follows the family of

PVF distributions with parameters µ, Â, and “, suggested by Tweedie (1984) and derived
independently by Hougaard (1986).

Let V be a random variable following a PVF distribution with parameters µ, Â, and “ so
that the density function can be written as (Wienke, 2011)

fv(v; µ, Â, “) = exp
5
≠Â(1 ≠ “)

3
v

µ
≠ 1

“

46
1
fi

Œÿ

k=1
(≠1)k+1 [Â(1 ≠ “)]k(1≠“)

µ
k“�(k“ + 1)

“kk! v
≠k“≠1

◊ sin(k“fi),

where µ > 0, Â > 0 and 0 < “ Æ 1.
Following the historical definition of frailty originally introduced in the field of demography

(Vaupel et al., 1979) and to make sure that the model is identifiable (Wienke, 2011), we
consider the restriction E(V|µ, Â, “) = µ = 1. Consequently the Var(V|µ, Â, “) = µ

2
/Â =

‡
2, where ‡

2 is interpreted as the measure of unobserved heterogeneity.
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In order to eliminate the unobserved quantities, the random e�ect can be integrated out.
Thus, the marginal survival function is given by

S(t|Ïú) = EV [S(t|vj , Ï)] =
⁄ Œ

0

exp [≠H0(t|, Ï)vj ] fv(vj |“, ‡
2)dvj = Lv[H0(t|Ï)],

where Ïú = (Ï, “, ‡
2)€ is the parameter vector, fv is the density function of V conditional

to “ and ‡
2, H0 is the cumulative baseline hazard function and Lv denotes the Laplace

transform of the frailty distribution.
The unconditional survival and density functions in the PVF frailty model are expressed,

respectively, by

S(t|Ïú) = exp
I

1 ≠ “

“‡2

C

1 ≠
A

1 + ‡
2
H0(t|Ï)
1 ≠ “

B“DJ

(3)

and

f(t|Ïú) = h0(t|Ï)
3

1 + ‡
2
H0(t|Ï)
1 ≠ “

4“≠1
exp

;
1 ≠ “

“‡2

5
1 ≠

3
1 + ‡

2
H0(t|Ï)
1 ≠ “

4“6<
. (4)

Besides providing an algebraic treatment of the closed form for the marginal survival, the
PVF family is a flexible model in the sense that it includes many other frailty models as
special cases. For instance, the gamma frailty model is obtained if “ = 0; and, in the case
of “ = 0.5, the inverse Gaussian distribution is derived. The positive stable is a special case
of the PVF distribution; however, to show this fact, some asymptotic considerations are
necessary.

2.2 The frailty long-term survival model

Thus, as an alternative to the usual cure rate models given in Equation (1), we propose a
new model that incorporates a frailty term for each competing cause and consider that, con-
ditional on N = n and on Ïú, the latent times follow a survival function as in Equation (3).
As the number of competing causes follows a negative binomial distribution, the population
survival function with the PVF frailty is given by

Spop(t|Ë) =
C

1 + ÷◊

A

1 ≠ exp
I

1 ≠ “

“‡2

C

1 ≠
A

1 + ‡
2
H0(t|Ï)
1 ≠ “

B“DJBD≠1/÷

, (5)

where Ë = (Ïú
, �)€.

Usually, the most common choices for the promotion time distribution that specify the
function S(t|Ï) have been exponential, piecewise exponential, or Weibull, among others. To
capture the unobservable characteristics of each competing cause, we propose to incorporate
a random e�ect (frailty term) on the baseline hazard function that acts multiplicatively in
the promotion time. This approach allows that the competitive causes have di�erent frailties
and that the frailest will fail earlier than those that are less frail (Wienke, 2011).

We assume a Weibull distribution for the cumulative baseline hazard function, given by
H0(t|Ï) = exp(–)t⁄, where – œ R, ⁄ > 0 and Ï = (–, ⁄)€. Henceforward, we will refer to
the model in which the survival function is as shown in Equation (5), by the PVF frailty
cure rate model or simply the PVF cure rate model (PVFCR). Note that the usual cure
rate model given in Equation (1) is obtained as ‡

2 æ 0.
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3. Bayesian inference and simulation study

In this section, we provide the Bayesian inference and simulation studies in order to eval-
uate the performance of the Bayesian estimators of the proposed model under di�erent
sample sizes and degree of heterogeneity in the sample. Also, we provide here the real data
application.

3.1 Bayesian inference

Let us consider the situation when the time to the event is not completely observed and
is subject to right censoring. For a given sample of size m, the observed time for the ith
unit is Wi = min{Ti, Ci}, with Ti = min{Zi0, Zi1, . . . , ZiNi} and Ci is the censoring time, for
i = 1, . . . , m. Let ”i be an indicator variable, in which ”i = 1 if Wi = Ti and ”i = 0 otherwise.
We include the covariate through the expected number of competing causes by E(Ni|�) =
◊i = exp(x€

i —), i = 1, . . . , m, where — is a k ◊ 1 vector of regression coe�cients. The
observed data are represented by D = (m, w, ”, X), w = (w1, . . . , wm)€, ” = (”1, . . . , ”m)€,
and X is an m ◊ k matrix containing the covariates.

The likelihood function of parameter Ë = (Ïú
, �)€ = (–, ⁄, “, ‡

2
, ÷, —)€ under noninfor-

mative censoring can be written as

L(Ë|D) Ã
mŸ

i=1

[fpop(wi|Ë)]”i [Spop(wi|Ë)]1≠”i

Ã
mŸ

i=1

Ë
exp(x€

i —)f(wi|Ïú)
È”iÓ

1 + ÷ exp(x€
i —)[1 ≠ S(wi|Ïú)]

Ô≠ 1
÷

≠”i

,

where S(wi|Ïú) and f(wi|Ïú) are given in Equations (3) and (4), respectively.
The posterior distribution of Ë comes out to be

fi(Ë|D) Ã fi(Ë)⁄r exp
C

mÿ

i=1
”ix

€
i — + r

3
– + 1 ≠ “

“‡2

4D
mŸ

i=1

C
w

⁄≠1
i

3
1 + ‡

2 exp(–)w⁄
i

1 ≠ “

4“≠1D”i

◊
mŸ

i=1

5
1 + ÷ exp(x€

i —)
3

1 ≠ exp
;

1 ≠ “

“‡2

5
1 ≠

3
1 + ‡

2 exp(–)w⁄
i

1 ≠ “

4“6<46≠1/÷≠”i

◊
mŸ

i=1
exp

5
≠

3
1 ≠ “

“‡2

4 3
1 + ‡

2 exp(–)w⁄
i

1 ≠ “

4“6”i

, (6)

where r =
qm

i=1
”i and fi(Ë) is the prior distribution of Ë.

We consider independent prior distributions by defining them as — ≥ Normalk+1(0, 100I),
with I being a (k + 1) ◊ (k + 1) identity matrix, – ≥ Normal(0, 100), “ ≥ Uniform(0, 1),
and ÷, ⁄ and ‡

2 following a gamma distribution with mean value of 1 for all and variances
of 1, 100 and 1, respectively. In this paper, no prior information about the parameters is
available, which is the reason for the choice of non-informative prior distributions, besides
of the assumption that the parameters are independent a prior. It is possible that the prior
distributions can be postulated by expert knowledge and past experiences in situations they
are available.

The posterior density of Ë in Equation (6) is analytically intractable because the integra-
tion of the joint density is not easy to perform. An alternative is to rely on Markov chain
Monte Carlo (MCMC) simulations. Here, we consider the adaptive Metropolis-Hastings al-
gorithm with a multivariate distribution as the proposed distribution (Haario et al., 2005)
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implemented in the statistical package LaplacesDemon (Hall et al., 2020), which provides a
friendly environment for Bayesian inference within the R program (R Core Team, 2020).

As a result, a sample of size np from the joint posterior distribution of Ë is obtained
(eliminating burn-in and jump samples). The sample from the posterior can be expressed
as (Ë1, Ë2, . . . , Ënp). The posterior mean of Ë can be approximated by

‚Ë = 1
np

npÿ

k=1

Ëk, (7)

and the posterior mean of the long-term survivors is approximated by

‚p0 = 1
np

npÿ

k=1

(1 + ÷k◊k)≠1/÷k . (8)

Considering the function Yk(t) = Spop(t|Ëk), where Spop(t|Ëk) is presented in Equation (5),
conditional to Ëk, the posterior mean of the improper survival function is approximated by

‰Spop(t|Ë) = 1
np

npÿ

k=1

Yk(t), for each t > 0. (9)

3.2 Simulation study

For data generation in this simulation study, we consider the model in given in Equation (5)
with the Weibull distribution for the cumulative baseline hazard function with – = 0, ⁄ = 1
(exponential distribution with a rate of exp(–)), and one binary covariate X drawn from a
Bernoulli distribution with the parameter 0.5. The PVF frailty distribution parameters are
“ = 0.5 and ‡

2 œ {0.5, 1, 1.5, 2}. The data of failure times were simulated with ÷ = 0.5,
◊l = exp(—0 + l—1), and l = 0, 1, where —0 = ≠0.5 and —1 = 0.7. The attribution of the
parameters’ values is motivated by the estimates obtained from real dataset application in
Section 3.3 when fitted the model with only sex as a covariate.

In this way, p0l = (1 + ÷◊l)≠1/÷, so that the long-term survivors for the two levels of X

are p00 = 0.59 and p01 = 0.39. The censoring times were sampled from the exponential
distribution with the parameter · (rate), where · was set in order to control the propor-
tion of censored observations. The algorithm to generate the observed times and censoring
indicators is presented in the Algorithm 1.

Algorithm 1 Data generation algorithm.
1: Draw Xi ≥ Bernoulli(0.5) and ui ≥ Uniform(0, 1).
2: Let Xi = l. If ui < p0l, ti = Œ, otherwise,

ti = (1 ≠ “)
‡2 exp(–)

3;
1 ≠ “‡

2

1 ≠ “
log

5
1 ≠

3
u

≠÷ ≠ 1
÷ exp(—0 + —1xi)

46<1/“

≠ 1
4

.

3: Draw ci ≥ Exponential (·) , which controls the proportion of censored observations.
4: Let wi = min{ti, ci}.
5: If ti < ci, set ”i = 1, otherwise, ”i = 0, for i = 1, . . . , m.

We consider four sample sizes, m = 100, 300, 500 and 1000. For each combination of
parameter values and sample sizes, we simulated B = 1000 random samples.
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As mentioned previously, the Bayesian estimation procedures were performed using the
adaptive Metropolis-Hastings algorithm such that the estimation of the covariance matrix is
updated every 100 iterations. We generated 40,000 values for each parameter, disregarding
the first 10,000 iterations to eliminate the e�ect of the initial values. In addition, jumps of size
30 were chosen to reduce the correlation e�ects between the samples. As a result, the final
sample size of the parameters generated from the posterior distributions was np = 1,000. For
good convergence results to be obtained, the convergence of the chains was monitored in all
simulation scenarios, through monitoring graphics similar to what we did in the application
(Section 3.3) and made available in the Appendix.

For each random sample, the estimates of Ë and the long-term survivors are obtained by
Equation (7) and (8), respectively. We computed the average of B estimates of Ë (AE) and
the root of the mean squared error (RMSE) of the estimators obtained from the PVFCR
model. The results are summarized in Table 1.

According to the results, the average estimates of p00 and p01 were not a�ected by the
increase of ‡

2 value. Even for small sample sizes, the average estimates were close to the
fixed values. The RMSE values appear reasonably close to zero as the sample size increases,
except for the parameter ‡

2, which needs a large sample size close to zero. For a fixed sample
size, the RMSE of the ‡

2 estimation increases as the ‡
2 also increases.

To discuss the computational time, we simulated 100 datasets of each configuration and
summarize these times (in seconds) in Table 2. The computational time increases as the
sample size increases. For example, when m = 100 we take about 20 seconds, on average,
to fit the proposed model, while we need about 80 seconds on average when m = 1000,
regardless ‡

2 value. This simulation study was conducted in a computer with the following
configuration: Intel(R) Core(TM) i7-core 1.80GHz[Cores 4] processor (logical processors 8),
8 GB RAM, and Microsoft Windows 10 Home Single Language operating.

3.3 Application

The melanoma dataset used in this study is part of a retrospective cohort of patients di-
agnosed with melanoma in the state of São Paulo, Brazil, between 2000 and 2014, with
follow-up conducted until 2018. The records were provided by the Fundação Oncocentro de
São Paulo (FOSP), which is responsible for coordinating the Hospital Cancer Registry of
the State of São Paulo, and it can be downloaded in http://www.fosp.saude.sp.gov.br.
The FOSP is a public institution connected to the State Health Secretariat, which assists
the study and implementation of public policies in the field of Oncology.

The time to death due to cancer was defined as the period between the dates of melanoma
diagnosis and death. Those patients who did not die due to melanoma during the follow-up
period were characterized as right-censored observations. The sample size was m = 5358
patients and the percentage of censored observations was 71%. The explanatory variables
measured at baseline were as follows: sex (male or female), age (Æ 45 years or > 45 years),
education level (no formal education, primary school, high school, or college), and cancer
clinical stage (I, II, III or IV).

This datas were studied by Calsavara et al. (2020), where they evaluated only the e�ect of
surgery in lifetime considering a non-proportional hazards model with a frailty term. Here,
we also consider other relevant information available in the registry, such as gender, age at
diagnosed, education level, and the clinical stage, as previously mentioned.

In the observations, 49.38% were male, and 79% were younger than 45 years old. For the
education level, 58.3% had a primary school degree, 19.3% completed high school, 15% had
a college degree and the remaining (7.4%) with no formal education. A total of 42.83% of the
melanoma cases were classified as clinical stage I; II: 23.12%; III: 18.23%; and IV: 15.82%.

http://www.fosp.saude.sp.gov.br
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Table 1. The RMSE and the AE values for simulated data from the PVFCR model when p00 = 0.59,

p01 = 0.39, —0 = ≠0.5, —1 = 0.7, – = 0, ⁄ = 1, ÷ = 0.5, and “ = 0.5.

Sample size (m)
100 300 500 1000

‡
2 Parameter RMSE AE RMSE AE RMSE AE RMSE AE

p00 0.071 0.587 0.039 0.588 0.032 0.587 0.022 0.588
p01 0.069 0.403 0.038 0.395 0.031 0.392 0.022 0.389
—0 0.545 -0.192 0.338 -0.299 0.294 -0.334 0.198 -0.393
—1 0.465 0.857 0.257 0.810 0.203 0.793 0.150 0.765

0.5 ÷ 1.055 1.394 0.825 1.116 0.727 1.008 0.531 0.835
– 0.405 -0.210 0.289 -0.155 0.247 -0.133 0.188 -0.092
⁄ 0.205 1.116 0.116 1.053 0.095 1.039 0.065 1.019
“ 0.085 0.471 0.103 0.481 0.110 0.476 0.112 0.467
‡

2 0.545 0.988 0.445 0.891 0.407 0.844 0.381 0.788
p00 0.073 0.588 0.041 0.588 0.033 0.588 0.023 0.587
p01 0.072 0.404 0.038 0.396 0.031 0.394 0.021 0.390
—0 0.560 -0.182 0.392 -0.262 0.318 -0.307 0.232 -0.367
—1 0.481 0.871 0.288 0.837 0.218 0.810 0.159 0.775

1 ÷ 1.097 1.444 0.948 1.227 0.805 1.095 0.618 0.905
– 0.538 -0.375 0.419 -0.310 0.360 -0.267 0.290 -0.192
⁄ 0.168 1.064 0.108 1.015 0.086 1.001 0.069 0.996
“ 0.094 0.455 0.121 0.444 0.124 0.436 0.127 0.422
‡

2 0.293 1.056 0.278 0.990 0.273 0.956 0.325 0.960
p00 0.068 0.585 0.042 0.585 0.033 0.586 0.023 0.586
p01 0.068 0.399 0.039 0.395 0.031 0.394 0.022 0.389
—0 0.584 -0.135 0.438 -0.220 0.333 -0.289 0.254 -0.344
—1 0.505 0.892 0.298 0.845 0.215 0.808 0.163 0.785

1.5 ÷ 1.167 1.516 1.048 1.309 0.836 1.130 0.673 0.961
– 0.667 -0.534 0.536 -0.434 0.442 -0.359 0.369 -0.293
⁄ 0.164 1.027 0.108 0.983 0.089 0.973 0.073 0.970
“ 0.108 0.437 0.124 0.431 0.133 0.416 0.137 0.404
‡

2 0.496 1.118 0.538 1.064 0.533 1.080 0.540 1.095
p00 0.072 0.582 0.042 0.585 0.034 0.583 0.024 0.585
p01 0.066 0.395 0.038 0.393 0.030 0.392 0.021 0.390
—0 0.589 -0.128 0.463 -0.216 0.391 -0.245 0.269 -0.334
—1 0.483 0.894 0.289 0.850 0.239 0.823 0.162 0.784

2 ÷ 1.140 1.502 1.056 1.307 0.961 1.214 0.696 0.979
– 0.751 -0.632 0.621 -0.530 0.572 -0.491 0.441 -0.370
⁄ 0.154 0.988 0.110 0.957 0.099 0.950 0.083 0.950
“ 0.105 0.438 0.130 0.419 0.133 0.415 0.132 0.407
‡

2 0.920 1.147 0.948 1.112 0.946 1.117 0.890 1.211

Table 2. Minimum (Min.), first quartile (1qt), median, mean, third quartile (3qt), maximum (Max.) and

standard deviation (SD) of the computational times (in seconds) to fit the proposed model for 100 simulated

datasets when p00 = 0.59, p01 = 0.39, —0 = ≠0.5, —1 = 0.7, – = 0, ⁄ = 1, ÷ = 0.5, and “ = 0.5.

‡
2

m Min. 1qt Median Mean 3qt Max. SD
100 17.552 19.857 20.235 20.611 21.047 25.153 1.435

0.5 300 32.851 33.305 33.680 34.034 34.615 37.338 1.000
500 45.156 46.119 46.997 47.120 47.862 50.318 1.179
1000 73.332 78.920 80.223 80.319 81.589 86.031 2.232
100 17.802 19.802 20.130 20.578 21.017 25.440 1.462

1 300 32.669 33.108 33.414 33.756 34.104 36.512 0.908
500 45.354 46.114 46.726 47.165 47.981 53.343 1.399
1000 72.485 78.950 80.214 80.110 81.444 87.051 2.438
100 17.459 19.774 20.140 20.482 21.093 24.777 1.392

1.5 300 32.601 33.218 33.464 33.786 34.084 36.288 0.894
500 45.301 46.055 46.951 47.226 48.014 53.091 1.445
1000 72.669 78.528 79.973 79.941 81.424 87.039 2.451
100 17.780 19.871 20.300 20.646 21.181 25.277 1.413

2 300 32.703 33.261 33.598 34.031 34.622 37.533 1.062
500 45.368 46.351 46.907 47.216 48.038 51.567 1.161
1000 71.902 78.524 79.632 79.794 81.015 84.453 2.504

Figure 1 presents the Kaplan-Meier estimates for each explanatory variable. Of note, there
was strong evidence that a fraction of the population had been long-term survivors. Among
all of the variables considered in our study, those with clinical stage I melanoma had a better
prognosis.
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Figure 1. Kaplan-Meier estimates for the melanoma dataset grouped by sex, age, education level, and clinical stage,

respectively.

To evaluate the e�ects of sex, age, education level, and clinical stage, the PVFCR model
was fitted to the dataset. The adaptive Metropolis-Hastings algorithm was run, discarding
the first 20,000 iterations as burn-in samples and using a jump of size 150 to avoid correlation
problems, with a sample size of np = 1,000. The convergence of the chain was evaluated
by multiple runs of the algorithm from di�erent starting values and was monitored through
graphical analysis. Good convergence results were obtained (see Appendix). The estimates
of Ë and the long-term survivors were obtained by Equation (7) and (8), respectively, and
the posterior mean of the improper survival function was given by Equation (9).

Table 3 lists the posterior mean, posterior standard deviation and 95% highest poste-
rior density (95% HPD) intervals for all parameters from the PVFCR model. None of the
parameters related to the explanatory variables have a 95% HPD value of zero.

The PVFCR model allows us to capture and to quantify the degree of unobservable het-
erogeneity, represented by ‡

2, obtaining a posterior mean of 1.159 (95% HPD: 0.018; 2.687),
which indicates a reasonable degree of unobserved heterogeneity in the sample. It is of
great importance in clinical practice, once important covariates were not observed and not
available in the dataset, such as Breslow thickness, ulceration and Mitotic rate.

Breslow thickness is the single most important prognostic factor for clinically localized
primary melanoma. It is measured from the top of the granular layer of the epidermis (or,
if the surface is ulcerated, from the base of the ulcer) to the deepest invasive cell across the
broad base of the tumor (dermal/subcutaneous). Ulceration is an integral component of the
AJCC staging system and an independent predictor of outcome in patients with clinically
localized primary cutaneous melanoma. Multiple studies indicate that mitotic count is an
important prognostic factor for localized primary melanoma since it represents tumor cells
division (Bertolli et al., 2019; Fonseca et al., 2020).
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Table 3. The posterior mean, standard deviation (SD) and 95% HPD of the fitted PVFCR model param-

eters.

95% HPD
Parameter Mean SD Lower Upper
⁄ 1.585 0.060 1.465 1.705
– -3.045 0.220 -3.500 -2.659
÷ 1.477 0.175 1.126 1.818
—0 -2.516 0.249 -2.984 -2.010
—sex (male) 0.572 0.078 0.402 0.715
—age (>45 years) 0.311 0.097 0.115 0.492
—education (no formal study) 1.094 0.174 0.782 1.415
—education (primary school) 0.595 0.129 0.339 0.832
—education (high school) 0.432 0.149 0.156 0.738
—stage (II) 1.338 0.117 1.123 1.565
—stage (III) 2.492 0.132 2.259 2.760
—stage (IV) 4.697 0.183 4.354 5.060
“ 0.380 0.246 0.001 0.813
‡

2 1.159 0.763 0.018 2.687
College is the baseline for education level and stage I is the baseline for the melanoma clinical

stage.

All of the findings of this study are consistent with those observed in routine clinical
practice. Sex and age have already been reported as prognostic factors, suggesting that
young patients and women have a better prognosis (Sabel et al., 2005; Balch et al., 2014).
The education level is very likely to be related to knowledge about diseases and the necessity
of medical evaluation for an early diagnosis. Clinical staging is also used for prognosis
stratification, and the curves shown in this paper are very similar to those presented in the
three latest updates of the AJCC staging system for melanoma (Balch et al., 2001, 2009;
Gershenwald et al., 2017). The long-term survivors’ estimates and survival estimates for a
specific patient can be seen in Figures 2 and 3, respectively. As expected, the patients with
clinical stage IV melanoma had a worse prognosis, regardless of their sex and age. On the
other hand, the patients in clinical stage I melanoma as well as females and those younger
than 45 years old had a better prognosis.
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Figure 2. Long-term survivors’ estimates (symbol) and 95% HPD intervals (bars) according to the fitted PVFCR

model by considering sex (f, female and m, male), age (Æ 45 years and > 45 years), clinical stage (I, II, III and IV),

and education level (no formal study, primary school, high school, and college).
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Figure 3. Survival functions estimated by the PVFCR model considering sex (f, female and m, male), age (Æ 45

years and > 45 years), and clinical stage I, II, III, and IV, respectively, for a fixed education level (high school

category).

4. Final remarks

In this paper, we studied the cure rate model formulated by Cancho et al. (2011) in a
di�erent way, that is, we considered a random unobservable e�ect in promotion time of
each competing cause, which allowed the unobserved heterogeneity to be quantified. The
PVF frailty model was considered for the latent variables, and it included many other
frailty models as special cases. A simulation study was conducted to illustrate the reliable
performance of the Bayesian estimators of the proposed model, as the RMSE was reasonably
close to zero as the sample size increased.

A point of attention is the fact that for large values of the parameter ‡
2, one needs a

large sample size for RMSE goes close to zero. However, it is worth to note that we obtained
satisfactory values of RMSE and average of the estimates when ‡

2 = 1 that is the close
value of the estimated ‡

2 in the application to the real dataset.
The applicability of the proposed model was demonstrated with a real melanoma dataset,

explaining the model fit results and discussing its relevance in the real world. We hope that
this model can be generalized to wider applications in survival analysis.
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Appendix

MCMC convergence monitoring for PVFCR model in Melanoma dataset

A jump of size 150 was considered to reduce correlation e�ects between the samples, as one
can see in the autocorrelation graphs in figures 4, 5 and 6. Thus, final samples are considered
with a lag of 150. After burn-in (20000) and jump samples, a sample of 1000 size from the
posterior distribution of the parameters is generated. The time series graphs in Figures 7,
8 and 6 were built from the final posterior distribution sample, in which a type of blur is
observed in a small variability of sampled values.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  cadeia[, j]

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  cadeia[, j]

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  cadeia[, j]

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  cadeia[, j]

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  cadeia[, j]

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series  cadeia[, j]

Figure 4. Autocorrelation graphs for ⁄, –, ÷, —0, —sex and —age parameters.
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Figure 5. Autocorrelation graphs for —school and —stage parameters.
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parameters.
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Figure 7. Time series graphs for ⁄, –, ÷, —0, —sex and —age parameters.
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Abstract

Synthetic aperture radar is an e�cient remote sensing tool by producing high spa-
cial resolution images. But, synthetic aperture radar data su�er speckle noise e�ect
that di�cult their processing (for example, making boundary detection). We propose
and assess edge detectors for synthetic aperture radar imagery based on stochastic dis-
tances between models.These edge detectors stem from generalized divergences with
good asymptotic properties. Results reveal that divergence-based detectors can outper-
form the likelihood-based counterpart.
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1. Introduction

Because of its all-time, all-weather, high-penetration, and high-resolution imaging capabil-
ity on a global scale, synthetic aperture radar (SAR) has become an essential tool for land
survey, resource mapping, environmental monitoring, disaster rescue, and national security.
SAR systems have progressed from low to high resolution, single polarization to full polar-
ization, and single frequency to multifrequency. SAR images can be analyzed using a variety
of techniques. There are primarily two types of methods depending on their theoretical foun-
dations: electromagnetic (EM) physics methods based on Maxwell’s equations (Kong, 1990),
and statistical methods which focus on the image data.

Due to the high complexity of the EM approach, both theoretically and computation-
ally, only simplified or empirical models for specific scenarios can be created. The statistical
approach is focused on the relationships between pixel values and their distributional char-
acteristics.

ú
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SAR image statistical analysis can be traced back to the 1950s. The first statistical study
was focused on SAR clutter in the ocean. Since early radar images had poor resolution, the
Rayleigh speckle model was developed under the assumption of the Central Limit Theorem,
resulting in the Rayleigh distribution for the amplitude of radar echoes (Ward et al, 2006).

The Rayleigh model, however, became less reliable as the spatial resolution of SAR images
improved: smaller areas comprise less elements in the summation, making the large sample
assumption questionable in many cases.

Ward (1981) proposed the multiplicative model in 1981, a turning point in statistical SAR
data description. Such an approach generalizes the Rayleigh model, and bridges the EM and
statistical approaches (Yue et al, 2020, 2021)

The central problem to be described is the presence of an interference pattern, common to
all images obtained with coherent illumination, called speckle. Although deterministic, the
precise knowledge of speckle amounts to specifying the EM characteristics of each scattering
element within a resolution cell. This is possible when there are a few well-known and simple
backscatterers as, for instance, a single small sphere or a few dipoles (Sant’Anna et al, 2008).
The multiplicative model is an adequate approach when the number of backscatterers or
their properties are unknown.

The models that arise from the multiplicative description are neither Gaussian nor ad-
ditive. Classical image processing techniques are, at best, sub-optimal in such scenario.
Therefore, SAR imagery processing requires specialized models and methodologies. To that
end, the use of Information Statistical Theory measures combined with the multiplicative
modeling approach has been successfully adopted for treating SAR images.

Edge detection is one of the fundamental image processing techniques. Gambini et al
(2006) proposed a method that relies on comparing two samples for estimating the position
of the edge along a thin strip of data. Gambini et al (2008) compared five strategies based on
SAR data or on estimates of the target roughness. Wei and Feng (2015), assuming a gamma
model, derived a detector with low false alarm rate, but its performance strongly depends
on the settings. Giron et al (2012) used a nonparametric approach with good results but,
again, the performance is a�ected by the underlying distribution of the data.

In this paper, we assume that intensity SAR data follow the G0

I model. This distribution
is recognized in the literature as the universal model for this kind of observations (Mejail et
al, 2003). Frery et al (2011) showed that using Information theory measures (as divergences
and entropies) combined with statistical inference is a powerful methodology. Recently,
Nikooravesh (2018) developed estimation procedures for the quantile function by means
of Shannon and Tsallis entropies. We propose boundary detectors which are competitive
with respect to those based on the joint likelihood, which are computationally demanding,
as discussed by Nascimento et al (2014). We propose and discuss two boundary detection
schemes based on the Kullback-Leibler (KL) and Rényi divergences. Additionally, we also
investigate their performance at the limit case when intensities are gamma distributed.
Results provide evidence in favor of the detector based on the Rényi divergence between G0

I
models.

The paper unfolds as follows. Section 2 recalls the G0

I model. In Sections 3 and 4, we
discuss the divergence measures and boundary detection procedures, respectively. Section 5
shows results of a simulation study and an application to an actual SAR image. Finally,
Section 6 concludes the paper.

2. Model for speckled data: The G0

I model

The multiplicative model for the observation at position (i, j) of an intensity SAR image
describes it as the outcome of the random variable Z(i, j) = X(i, j)Y (i, j), where X(i, j) and
Y (i, j) are independent random variables. The latter, which describes the speckle, follows
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a unitary-mean gamma distribution with shape parameter L Ø 1; this parameter is known
as “number of looks,” it is proportional to the signal-to-noise ratio, and it is often fixed for
the whole image. The unobserved quantity of interest, X(i, j), is called “backscatter.” The
backscatter is positive, and contains all the relevant information about the target.

Assuming a Reciprocal Gamma law for the backscatter (Frery et al, 1997), we obtain that
the density of Z is expressed by

fZ(z; –, “, L) = LL�(L ≠ –)
“–�(≠–)�(L)zL≠1 (“ + Lz)–≠L , z > 0,

where – < 0 is the texture, and “ > 0 is the brightness. We denote this situation as
Z ≥ G0(–, “, L), with ⇥ = R≠ ◊ R+ ◊ [1, Œ) the parameter space.

Frery et al (1997) proved the following result. Consider the sequence of random variables
Z1, Z2, . . . in which Zi ≥ G0

I (–i, “i, L). If ≠–i, “i æ Œ such that ≠–i/“i æ —1, then the
following convergence in distribution holds:

Zi
D≠æ Z, (1)

where Z follows a gamma distribution with mean —1 and shape parameter L. In particular,
if L = 1 then the convergence is towards an Exponential law.

Fig. 1 shows four single-look unitary-mean G0

I densities with varying roughness: – œ
{≠Œ, ≠10, ≠3, ≠1.5}. Since the G0

I distribution is the Exponential law in the limit above,
we plot this density in black to serve as a reference. The densities in linear scale might look
like Exponential, but they are not, as revealed in the semi-logarithmic scale: G0

I densities
have heavier tails. The larger the texture parameter is, the heavier the tail is.

(a) Linear scale (b) Semi-logarithmic scale

Figure 1. Single-look unitary-mean G0
I densities with varying roughness.

A remarkable feature of this distribution is that it describes well extremely textured areas
(urban centers), textured regions (forests), and areas with fully developed speckle and,
thus, textureless (bare soil and crops, for instance). Figure 2 illustrates how – and “ can be
interpreted.

Due to its desirable asymptotic properties (unbiasedness, normality, and e�ciency), we
use the maximum likelihood (ML) estimator for obtaining the parameters – and “ from
data. Let Z = (Z1, Z2, . . . , Zn) be a random sample drawn from Z ≥ G0

I (–, “, L). The



74 Nascimento et al.

Figure 2. Properties of the G0
I parameters.

likelihood function of the observed sample z = (z1, z2, . . . , zn) is expressed as

L(–, “; z) =
A

LL�(L ≠ –)
“–�(≠–)�(L)

Bn nŸ

i=1

zL≠1

i (“ + Lzi)–≠L.

Assuming L fixed, the ML estimates for – and “, say ‚– and ‚“, respectively, are the solution
of the following system of nonlinear equations:

Â0(≠‚–) ≠ Â0(L ≠ ‚–) ≠ log(‚“) + 1
n

nÿ

i=1

log(‚“ + Lzi) = 0,

≠
‚–
‚“

+
‚– ≠ L

n

nÿ

i=1

(‚“ + Lzi)≠1 = 0,

where Â0 is the digamma function. This nonlinear system does not have a closed-form
solution, then, we rely on numerical optimization methods.

3. Contrast based on information andivergence

The KL divergence (or relative entropy) is a well-known way of comparing two distributions.
Divergence measures are submitted to a systematic and comprehensive treatment and, as a
result, Salicrú et al (1994) proposed the class of (h, „)-divergences.

Let Z1 and Z2 be two random variables equipped with densities fZ1 and fZ2 , respectively,
with common support I ™ R. The (h, „)-divergence between Z1 and Z2 is defined by

Dh
„(Z1ÎZ2) = h

3⁄

I
„

1fZ1(z;✓1)
fZ2(z;✓2)

2
fZ2(z;✓2)dz

4
,

where „ : (0, Œ) æ [0, Œ) is a convex function, h : (0, Œ) æ [0, Œ) is a strictly increasing
function with h(0) = 0, and indeterminate forms are assigned value zero. Table 1 shows
three choices of h and „ functions, and the resulting divergences.
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Table 1. „ and h functions, and related divergences.
(h, „)-distance/notation h(y) „(x)

Kullback-Leibler/KL y/2 (x ≠ 1) log(x)
Rényi (order 0 < — < 1)/RD:— 1

—≠1
log((— ≠ 1)y + 1), 0 Æ y < 1

1≠—
x1≠—

+x—≠—(x≠1)≠2

2(—≠1)

Bhattacharyya/BA ≠ log(≠y + 1), 0 Æ y < 1 ≠
Ô

x + x+1

2

In particular, consider Z1 and Z2 be random variables following the G0

I model and indexed
by parameters ✓1 = [–1, “1, L1]€ and ✓2 = [–2, “2, L2]€, respectively. The KL divergence
between Z1 and Z2 can be computed setting A(–, “, L) © LL�(L ≠ –)[“–�(≠–)�(L)]≠1.
With this

D
G0

I
KL(Z1ÎZ2) =

⁄ Œ

0
fZ1(z) log

3
fZ1(z)
fZ2(z)

4
dz

=
⁄ Œ

0
A(–1, “1, L1)z(L1≠1)(“1 + L1 z)–1≠L1

5
log

3
A(–1, “1, L1)
A(–2, “2, L2)

4

+ log
3

zL1≠1(“1 + L1 z)–1≠L1

zL2≠1(“2 + L2z)–2≠L2

46
dz

= log
3

A(–1, “1, L1)
A(–2, “2, L2)

4
+ (L1 + L2 ≠ 2)E[log(Z1)] + (–1 ≠ L1)E[log(“1 + L1 Z1)]

≠(–2 ≠ L2)E[log (“2 + L2 Z1)],

where E denotes the expected value, E[log (“1 + L1 Z1)] = log(“1) + Â(L ≠ –1) ≠ Â(≠–1),
E[log(Z1)] = log(“1) ≠ Â(≠–1) + Â(L) ≠ �(L)≠1[log(L) + 1] ≠ 1 and E[log (“2 + L2 Z1)] is a
quantify which can be defined in terms of the following integral

⁄ Œ

0
log(“2 + L2 z) zL1≠1 (“1 + L1 z)–1≠L1dz = ≠ L≠–1

2 [L1 (“2L1 ≠ “1L2)]≠L1

–1 (–2
1 ≠ 1) “2L1� (L1 ≠ –1 + 1)

◊
;

≠
(L1 ≠ –1) (“2L1 ≠ “1L2)L1 � (L1 + 1) (“1L2)–1+1

3F2
1

1, 1, L1 + 1; 2, –1 + 2; L2“1
L1“2

2

� (–1 ≠ 1)

◊ fi csc (fi–1) + (–1 + 1) (–1 ≠ L1) (“2L1 ≠ “1L2)L1

5
“2� (2 ≠ –1) log (“2) � (L1 + 1) (“1L2)–1

+ fi“1L2 csc (fi–1) (“2L1)–1 � (L1 ≠ –1 + 1) 2F1

3
1 ≠ –1, L1 ≠ –1 + 1; 2 ≠ –1; L2“1

L1“2

4 6

≠ fi
!
–2

1 ≠ 1
"

csc (fi–1) (“2L1)L1+1 (“2L1 ≠ “1L2)–1 � (L1 ≠ –1 + 1)
<

,

where pFq is the generalized hypergeometric function (Gradshteyn and Ryzhik, 1980,
Sec. 9.18). Under the conditions of Equation (1), Equation (2) collapsed to

D�

KL
(Z1ÎZ2) = L1 log(L1/—1) ≠ L2 log(L2/—2) + log(�(L2)) ≠ log(�(L1))

+ L1

1L2/—2

L1/—1

≠ 1
2

+ [Â(L1) ≠ log(L1/—1)](L1 ≠ L2).

One can note that both D
G0

I
KL

(·Î·) and D�

KL
(·Î·) are non-symmetric measurers. A simple

solution for addressing the symmetry problem is the definition of a new measure dh
„ expressed
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by

dh
„(Z1, Z2) =

Dh
„(Z1ÎZ2) + Dh

„(Z2ÎZ2)
2 . (2)

In this paper, we work with the KL distances stated as

d
G0

I
KL

(Z1, Z2) = D
G0

I
KL

(Z1ÎZ2) + D
G0

I
KL

(Z2ÎZ1)
2

and

d�

KL
(Z1, Z2) = D�

KL
(Z1ÎZ2) + D�

KL
(Z2ÎZ1)

2 .

We also consider the Rényi distance (of order 0 < — < 1) between G0

I distributions given by

(— ≠ 1) d
G0

I
RE:—(Z1, Z2) = log

3⁄ Œ

0

1
2[f—

Z1(z) f1≠—
Z2 (z) + f—

Z2(z) f1≠—
Z1 (z)]dz

4

= ≠ log(2) + log
5 ⁄ Œ

0

x—L1+(1≠—)L2≠1(“1 + L1x)—(–1≠L1)

◊(“2 + L2x)(1≠—)(–2≠L2)dx ◊ A(–1, “1, L1)—A(–2, “2, L2)1≠—

+
⁄ Œ

0

x—L2+(1≠—)L1≠1 ◊ (“2 + L2x)—(–2≠L2)(“1 + L1x)(1≠—)(–1≠L1)dx

◊A(–2, “2, L2)—A(–1, “1, L1)1≠—
6
.

The expressions of the above integrations are suppressed for simplicity. Under the conditions
of Equation (1), we have that

2 exp{(— ≠ 1) d�
RE:—(Z1, Z2)} =

3 �(L2)
(L2/—2)L2

(L1/—1)L1

�(L1)

4—≠1

◊�(—L1 + (1 ≠ —)L2¸ ˚˙ ˝
L01

) [—(L1/—1) + (1 ≠ —)(L2/—2)]≠L01

(1/(—1/L1))L1�(L1)

+
3 �(L1)

(L1/—1)L1

(L2/—2)L2

�(L2)

4—≠1
�(—L2 + (1 ≠ —)L1¸ ˚˙ ˝

L02

)

◊ [—(L2/—2) + (1 ≠ —)(L1/—1)]≠L02

(1/(—2/L2))L2�(L2) .

In particular, one obtains the Bhattacharyya distance when — = 1/2 and the final expression
is multiplied by 1/2

d�
BA(Z1, Z2) = ≠ log

3⁄ Œ

0


fZ1(z; L1, L1 —1) fZ2(z; L2, L2 —2) dz

4

= ≠L1 log(L1/—1) + L2 log(L2/—2)
2 +

1L1 + L2
2

2
log

3 (L1/—1) + (L2/—2)
2

4

≠ log
3

�
3

L1 + L2
2

44
+

5 log �(L1) + log �(L2)
2

6
.
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The Hellinger (H) distance between gamma distributions can be derived from d�

BA
(Z1, Z2)

as

d�

H
(Z1, Z2) = 1 ≠ e≠d�

BA(Z1,Z2).

We now employ these measures to propose new boundary detection tools. Although the
previous contrast discussion considers that the number of looks are di�erent and unknown,
called “equivalent number of looks”, this parameter can be assumed common and known in
the whole image. From now on, we assume it is a known constant for the G0

I law and an
estimable unknown constant for the � distribution as approached by Anfinsen et al (2009).
Under this setting, both models have the same parametric space dimension being, thus,
comparable.

4. Boundary detectors

An edge detector seeks a point on a strip of data where the statistical properties change.
The detection procedures used in this paper work in three stages: (i) identifying the cen-
troid of the candidate area (in automatic, semiautomatic, or manual manner), (ii) detecting
transition points which belong to the edge, and (iii) defining the contour using a imputation
method among the transition points, such as B-Splines (Gambini et al, 2006). We focus our
analysis on stages (ii) and (iii).

Assume that an initial region R with centroid C is available. Rays are traced from C
to points outside R. They are of the form s(i) = CPi, where the angle between rays is
\(s(i), s(i+1)), for i = 1, 2, . . . , S, being S the number of rays. Finally, the data are collected
in thin strips around these rays.

We assume that the data follow a G0

I distribution, and that there are two populations:
one inside the edge with j(i) observations, and another outside the edge with N (i) ≠ j(i)

observations. We can then model the N (i) observations around segment s(i), 1 Æ i Æ S as
I

Z(i)
k ≥ G0

I (–(i)
A , “(i)

A , L), for k = 1, . . . , j(i),

Z(i)
k ≥ G0

I (–(i)
B , “(i)

B , L), for k = j(i) + 1, . . . , N (i).
(3)

In the limit case, that is, under the conditions of Equation (1), Equation (3) becomes
I

Z(i)
k ≥ �(L(i)

A , L(i)
A /—(i)

A ), for k = 1, . . . , j(i),

Z(i)
k ≥ �(L(i)

B , L(i)
B /—(i)

B ), for k = j(i) + 1, . . . , N (i).
(4)

Note that Equation (3) collapses in Equation (4) if L(i)
A = L(i)

B = L, ≠–(i)
A /“(i)

A æ —(i)
A and

≠–(i)
B /“(i)

B æ —(i)
B , but these laws are not nested and, therefore, are competitive.

The main idea is to find the edge j(i)th on the segment s(i) as the point that provides
the best configuration according with respect to a decision rule. In the following we present
three di�erent decision rules omitting, for the sake of brevity, the index (i) since only one
strip is considered at each epoch.

The log-likelihood for the configuration stated in Equation (3) (or (4)) is given by

¸(j) = log(L(j)) =
jÿ

k=1

log(fZ1(zk;✓A)) +
Nÿ

k=j+1

log(fZ2(zk;✓B)),

where ✓A œ {[–A, “A], [LA, —A]} and ✓B œ {[–B, “B], [LB, —B]}.
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Gambini et al (2006) showed that an e�cient estimator, ‚äML, for the index on the segment
that corresponds to the transition point is stated as ‚äML = arg maxj ¸(j). However, this
procedure is computationally demanding as it needs to evaluate two likelihood functions at
each search step.

As discussed in Nascimento et al (2010), the distances derived in Section 3 can be scaled
to be asymptotically distributed as chi-square statistics:

SD
!„✓1(j), „✓2(N ≠ j)

"
= 2j(N ≠ j)vD

N
dD

!„✓1(j), „✓2(N ≠ j)
"
,

where vD = 1, —≠1, 4, and 4 for D = KL, RD:—, BA, and H, respectively, and „✓1(j) =
[‚–A(j), ‚“A(j)] and „✓2(N ≠ j) = [‚–B(N ≠ j), ‚“B(N ≠ j)] are the maximum likelihood esti-
mators for ✓1 = (–A, “A) and ✓2 = (–B, “B) using random samples of sizes j and N ≠ j,
respectively. Under mild conditions, SD

!„✓1(j), „✓2(N ≠ j)
"

is asymptotically distributed as
a ‰2

2
random variable under the null hypothesis ✓1 = ✓2.

Thus, we propose novel detectors for finding edges on SAR intensities by seeking for the
point that maximizes the test statistics between the two models, that is,

‚äD = arg max
j

SD
!„✓1(j), „✓2(N ≠ j)

"
= arg max

j
SD(j),

where D = {KL; BA; H; RD :—}.

5. Numerical results

In the simulations, we study the performance of the two edge detectors here proposed. We
use simulated data from two models, namely gamma and G0

I and edge detectors based on
the gamma and G0

I distributions. With this, we verify the robustness of the detectors when
fed with data that do not belong to the model they were originally devised. We utilize the
absolute value of the di�erence between the mean detection and actual edge position as
performance criterion, given by

D = |B̄ ≠ 100|,

where B̄ is the sample mean of detected edge and 100 is the true edge position. The smaller
this measure is, the better the performance is.

We performed a Monte Carlo simulation study with: i) 1000 replications for each situation;
ii) G0

I and � distributed data; iii) in each replicate we simulate a strip of data of size 1◊200.
The first half from one distribution, and the second from another distribution.

The first set of experiments used edge detectors based on the gamma distribution, in
which we set — = 0.9 in the Rényi distance. The observations are samples Z1, Z2 . . . , Z100

from �(‹0, ‹0/—0), and Z101, Z102, . . . , Z200 from �(‹1, ‹1/—1), with —0 = —1 = 1 (unitary
mean), ‹0 = 1 and ‹1 = 4, 6, 8.

The second set of experiments used edge detectors based on the G0

I law and samples
Z1, Z2 . . . , Z100 from G0

I (≠‹0, ‹0, 4), and Z101, Z102, . . . , Z200 from G0

I (≠‹1, ‹1, 4), with ‹0 =
1.5, 3 and ‹1 = 3, 5. These parameters provide a small but representative set of values.

Table 2 shows the performance of the Gamma-based edge detectors. The best results
(smallest errors) are highlighted in gray. In this table, finding an edge between Gamma
samples seems a di�cult task for Gamma-based detectors. The Hellinger-based detector
performs best in call cases, but the mean errors are of the order of four pixels. The Rényi-
based detector performs worst.
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Table 2. Performance measures for gamma distances in the indicated model.

Distribution and parameters gamma-based detectors
LR KL BA H RD,—

Gamma, ‹0 = 1, ‹1 = 4 26.51 6.41 11.35 5.05 60.50
Gamma, ‹0 = 1, ‹1 = 6 28.55 4.71 10.18 4.41 66.93
Gamma, ‹0 = 1, ‹1 = 8 29.64 4.68 10.88 3.96 68.94
GI

0
, ‹0 = 1.5, ‹1 = 3 27.57 12.26 13.73 7.01 4.93

GI
0
, ‹0 = 1.5, ‹1 = 5 18.19 1.25 20.80 0.14 1.70

GI
0
, ‹0 = 3, ‹1 = 5 26.75 1.56 19.98 8.65 6.44

Table 3 shows the performance of the G0

I -based edge detectors. In this table, overall, the
two edge detectors based on the G0

I distribution have similar performance. The Rényi-based
detector produces consistently better results than the KL-based one when the data follow G0

I
laws. Although the latter detector is better in two out of three cases of Gamma-distributed
samples, the di�erences are approximately 1% and 7%.

Table 3. Performance measures for GI
0 distances.

Distribution and parameters GI
0

-based detectors
KL RD,—

Gamma, ‹0 = 1, ‹1 = 4 6.30 6.68
Gamma, ‹0 = 1, ‹1 = 6 9.84 9.94
Gamma, ‹0 = 1, ‹1 = 8 10.70 10.20
GI

0
, ‹0 = 1.5, ‹1 = 3 3.23 1.27

GI
0
, ‹0 = 1.5, ‹1 = 5 5.12 1.33

GI
0
, ‹0 = 3, ‹1 = 5 3.57 1.05

The results presented in Tables 2 and 3 led us to conclude that the safest and most
versatile option for edge detection is the G0

I -based detector that uses the Rényi distance
with — = 0.9. We now are in position of submitting the detectors to real data. We present
an application to an actual SAR image to assess the proposed detectors in practice.

Figure 3(a) displays a SAR image of crops in Foulum (Denmark) from the HH (horizontal-
horizontal) polarization channel. This picture has been obtained by an EMISAR sensor with
four nominal looks. Figure 3(b) shows the reference map, and Figure 3(c) identifies classes
with shades of gray. According to the discussion about this image Foulum in Ferreira and
Nascimento (2020), there is a centroid between the wheat and rapeseed areas. We use it to
cast the rays on which the proposed detectors work. Figures 3(d) and 3(e) exhibit the result
of detecting the edges that separate wheat from rapeseed.

The following analysis is made by visual inspection on the edges reconstructed from the
estimated transition points and fourth-degree B-splines curves, as in Nascimento et al (2014).

The performance of G0

I -based detectors is consistently better than those obtained from the
� law. They provide the same good estimate of the edge. This result is in agreement with the
simulation study once the G0

I distribution is a better alternative to describe di�erent SAR
clutter. The Rényi distance furnishes the best detection for the Gamma-based detectors.

Simulation and real experiments were made in the R programming environment (Wick-
ham, 2019); functions integrate and maxLik(.,method=BFGS) were used for numerical
integration and obtaining ML estimates (equipped with moments method ones as initial
point), respectively. All studies were performed in a Intel(R) Core(TM) i5-5200U processor
at 2.20 GHz.



80 Nascimento et al.

(a) Gray level HH channel Image (b) Reference map (c) Kind of terrain

ĵ LR|Γ ĵ KL|Γ ĵ BA|Γ

ĵ H|Γ ĵ RD:0.9|Γ

(d) Gamma-based detectors

ĵ KL|GI
0 ĵ RD:0.9|GI

0

(e) G0
I -based detectors

Figure 3. Application of edge detectors based on stochastic distances on an actual SAR image.

6. Conclusions, limitations, and future research

In this paper, we proposed distance-based boundary detectors for synthetic aperture radar
data modeled by the � and G0

I laws. These proposals have wide applicability in practice,
like the Monitoring of oil spill (Fan et al, 2015) and deforestation areas in forests (Bouvet
et al, 2018). We quantified their performances with both simulated and actual data. Results
provided evidence that detectors based on Kullbak-Leibler and Rényi distances for G0

I models
outperform ones based on distances between � limit cases and on the joint � likelihood, which
have been employed in the synthetic aperture radar literature.

This paper has addressed only measures induced from the � and G0

I distributions and
approached the univariate aspect, that consist in two of its limitations.

In future works, we use the general distributions like complete G (Frery et al, 1997) and
KummerU (Deng et al, 2017).
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Abstract

The detailed study of the logit, probit and cloglog link functions is presented for the
generalized linear model with binomial response in the presence of the problem of
explanatory factors levels aggregation. Expressions are deduced for the estimators of the
parameters and their variances, in general terms, which allows for finding the particular
results for any link function chosen. The impact of the link function on the estimates is
illustrated, concluding that the use of the appropriate variance in the levels aggregation
is preferable, regardless of the link function to be used.

Keywords: Binomial regression · Generalized linear models · Level sets · Link
function
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1. Introduction

The binomial model pursues the same objectives as the classical regression model, however,
they di�er in their structure (Collet, 2002; Tutz, 2011). The crucial di�erence is that,
in the binomial model, the dependent variable follows a distribution that takes only two
possible values, zero and one, in contrast to the normally distributed response of the classical
regression model, in which any real value can be observed. Thus, the categorization of the
response variable in the binomial model leads to the second di�erence. This concerns the
need for a link function between the explanatory variables and the mean of the response.

Within the context of binomial models, the logit model is the most widely studied and
applied (Christensen, 1997; Hilbe, 2009; Hosmer and Lemeshow, 2000). It is a particular
case of the generalized linear model (Nelder and Wedderburn, 1972), when logit is the
link function between the random component and the systematic component of the model,
with the probability of success in a Bernoulli trial being modeled. Factors or treatments,
rather than variables, are postulated in the style of the conventional analysis of variance
(McCullagh and Nelder, 1989; McCulloch and Searle, 2001).

In its simplest formulation, the logit model consists of a dichotomous response variable
and a single explanatory factor. Additionally, it is assumed that the responses corresponding

ú
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to the di�erent levels of the explanatory factor are independent binomials. After adjusting
and applying this model on data in a contingency table, suppose that the researcher decides
to group some levels of the factor and reiterate the logit analysis in the usual way. With this
procedure, Ponsot et al. (2009) demonstrated that a violation of the binomial assumption
is incurred, with important implications for the variance. They suggest courses of action to
correct the problem and at the same time improve the accuracy of the results. Specifically,
based on the reference parameterization and the saturated model, the authors suggest a
procedure that takes advantage of the computations of a first logit adjustment and corrects
the distributional assumption about variance, producing more e�cient estimates and with
greater precision than those obtained if you decide to reiterate a logit adjustment. Through
simulations, strong trends were shown in favor of the proposed method, even more, if the
probabilities of success of the response variable associated are more dissimilar to each other.

Note that the aforementioned research is limited to the scope of the logit model, but
what about the problem of factor levels aggregation in models that are usually competitors
or alternatives to the logit model? The logit model is the most used for the advantages it
o�ers, however, it does not always guarantee a good fit for all binomial response data, so the
researcher may consider other alternatives (Bonat et al., 2018; Czado and Santner, 1992;
Czado and Munk, 2000). Logit is the canonical link function for binomial response data, but
probit is also popular (McCullagh and Nelder, 1989; Collet, 2002; Hosmer and Lemeshow,
2000). In fact, any di�erentiable monotonous function can serve as a link between the random
and systematic components of the binomial model, so there are many other functions that
could o�er a better fit than the traditional logit model. Therefore, keeping the problem
within the scope of generalized linear models, this work seeks to answer this question by
generalizing the procedure suggested by Ponsot et al. (2009) so that it is applicable with
any link function.

The paper has been organized as follows: Section 2 explains the problem of explanatory
factors levels aggregation. In Section 3, the fit of binomial models under this situation is
addressed through the usual method. In Section 4, we describe the method suggested by
Ponsot et al. (2009). Section 5 develops the adjustment procedures of three of the best
known binomial models (logit, probit and cloglog), using the methods proposed in Sections
3 and 4. An example of the potential application of these models is shown in Section 6.
Finally, Section 7 presents the main conclusions derived from this work.

2. The problem of explanatory factors levels aggregation

In Table 1, let yi be the observed number of successes observed in the i-th level of the factor
A and ni the total number of observations for that level.

Table 1. Observed number of successes and total of the Y response versus the A factor levels.

Y

A Number of successes Total
1 y1 n1

2 y2 n2

...
...

...
k ≠ 2 yk≠2 nk≠2

k ≠ 1 yk≠1 nk≠1

k yk nk

Total y· n·
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The corresponding responses to the di�erent levels of A are assumed independent of each
other and from a binomial population in the number of successes (Y = 1). This is

Yi
ind≥ Bin(yi; ni, pi), i = 1, . . . , k

where “ind” stands for independent, Yi is the random variable that represents the number
of successes in the i-th sample and pi, considered constant, is the probability of success
associated (0 < pi < 1). Assuming a binomial distribution in the number of successes of the
Yi at each level of the explanatory factor, implies that V[Yi] = nipi(1≠pi) and E[Yi] = nipi.

Sometimes, after adjusting a model the researcher may decide to group levels of the A

factor for various reasons. Suppose the levels k and k ≠ 1 are added doing y
ú
k≠1

= yk≠1 + yk

and n
ú
k≠1

= nk≠1 + nk, obtaining an arrangement of the data as in Table 2. The situation
could extend to more than two levels, simply by adding the last two, then these with the
previous one, and so on.

Table 2. Number of successes and total of the Y response versus the A factor levels, after the aggregation
of the k and k ≠ 1 levels.

Y

A Number of successes Total
1 y1 n1

2 y2 n2

...
...

...
k ≠ 2 yk≠2 nk≠2

k ≠ 1 y
ú
k≠1

n
ú
k≠1

Total y· n·

Usually, by reiterating the model fit procedure, the researcher assumes that the new
random variable Y

ú
k≠1

= Yk≠1 + Yk, that arises from aggregation, still has a binomial
distribution with variance

VBin[Y ú
k≠1

] = n
ú
k≠1

p
ú
k≠1

(1 ≠ p
ú
k≠1

), (1)

where n
ú
k≠1

= nk≠1 + nk and p
ú
k≠1

= E[Y ú
k≠1

]/n
ú
k≠1

= (nk≠1pk≠1 + nkpk)/(nk≠1 + nk).
In this regard, Ponsot et al. (2009) demonstrated that with this proceeding, a violation of

the original binomial assumption is incurred, with important implications for the estimated
variances. In their work, the authors deduced the following:

(1) If pk≠1 ”= pk, the binomial assumption is violated in the sample corresponding to the
level of the response variable where aggregation arises: Y

ú
k≠1

is actually distributed
Poisson-binomial (and not binomial).

(2) The right expression for the variance of Y
ú

k≠1
is

V[Y ú
k≠1

] = nk≠1pk≠1(1 ≠ pk≠1) + nkpk(1 ≠ pk). (2)

Also, the authors argued that Equations (1) and (2) are not equivalent and that in general
it has VBin[Y ú

k≠1
] Ø V[Y ú

k≠1
]. In this regard, let �V = VBin[Y ú

k≠1
] ≠ V [Y ú

k≠1
]. Then, we have

�V = nk≠1nk

nk≠1 + nk
(pk≠1 ≠ pk)2

. (3)
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From Equation 3, the authors deduced that:
(1) If pk≠1 and pk are close (pk≠1 ¥ pk), the di�erence (pk≠1≠pk)2 æ 0, so that �V æ 0

and VBin[Y ú
k≠1

] ¥ V[Y ú
k≠1

].
(2) If pk≠1 and pk are distant from each other (which occurs, for example, when pk≠1 ¥ 0

and pk ¥ 1, or pk≠1 ¥ 1 and pk ¥ 0), then the di�erence (pk≠1 ≠ pk)2 æ 1, so that
�V æ nk≠1nk/(nk≠1 + nk) and VBin[Y ú

k≠1
] ¥ V[Y ú

k≠1
] + nk≠1nk/(nk≠1 + nk). In this

situation, the greatest di�erence between the variances occurs. This di�erence can
be considerable depending on the nk≠1 and nk values.

Now, Figure 1(a) shows the behavior of the variance assumed by the researcher when
the nk≠1 and nk parameters are fixed and vary the values of pk≠1 and pk. Clearly, it
can be seen in the graph that as pk≠1 ¥ 0 and pk ¥ 0, or pk≠1 ¥ 1 and pk ¥ 1,
then VBin[Y ú

k≠1
] æ 0. Meanwhile, relative maximums are obtained along the ordered pairs

(pk≠1, pk) = (pk≠1, 0.5[1+(nk≠1/nk)(1≠2pk≠1)]), where VBin[Y ú
k≠1

] reaches the value n
ú
k≠1

/4
in each one of them (see Appendix A).

(a) (b)

Figure 1. Y ú
k≠1 variances: (a) Binomial variance (VBin[Y ú

k≠1]) assumed by the researcher; (b) True variance

(V[Y ú
k≠1]).

Note that the true variance (Figure 1(b)) shows similar behavior to the binomial variance,
when pk≠1 and pk both tend to 0 or 1. In fact, whenever pk≠1 = pk. However, this behavior
also occurs when one of them tends to 0 and the other to 1 (or viceversa). The minimum
values of the variance occur for the cases mentioned, while the maximum occurs when both
parameters take the value 0, 5 (pk≠1 = pk = 0.5), being V[Y ú

k≠1
] = n

ú
k≠1

/4 said maximum
(see Appendix B).

In Figure 2, the di�erence between the variance assumed by the researcher and the true
variance is shown. Indeed, this figure shows that the di�erences tend to 0 when pk≠1 ¥ pk.
These di�erences grow when pk≠1 and pk tend to opposite ends, reaching their maximum
values in pk≠1 ¥ 0 and pk ¥ 1, and pk≠1 ¥ 1 and pk ¥ 0.

3. Fitting a binomial model using the usual method

Next, we describe the saturated binomial model before aggregation. It is possible to use the
generalized linear model approach (Nelder and Wedderburn, 1972; McCullagh and Nelder,
1989; McCulloch and Searle, 2001; Dobson, 2002; Agresti, 2007, 2015) to the data in Table
1, when the response variables Y1, . . . , Yk are supposed independent and follow a binomial
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Figure 2. Di�erence between binomial and true variances (�V = VBin[Y ú
k≠1] ≠ V[Y ú

k≠1]).

distribution as this belongs to the exponential family of distributions. For the link, any
monotonous and di�erentiable function can be used, however, the choice of it has given rise
to the most important binomial models present in the literature (logit model, probit model,
cloglog model, to mention some, among which the first one stands out).

In its simplest sense, the saturated model (m = k) and reference parameterization can be
postulated, whereby the matrix X is a square matrix (of order k◊k) and invertible (Ponsot,
2011). Being k the reference level, this parameterization leads to the model ⌘ = X�, whose
matrix representation is:

S

WWWWWWWWU

÷1

÷2

...
÷k≠2

÷k≠1

÷k

T

XXXXXXXXV

=

S

WWWWWWWWU

1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
...

...
...

... . . . ...
...

1 0 0 0 · · · 1 0
1 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

T

XXXXXXXXV

S

WWWWWWWWU

—1

—2

...
—k≠2

—k≠1

—k

T

XXXXXXXXV

. (4)

The X matrix can be partitioned as:

X =
5
j I
1 0€

6
∆ X≠1 =

5
0€ 1
I ≠j

6
. (5)

Since ⌘ = X� ∆ � = X≠1⌘. When saturated, the model raised in Equation (4) does not
have su�cient degrees of freedom to calculate the deviance or Pearson statistics (Ponsot,
2011). However, you can still estimate its parameters (�) and determine its statistical
significance.

Let ‚÷i = g(‚µi), i = 1, . . . , k. From Equations (4) and (5), it follows in general terms that

‚—j =
I

‚÷k if j = 1
‚÷j≠1 ≠ ‚÷k if j = 2, . . . , k.

(6)

Since � ≥ AN[�, (X€WX)≠1], the parameters variance is

V[ ‚�] = (X€WX)≠1 = X≠1W≠1(X€)≠1

where W = diag {w1, . . . , wk} with wi = (ˆµi/ˆ÷i)2
VBin[Yi], for i = 1, . . . , k.
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Therefore, in general terms, the variance of ‚� is given by

V[ ‚—j ] =

Y
_____]

_____[

VBin[Yk]
(ˆµk/ˆ÷k)2

, if j = 1;

VBin[Yj≠1]
(ˆµj≠1/ˆ÷j≠1)2

+ VBin[Yk]
(ˆµk/ˆ÷k)2

, if j = 2, . . . , k.

(7)

After fitting a saturated binomial model, assume that the last two levels k≠1 and k of the
A factor are added, leaving the data arranged as in Table 2. As already mentioned sometimes
the researcher reiterates the usual adjustment process, as in the previous section, assuming
that the new random variable Y

ú
k≠1

= Yk≠1 + Yk has variance VBin[Y ú
k≠1

] = n
ú
k≠1

p
ú
k≠1

(1 ≠
p

ú
k≠1

), with n
ú
k≠1

= nk≠1 + nk and p
ú
k≠1

= (nk≠1pk≠1 + nkpk)/n
ú
k≠1

.
In this new fit, the design matrix that arises from aggregation (call X⇤) now has

dimensions (k≠1)◊(k≠1) due to the elimination of the k-th row and k-th column. However,
if the reference parameterization is maintained, then with respect to the aggregate level k≠1
is possible to propose a model as in Equation (4) on the new data set.

As in Equation (6), the estimated parameter vector elements obtained by the usual method
(denote the superscript h like ‚�úh) are expressed as

‚—úh
j =

I
‚÷ú

k≠1
, if j = 1;

‚÷j≠1 ≠ ‚÷ú
k≠1

, if j = 2, . . . , k ≠ 1.
(8)

Observe that the new diagonal matrix W úh keeps the k ≠2 elements of W , changing only
the one that corresponds to the level k ≠ 1, that is, we have

W úh = diag
)
w1, . . . , w

ú
k≠1

*

= diag

I
(ˆµ1/ˆ÷1)2

VBin[Y1] , . . . ,
(ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

)2

VBin[Y ú
k≠1

]

J

.

Thus, the variances and covariances matrix is given by

V[ b�úh] = [(X⇤)€W úhX⇤]≠1 = (X⇤)≠1(W úh)≠1[(X⇤)€]≠1

and as in Equation (7), the variance of ‚—úh
j is

V[ ‚—úh
j ] =

Y
________]

________[

VBin[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 1;

VBin[Yj≠1]
(ˆµj≠1/ˆ÷j≠1)2

+
VBin[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 2, . . . , k ≠ 1.

(9)

Equations (8) and (9) are generalizations of the usual procedure for fitting binomial models
when any di�erentiable monotone function is used as a link. Therefore, from now on, they
are part of the context that we call the generalized usual method (GUM).
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4. Fitting a binomial model using the Ponsot method

In the presence of the saturated model given in Equation (4), Ponsot et al. (2009) proposed
a method to reiterate the adjustment of a binomial model, after the levels aggregation, when
the first adjustment uses the logit link function.

Now, let g(µi) be any di�erentiable monotonous link function. Asymptotically, in the
saturated model V[X b�] = X(X€WX)≠1X€ = XX≠1W≠1(X€)≠1X€ = W≠1. Then,
under conditions of regularity and as a consequence of the usual central limit theorem, as
well as properties of the maximum-likelihood estimators, we have that

g(‚µi) = x
€
i

‚� ≥ AN

Q

ax
€
i �; w

≠1

i =
C

(ˆµi/ˆ÷i)2

VBin[Yi]

D≠1

= VBin[Yi]
(ˆµi/ˆ÷i)2

R

b . (10)

Applying the delta method in Equation (10) (Agresti, 2007), we get

µi = g
≠1(÷i)

ˆg
≠1(÷i)
ˆ÷i

= ˆµi

ˆ÷i
.

Thus, we reach

‚µi ≥ AN

1
µi = g

≠1(x€
i �);VBin[Yi]

2
.

Now, when k ≠ 1 and k levels are added, the maximum-likelihood estimator of the new
mean µ

ú
k≠1

is given by

‚µú
k≠1

= \E[Y ú
k≠1

] = \E[Yk≠1] + [E[Yk] = ‚µk≠1 + ‚µk. (11)

Due to ‚µú
k≠1

is the weighted sum of two linear functions of asymptotically independent
normal random variables, their asymptotic distribution is also normal with

E[‚µú
k≠1

] = E[‚µk≠1] + E[‚µk] = µk≠1 + µk

and

V[‚µú
k≠1

] = V[‚µk≠1] + V[‚µk] = VBin[Yk≠1] + VBin[Yk] = V[Y ú
k≠1

].

Again, using the delta method, the required distribution of ‚÷ú
k≠1

= g(‚µú
k≠1

) is
asymptotically normal with expected value E[‚÷ú

k≠1
] = g(µú

k≠1
) = ÷

ú
k≠1

and asymptotic
variance stated as

(‡2)ú
k≠1

= V[‚µú
k≠1

]
C

ˆg(µú
k≠1

)
ˆµ

ú
k≠1

D2

= V[Y ú
k≠1

]
C

ˆ÷
ú
k≠1

ˆµ
ú
k≠1

D2

. (12)

From (‡2)ú
k≠1

, Ponsot et al. (2009) suggested creating a matrix ⌃, equivalent to W≠1

from the original fit and from which its k ≠ 2 elements remains, but with the k ≠ 1 element
added corrected for true variance V[Y ú

k≠1
], as in Equation (12). This suggested matrix is of
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the form expressed as

⌃ =

S

WWWWWU

1/w1 0 · · · 0 0
0 1/w2 · · · 0 0
...

... . . . ...
...

0 0 · · · 1/wk≠2 0
0 0 · · · 0 (‡2)ú

k≠1

T

XXXXXV
.

The variance and covariance matrix of the estimators using this suggested method (now
denoted with the superscript s) is given by

V[ ‚�ús] = (X⇤)≠1⌃[(X⇤)€]≠1

resulting in

V[ ‚—ús
j ] =

Y
________]

________[

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 1;

VBin[Yj≠1]
(ˆµj≠1/ˆ÷j≠1)2

+
V[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 2, ·, k ≠ 1.

(13)

As in Equation (8), the elements of the estimated parameter vector using the suggested
method ( ‚�ús) are defined as

‚—ús
j =

I
‚÷ú

k≠1
if j = 1

‚÷j≠1 ≠ ‚÷ú
k≠1

if j = 2, · · · , k ≠ 1.
(14)

The above results are a generalization of the method suggested by Ponsot et al. (2009),
which we call the generalized suggested method (GSM). The GSM allows us to adjust a
binomial model using the suggested method, but now using any link function.

Next, we describe di�erences between the variances obtained through GUM and GSM.
Let �V(‚—ú

1
) = V[—úh

1
]≠V[—ús

1
] be the di�erence between the variances obtained by the GUM

and the GSM, for the —
ú
1

parameter. Then, from Equations (9) and (13), we have

�V(‚—ú
1
) =

VBin[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
≠

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
,

=
VBin[Y ú

k≠1
] ≠ V[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
,

= �V
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
,

where �V is defined as in Equation (3).
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For the parameters —
ú
j , with j = 2, . . . , , k ≠ 1, let �V(‚—ú

j ) = V(‚—úh
j ) ≠ V(‚—ús

j ) be the
di�erence between the variances obtained by both methods. Again, from Equations (9) and
(13), we get

�V(‚—ú
j ) =

S

WU
VBin[Yj≠1]

(ˆµj≠1/ˆ÷j≠1)2
+

VBin[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22

T

XV

≠

S

WU
VBin[Yj≠1]

(ˆµj≠1/ˆ÷j≠1)2
+

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22

T

XV

=
VBin[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
≠

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22

= V[—úh
1

] ≠ V[—ús
1

] = �V(‚—ú
1
).

This last result demonstrates that the di�erence in the variances obtained by both
methods, for the first component of the vector ‚�ú (that is, ‚—ú

1
), is the same for the remaining

components. Thus, we have that

�V(‚—ú
j ) = �V

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, for j = 1, . . . , k ≠ 1. (15)

In Equation (15), the denominator is dependent on the selected link function and the
numerator is a function of �V. The same conditions established at the end of the Section
2 apply to pk≠1 and pk.

5. Some binomial models using the GUM and GSM

Assume the k and k ≠ 1 level aggregation situation in Table 2, and let

‚pú
k≠1

= nk≠1 ‚pk≠1 + nk ‚pk

nk≠1 + nk
, (16)

as it follows from Equation (11). In this section, the adjustment procedure of three of the
best known binomial models (logit, probit and cloglog) is shown, using the methods obtained
in the previous sections.

The link function in the logit model is stated as

÷i = logit(pi) = log
3

pi

1 ≠ pi

4
= log

3
µi

n ≠ µi

4
.

Then, we have

ˆ÷i

ˆµi
= 1

nipi(1 ≠ pi)
= 1

VBin[Yi]
.
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Thus, we get

ˆµi

ˆ÷i
= VBin[Yi].

From Equations (8) and (14), the parameters estimated by both methods are identical
and equal to

‚—úh
j = ‚—ús

j =
I
logit(‚pú

k≠1
), if j = 1;

logit(‚pj≠1) ≠ logit(‚pú
k≠1

), if j = 2, . . . , k ≠ 1.

The variances of the estimators obtained by GUM, according to Equation (9), are obtained
as

V[ ‚—úh
j ] =

Y
_____]

_____[

1
VBin[Y ú

k≠1
] , if j = 1;

1
VBin[Yj≠1] + 1

VBin[Y ú
k≠1

] , if j = 2, . . . , k ≠ 1.

Meanwhile, the variances estimated by the GSM for these same estimators, according to
Equation (13), are given by

V[ ‚—ús
j ] =

Y
_____]

_____[

V[Y ú
k≠1

]
(VBin[Y ú

k≠1
])2

, if j = 1;

1
VBin[Yj≠1] +

V[Y ú
k≠1

]
(VBin[Y ú

k≠1
])2

, if j = 2, . . . , k ≠ 1.

Regarding the di�erences between these variances, from Equation (15), we have that

�V(‚—ú
j ) = �V(‚—ú

1
) = �V

(VBin[Y ú
k≠1

])2
.

Figure 3 graphically displays the behavior of �V(‚—ú
j ) for the logit model. It is observed

that its performance is very similar to that of �V shown in Figure 2.
The link function in the probit model is given by

÷i = probit(pi) = �≠1(pi) = �≠1

3
nipi

ni

4
= �≠1

3
µi

ni

4
.

Hence, we get

µi = ni�(÷i)

and since [�]Õ = „, then we have that

ˆµi

ˆ÷i
= ni„(÷i) = ni„[�≠1(pi)].
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Figure 3. Di�erences between variances estimated using the GUM and GSM (�V(‚—ú
j ) = V(‚—úh

j ) ≠ V (‚—ús
j )) with

logit link function

From Equation (8) and (14), the parameters estimated by the GUM and GSM are identical
and equal to

‚—úh
j = ‚—ús

j =
I
probit(‚pú

k≠1
), if j = 1

probit(‚pj≠1) ≠ probit(‚pú
k≠1

), if j = 2, . . . , k ≠ 1.

From Equation (9), the variances of the estimators obtained by the GUM are stated as

V[ ‚—úh
j ] =

Y
________]

________[

VBin[Y ú
k≠1

]
Ó

n
ú
k≠1

„[�≠1(pú
k≠1

)]
Ô2

, if j = 1;
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, if j = 2, . . . , k ≠ 1.

Meanwhile, the variances estimated by the GSM, according to Equation (13), are expressed
as

V[ ‚—ús
j ] =
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________]
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, if j = 2, . . . , k ≠ 1.

From Equation (15), the di�erences between these estimated variances are defined by

�V(‚—ú
j ) = �V(‚—ú

1
) = �V

Ó
n

ú
k≠1

„[�≠1(pú
k≠1

)]
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.

Figure 4 graphically displays the behavior of �V(‚—ú
j ) for the probit model. Without

considering the di�erence of scales inherent in each case, it is observed that it is similar
to that of the logit model, di�ering mainly in the borders or neighborhoods where ‚pk≠1 and
‚pk both approach 0 or 1.
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Figure 4. Di�erences between variances estimated using the GUM and GSM (�V(‚—ú
j ) = V[‚—úh

j ] ≠ V[‚—ús
j ]) with

probit link function.

The link function in the cloglog model is established by

÷i = cloglog(pi) = log[≠ log(1 ≠ pi)] = log[≠ log(1 ≠ µi/ni)] = g(µi).

By di�erentiating, we obtain

ˆ÷i

ˆµi
= ≠ 1

ni(1 ≠ pi) log(1 ≠ pi)
.

Thus, we get

ˆµi

ˆ÷i
= ≠ni(1 ≠ pi) log(1 ≠ pi).

From Equation (8) and (14), the parameters estimated by GUM and GSM are, once again,
identical and equal to

‚—úh
j = ‚—ús

j =
I
cloglog(‚pú

k≠1
), if j = 1;

cloglog(‚pj≠1) ≠ cloglog(‚pú
k≠1

), if j = 2, . . . , k ≠ 1.

The variances of the estimators obtained by the GUM, according to Equation (9), are stated
as

V[ ‚—úh
j ] =

Y
__________]
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Meanwhile, the variances estimated by the GSM for these same parameters, according to
Equation (13), are given by

V[ ‚—ús
j ] =

Y
__________]

__________[

V[Y ú
k≠1

]
[nú

k≠1
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+
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]
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ú
k≠1

) log(1 ≠ p
ú
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)]2 , if j = 2, . . . , k ≠ 1.

From Equation (15), we get

�V(‚—ú
j ) = �V(‚—ú

1
) = �V

[nú
k≠1

(1 ≠ p
ú
k≠1

) log(1 ≠ p
ú
k≠1

)]2 .

Figure 5 shows the performance of �V(‚—ú
j ) for the cloglog model. Of course, it also

constitutes a particularization of �V. However, it is observed that the region or border
where �V(‚—ú

j ) æ 0 is a little more extensive than the previous models.

Figure 5. Di�erences between variances estimated using the GUM and GSM (�V(‚—ú
j ) = V[‚—úh

j ] ≠ V[‚—ús
j ]) with

cloglog link function.

6. Illustration of the procedures

Table 3 reproduces the example presented by Ponsot (2011). There, the situation of interest
focused on studying the relationship between a Y response variable and an A explanatory
factor with three levels.

Table 3. Example: Y (0, 1) versus A(1, 2, 3).

Y

A 0 1 Total
1 189 161 350
2 300 50 350
3 32 318 350

Total 521 529 1050
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From Equation (4), it follows the saturated model using the parameterization with the
third level of the factor as reference stated as

S

U
÷1

÷2

÷3

T

V =

S

U
g(p1)
g(p2)
g(p3)

T

V =

S

U
1 1 0
1 0 1
1 0 0

T

V

S

U
—1

—2

—3

T

V .

Table 4 contains the estimates of the parameters of the linear predictor and its variances
for the di�erent binomial models, according to the link function used (for this case, logit,
probit and cloglog links). This Table also contains the Wald ‰

2 tests for H0: —i = 0 in
order to check the statistical significance of the estimated parameters, as well as the 95%
confidence intervals (CI) built for —i. The predicted probabilities and their CI, following
Agresti (2007), are shown in Table 5.

Table 4. Original model: ‚—i and Wald test (H0: —i = 0) according to the link function.

Estimation of —i 95% CI
Link i ‚—i V[‚—i] ‰2 p-value Decision LL UL
logit 1 2.296 0.034 153.3 < 0.0001 Reject 1.933 2.660

2 ≠2.457 0.046 131.5 < 0.0001 Reject ≠2.877 ≠2.037
3 ≠4.088 0.058 289.5 < 0.0001 Reject ≠4.559 ≠3.617

probit 1 1.132 0.009 201.8 < 0.0001 Reject 1.148 1.516
2 ≠1.432 0.013 154.3 < 0.0001 Reject ≠1.658 ≠1.206
3 ≠2.400 0.016 367.6 < 0.0001 Reject ≠2.645 ≠2.154

cloglog 1 0.872 0.005 153.3 < 0.0001 Reject 0.734 1.010
2 ≠1.356 0.011 161.8 < 0.0001 Reject ≠1.565 ≠1.147
3 ≠2.742 0.025 300.7 < 0.0001 Reject ≠3.052 ≠2.432

where LL: lower limit and UL: upper limit.

Note that the three binomial models reject the null hypotheses H0: —i = 0, that is, their
parameters are significant and fit the data well. Among them, the probit model is the one
with the best fit for presenting higher values for the ‰

2 statistic (which increases the power
of the test). The predicted probabilities for each model are equal, regardless of the link
function used, and their confidence intervals coincide in many cases, up to the order of
thousandths. Now, suppose that after fitting any of these models, levels 2 and 3 of the A

factor are added (see Table 3). Then, a new contingency table is obtained, such as the one
shown in Table 6. In this case, the new model is given by

5
÷

ú
1

÷
ú
2

6
=

5
g(pú

1
)

g(pú
2
)

6
=

5
1 1
1 0

6 5
—

ú
1

—
ú
2

6
.

The new estimates obtained by using the GUM, that is, re-adjusted binomial models using
logit, probit and cloglog link functions on the resulting contingency table (see Table 6) are
shown in Table 7. The predicted probabilities for each of the models, without attention to
parameters significance levels, are reproduced in Table 8.

Given the last two levels aggregation, the new parameter vector �ú is estimated di�erently
than in the original model, as shown in Table 7. As for the new predicted probability
vector (bpú), without considering the significance levels of the parameters, the results are
as expected: the first component is the same as the original model (‚pú

1
= ‚p1), while in the

second component you get that ‚pú
2

= 0.5257, in accordance with Equation (16).
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Table 5. Predicted probabilities and 95% CI according to link function.

Estimation of pi 95% CI
Link i ‚pi LL UL
logit 1 0.4600 0.4084 0.5125

2 0.1429 0.1100 0.1836
3 0.9086 0.8736 0.9346

probit 1 0.4600 0.4083 0.5124
2 0.1429 0.1093 0.1827
3 0.9086 0.8746 0.9352

cloglog 1 0.4600 0.4094 0.5137
2 0.1429 0.1102 0.1841
3 0.9086 0.8755 0.9358

where LL: lower limit, and UL: upper limit.

Table 6. Example: Y (0, 1) versus A(1, 2).

Y

A 0 1 Total
1 189 161 350
2 332 368 700

Total 521 529 1050

Table 7. Usual procedure (GUM): ‚—ú
i and Wald test (H0: —ú

i = 0) according to the link function.

Estimation of —ú
i 95% CI

Link i ‚—ú
i V[‚—ú

i ] ‰2 p-value Decision LL UL L(CI)
logit 1 0.103 0.006 1.8 0.174 Not reject ≠0.045 0.251 0.296

2 ≠0.263 0.017 4.0 0.045 Reject ≠0.521 ≠0.006 0.515
probit 1 0.065 0.002 1.9 0.174 Not reject ≠0.028 0.157 0.185

2 ≠0.165 0.007 4.0 0.045 Reject ≠0.326 ≠0.004 0.322
cloglog 1 ≠0.293 0.003 30.2 < 0.000 Reject ≠0.398 ≠0.189 0.209

2 ≠0.191 0.009 3.9 0.047 Reject ≠0.380 ≠0.003 0.377
where L(CI): length of CI, LL: lower limit, and UL: upper limit.

Table 8. Usual procedure (GUM): Predicted probabilities and 95% CI according to link function

Estimation of pú
i 95% CI

Link i ‚pú
i LL UL L(CI)

logit 1 0.4600 0.4084 0.5125 0.1041
2 0.5257 0.4887 0.5625 0.0738

probit 1 0.4600 0.4083 0.5124 0.1041
2 0.5257 0.4887 0.5625 0.0738

cloglog 1 0.4600 0.4094 0.5137 0.1043
2 0.5257 0.4893 0.5631 0, 0738

where L(CI): length of CI, Ll: lower limit, and UL: upper limit.
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Although these are the expected values, with – = 0.05 and according to the results of
Table 7, in the logit and probit models there is insu�cient evidence to reject H0: —

ú
1

= 0,
in a strict statistical sense, and so the predicted probabilities in Table 8 for these models
should not be considered valid. In fact, the correct predictions for the logit model would be

‚pú
1

= exp(‚—ú
1

+ ‚—ú
2
)

1 + exp(‚—ú
1

+ ‚—ú
2
)

= exp(0 ≠ 0.263)
1 + exp(0 ≠ 0.263) = exp(≠0.263)

1 + exp(≠0.263) = 0.4346 and

‚pú
2

= exp(‚—ú
1
)

1 + exp(‚—ú
1
)

= exp(0)
1 + exp(0) = 0.5000

while those corresponding to the probit model would be given by

‚pú
1

= �(‚—ú
1

+ ‚—ú
2
) = �(0 ≠ 0.165) = �(≠0.165) = 0.4345 and

‚pú
2

= �(‚—ú
1
) = �(0) = 0.5000.

For that matter, only the cloglog model would remain valid since the nullity hypothesis for
all its parameters is rejected.

In contrast, Table 9 and 10 present the estimates of the parameters and the predicted
probabilities respectively, for the binomial models addressed, but now obtained through the
GSM.

Table 9. Suggested procedure (GSM): ‚—ú
i and Wald test (H0: —ú

i = 0) according to the link function.

Estimation of —ú
i 95% CI

Link i ‚—ú
i V[‚—ú

i ] ‰2 p-value Decision LL UL L(CI)
logit 1 0.103 0.002 4.5 0.034 Reject 0.008 0.198 0.190

2 ≠0.263 0.014 5.0 0.025 Reject ≠0.494 ≠0.033 0.462
probit 1 0.065 0.001 4.5 0.034 Reject 0.005 0.124 0.119

2 ≠0.165 0.005 5.0 0.025 Reject ≠0.309 ≠0.020 0.289
cloglog 1 ≠0.293 0.001 73.3 < 0.000 Reject ≠0.360 ≠0.226 0.134

2 ≠0.191 0.008 4.8 0.028 Reject ≠0.362 ≠0.020 0.341
where L(CI): length of CI, Ll: lower limit, and UL: upper limit.

Table 10. Suggested procedure (GSM): Predicted probabilities and 95% CI according to link function.

Estimation of pú
i 95% CI

Link i ‚pú
i LL UL L(CI)

logit 1 0.4600 0.4084 0.5125 0.1041
2 0.5257 0.5019 0.5494 0.0475

probit 1 0.4600 0.4083 0.5124 0.1041
2 0.5257 0.5019 0.5494 0.0475

cloglog 1 0.4600 0.4094 0.5137 0.1043
2 0.5257 0.5022 0.5497 0.0475

where L(CI): length of CI, Ll: lower limit, and UL: upper limit.
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As expected by Equations (8) and (14), the estimates of —
ú
i for each of the binomial

models adjusted by using GUM and GSM are identical. However, the estimated variances are
di�erent in both procedures: those estimated by the GSM procedure are smaller. Therefore,
it is preferable to those estimated by the GUM procedure. Of course, these decreases in
the variances imply the reduction in the lengths of the confidence intervals, as it can be
seen when comparing the respective tables. This applies both to the estimators of the linear
predictor and to the second component of the predicted probability vector, regardless of the
binomial model implemented.

Additionally, when the aggregate model data is adjusted by appealing to the suggested
procedure, there is a change in the conclusions about the significance of ‚—ú

1
for the logit and

probit models. Thus, estimates of the predicted probabilities in Table 10 are now statistically
valid and better approximate the available data. The latter also applies to the cloglog model
which, even though their estimates are considered valid when obtained by the usual GUM
procedure, improve when the GSM is used.

7. Conclusions

This work constitutes a generalization of the method proposed by Ponsot et al. (2009)
for fitting binomial logit models, in the situation of factor levels aggregation on a simple
contingency table (with a factor and a dichotomous response variable). This generalization
consists of an extension, both of the usual procedure and of the procedure suggested by the
author, for the adjustment of binomial models by means of link functions not only logit,
but also probit and cloglog.

The results showed that the problem of factor levels aggregation persists in models that
are usually competitors or alternatives to the logit model. That is because, regardless of the
link function used, the violation of the binomial assumption remains when the associated
probabilities of success at aggregated levels are dissimilar. Then, the suggested procedure
maintains its advantages with any of the link functions used, being it preferable to the usual
adjustment procedure, as it o�ers the necessary correction and subsequent improvement of
the results.

The link function that is selected does not favor the application of a particular method
between the two presented. However, it was confirmed that, in any scenario, that is, when any
link function is appealed to derive a binomial model, the estimates obtained by the suggested
method improve when the correct distribution assumption is used. The choice between
one method or another is based mainly on the probabilities of success associated with the
aggregate levels. If they present slight di�erences, the estimates of the usual method are
not very di�erent from those of the suggested method. On the contrary, as these di�erences
grow, it is better to rely on the suggested method.

In the future, it is expected to apply the comparisons made for the saturated model,
using di�erent link functions, to the general case of the aggregation of factor levels in
the unsaturated model, as proposed by Ponsot et al. (2012). It is also expected to apply
re-sampling techniques to study the behavior of the standard errors of the estimators in
this more general case. Extensions to the so-called tobit model are also of interest (Barros
et al., 2018; Desousa et al., 2018). Finally, the applications of the methodology is explored
in the sense proposed by Da Silva et al. (2016), that is, for multinomial-ordinal models of a
longitudinal nature.
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Appendix A. Extreme values of VBin[Y ú
k≠1

]
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Equating to zero, the critical points are all those ordered pairs of the form
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The second partial derivatives of VBin[Y ú
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] are stated as
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while the Hessian is expressed by
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Thus, that the Hessian criterion fails in the decision. Nevertheless, it is clear from the
examination of Figure 1 that the set of points found are relative maximum values.

Appendix B. Extreme values of V[Y ú
k≠1

]

Let V[Y ú
k≠1

] = nk≠1pk≠1(1 ≠ pk≠1) + nkpk(1 ≠ pk). Then, the partial derivatives of V[Y ú
k≠1

],
with respect to pk≠1 and pk, are given by

ˆV [Y ú
k≠1

]
ˆpk≠1

= nk≠1(1 ≠ pk≠1) ≠ nk≠1pk≠1 = nk≠1(1 ≠ 2pk≠1)

ˆV [Y ú
k≠1

]
ˆpk

= nk(1 ≠ pk) ≠ nkpk = nk(1 ≠ 2pk)
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which, when equated to zero, throw as a critical point (pk≠1, pk) = (0.5, 0.5).
As second partial derivatives of V[Y ú

k≠1
], we have

A =
ˆ

2
V [Y ú

k≠1
]

ˆp
2

k≠1

= nk≠1(≠2) = ≠2nk≠1

B =
ˆ

2
V [Y ú

k≠1
]

ˆpkˆpk≠1

= 0

C =
ˆ

2
V [Y ú

k≠1
]

ˆp
2

k

= nk(≠2) = ≠2nk.

Consequently, the Hessian is given by H = AC ≠B
2 = (≠2nk≠1)(≠2nk)≠(0)2 = 4nk≠1nk.

Due to H > 0 and A < 0, then at the critical point (pk≠1, pk) = (0.5, 0.5), there is a relative
maximum whose value is V[Y ú

k≠1
] = (nk≠1 + nk)/4 = n

ú
k≠1

/4.
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Abstract

We consider a robust Bayesian approach to the analysis of item response models, using
the inverse of an asymmetric exponential power cumulative distribution function as a
link function. This provides greater flexibility with respect to classic link functions such
as the probit and the logit. We conduct a simulation study to evaluate the performance of
our model. In order to draw samples from the posterior distribution of the parameters,
we implement a Markov chain Monte Carlo scheme by means of the JAGS software.
We also implement a posterior predictive model-checking method to assess the fit and
relative performance of the various submodels. Finally, we provide a real-data example
to illustrate the modeling approach proposed.

Keywords: Asymmetric exponential power (AEP) distribution · Generalized linear
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1. Introduction

Item response data come from applying a test to a set of individuals. The test is composed
of a number of items. These tests are used extensively in schools, industry, and government,
and for various purposes (see Baker and Kim, 2004; van der Linden and Hambleton, 1997;
Fox, 2010). There is a very extensive literature about of the item response models, its
development, description, and applications goes back to Lord (1952, 1980), who established
the basis of item response theory (IRT), also called modern test theory.

Traditionally, frequentist analyses have been used in IRT. Recently, however, the Bayesian
approach become very attractive for modeling item response data; (see Ghosh et al., 2000;
Béguin and Glas, 2001; Bazán et al., 2006; Fox, 2010; Azevedo et al., 2011, 2012; Matteucci
et al., 2012). This approach allows one to incorporate additional information to the analysis
and provides powerful estimation methods based on simulated samples from posterior
distributions.

Although item response modeling can be employed in more general contexts (see Reckase,
2009; Fu et al., 2009; Svetina, 2013; Bacci et al., 2014), and nonparametric settings (see
Karabatsos, 2016; San Martin et al., 2011). In this paper, we focus on dichotomous response
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data and unidimensional models with a continuous latent trait. The Rasch model (see Rasch,
1961) is by far the most popular model in this latter case. It is basically a logistic model,
so the probit model is commonly used as an alternative.

Both the logit and probit link functions (corresponding to the standard logistic and the
standard normal distributions, respectively) have traditionally been utilized when modeling
dichotomous response data. Both of these link functions are symmetric. However, when the
proportion of ones in the observed sample is very di�erent from the proportion of zeros, or
vice versa, the symmetric links commonly used may not be appropriate, as they may lead
to misspecified models (see Chen et al., 1999a). This situation is not uncommon with item
response experimental data.

The fit of item response models can be improved significantly by using asymmetric links.
Several authors have worked with asymmetric links. Chen et al. (1999a) proposed a class
models with skewed link to analyze binary data with covariates, Jiang et al. (2013) derived
a new class of symmetric power link functions to model binary data and applied it to the
Protea co-occurrence data. More recently, Durante (2019) proved that in the case of probit
regression models which have Gaussian priors for the coe�cients, the posterior belongs
to the class of unified skew-normal distributions. Also, Naranjo et al. (2015) employed an
asymmetric exponential power (AEP) distribution for the error of a linear regression model,
and the inverse of the AEP cumulative distribution function (CDF) as a link function in a
regression model for binary data, but not in the context of IRT.

Models with asymmetrical link functions have also been proposed in IRT settings.
Samejima (2000) proposed a family of models called the logistic positive exponent family,
which provides asymmetric item characteristic curves (ICCs). Bazán et al. (2006) introduced
a skew-probit IRT link function based on the skew normal distribution, while Azevedo
et al. (2011) used skew-normal distributions to model latent traits in an IRT two-parameter
probit model under centered parameterizations. However, these models are not as flexible as
the AEP distribution, which not only allows one to handle symmetry/asymmetry but also
light/heavy tails.

In this paper, we build on the work of Zhu and Zinde-Walsh (2009) and Naranjo et al.
(2015) to propose a Bayesian item response model based on the AEP distribution.

The outline of the paper is as follows. In Section 2, we briefly discuss the Rasch model and
review the probability density and cumulative distribution functions of the AEP distribution.
We describe the general model in Section 3. Then, in Section 4, we carry out Bayesian
inferences on the parameters of interest via the just another Gibbs sampler (JAGS) software
(see Plummer, 2017) within the R software (see R Core Team, 2020), and apply a posterior
predictive model-checking method (see Sinharay et al., 2006) with the purpose of comparing
various submodels. In Section 5, we present a simulation study and conducted to assess the
performance of the Bayesian estimates. Also, a real-data example is given in this section to
illustrate the AEP-based IRT model. Finally, Section 6 contains some concluding remarks.

2. Preliminaries

2.1 The Rasch model

We model the probability of the correct answer, pik, corresponding to i-th individual in the
k-th item, as pik = P (Yik = 1|◊i, ak, bk) = F (ak◊i ≠ bk), for i = 1, . . . , N and k = 1, . . . , K,
where Yik is a random variable which takes the value of 1 if the i-th individual responds
correctly to the k-th item and F is the CDF of a known parametric family. In the context
of IRT, F is the ICC, ak > 0 and bk œ IR are item parameters (called discrimination and
di�culty parameters, respectively), and ◊i œ IR is the person parameter associated with the
ability of individual i. The inverse of F is called the link function. The Rasch model is the
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simplest and most traditional model for pik. It is given by

pik = P (Yik = 1|◊i, bk) = exp (◊i ≠ bk)
1 + exp (◊i ≠ bk) .

That is, the probability that the person i obtains a correct response to item k is a logistic
function of the di�erence between the person’s ability, ◊i, and di�culty of the item, bk. Note
that, if the person’s ability is greater than the di�culty of the item, then the probability
of success is higher in comparison with the probability of failure. A limitation of the Rasch
model is that all items are assumed to discriminate between respondents in the same way
(that is, ak = 1 for all k = 1, . . . , K); as a result, items only di�er in item di�culty (see
Fox, 2010). The probit model is another popular model for pik; it takes pik = �(◊i ≠ bk),
where � is the standard normal CDF. The Rasch model can be approximated by a probit
model by multiplying the parameter values by a scaling factor of 1.7.

2.2 The AEP distribution

The probability density function (PDF) of the rescaled AEP distribution, proposed by Zhu
and Zinde-Walsh (2009), is stated as

f̃AEP(x|µ, ‡̃, –, ”1, ”2) =

Y
____]

____[

1
‡̃

exp
I

≠
----

x ≠ µ

–‡̃/�(1 + 1/”1)

----
”1

J

, if x Æ µ;

1
‡̃

exp
I

≠
----

x ≠ µ

(1 ≠ –)‡̃/�(1 + 1/”2)

----
”2

J

, if x > µ;
(1)

where µ œ IR is the location parameter, ‡̃ > 0 is the scale parameter, – œ (0, 1) is the
skewness parameter, and ”1 and ”2 are the left- and right-tail parameters, respectively (”1 >
0, ”2 > 0). For convenience, we consider a reparametrization of the scale parameter in
Equation (1), ‡̃ =

Ô
2fi‡, so that

fAEP(x|µ, ‡, –, ”1, ”2) = f̃AEP(x|µ,
Ô

2fi‡, –, ”1, ”2).

With this parametrization, the density function of the AEP distribution is given by
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We use X ≥ AEP(µ, ‡, –, ”1, ”2) to denote Equation (2). Important properties of the AEP
distribution have been discussed in the literature (see Zhu and Zinde-Walsh, 2009; Naranjo
et al., 2015). If – = 1/2 and ”1 = ”2, the distribution is symmetric. An important special case
is when ”1 = ”2 = 2 and – = 1/2, in which case Equation (2) is the N(µ, ‡2) distribution. In
Figure 1, we show the PDF and CDF of the AEP distribution in Equation (2) for a range
of parameter values.
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For the standard version of the AEP distribution (µ = 0, ‡ = 1), the CDF can be
expressed as

FAEP(x|–, ”1, ”2) =

Y
______]

______[
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U1 ≠ G

Q

a
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; 1
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, 1
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(3)

where G(v; “, —) is the gamma CDF given by

G(v; “, —) = 1
�(“)—“

⁄ v

0

t“≠1 exp{≠t/—} dt.

The proof of Equation (3) is given in Appendix A.

3. An AEP-based generalized linear model for binary data

3.1 Model specification

The IRT model based on the AEP distribution is formally defined as follows. Let Yik be
a random variable representing the response of the i-th individual to the k-th item. This
response variable is discrete, taking only two possible values. We define Yik = 1 if the i-th
individual’s response to the k-th item is correct and Yik = 0 for an incorrect response. Then,
we have

Yik|◊i, ak, bk, –k, ”1k, ”2k ≥ Bern(pik), (4)

where Bern(pik) denotes the Bernoulli distribution, for i = 1, . . . , N , k = 1, . . . , K, and pik

is given by

pik = P (Yik = 1|◊i, ak, bk, –k, ”1k, ”2k)
= FAEP(ak◊i ≠ bk | –k, ”1k, ”2k). (5)

This represents the conditional probability that the i-th individual, with ability ◊i, responds
correctly to the k-th item with discrimination parameter ak and di�culty parameter bk.
The quantities –k, ”1k and ”2k are the AEP parameters defined in Equation (2). This model
assumes that a change in the probability of a specified response is described by the ICC in
Equation (5), and that the responses to a pairs of items are statistically independent given
the latent variable ◊. The probability of success is modeled as a function of person, item
and AEP parameters. Note that, for – = 0.5 and ”1 = ”2 = 2, the Equation (5) reduces to
the probit model.
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Figure 1. PDFs and CDFs of the AEP distribution for di�erent values of the parameters.
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Figure 2. Comparison of AEP-based and probit link functions.

3.2 Likelihood function

Let y = (y11, . . . , yNK)€ denote the observed item response data. Then, the likelihood
function for the AEP-IRT model is stated as

L(✓, ⇠,⌘;y) =
NŸ

i=1

KŸ

k=1

pyik
ik (1 ≠ pik)1≠yik

=
NŸ

i=1

KŸ

k=1

[FAEP(mik |⌘)]yik [1 ≠ FAEP(mik |⌘)]1≠yik ,

where mik = ak◊i ≠ bk, i = 1, . . . , N, k = 1, . . . , K; ✓ = (◊1, . . . , ◊N ), ⇠ = (a, b) and ⌘ =
(↵, �1, �2), with a = (a1, . . . , aK), b = (b1, . . . , bK), ↵ = (–1, . . . , –K), �1 = (”1k, . . . , ”1k)
and �2 = (”2k, . . . , ”2k).

Note that the model proposed here is described in terms of N ability parameters, K
discrimination parameters, K di�culty parameters, K skewness parameters and K pairs of
tail parameters. Hence, it has a total of N person parameters and 5K unknown parameters.
This model is overparameterized. In fact, for two di�erent sets of parameter values the
model may give the same success probabilities and so the model may be unidentifiable.
For example, the linear predictor in Equation (5) can be written as ak◊i ≠ bk = ak(10◊i ≠
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50)/10 ≠ (bk ≠ 50ak/10) = aú
k◊ú

i ≠ bú
k; that is, the model with ak, bk, ◊i is the same as with

aú
k, bú

k, ◊ú
i . Thus, the parameters cannot be uniquely estimated, unless certain constraints are

imposed. From the Bayesian viewpoint, this problem may be solved by specifying suitable
priors for the parameters of interest (see Chen et al., 2003; Matteucci et al., 2012; Naranjo
et al., 2015).

As pointed out in Section 1, when the proportion of ones in the observed sample is very
di�erent from the proportion of zeros, or vice versa, the symmetric links commonly used
may not be appropriate. To visualize the flexibility of the AEP-based link function with
respect to the probit link function, in Figure 2 we plot FAEP(�≠1(u)| –, ”1, ”2) over the
interval (0, 1) for selected values of –, ”1 and ”2.

4. Bayesian inference

4.1 Prior distribution

In this paper we use a Bayesian approach to make statistical inference about the parameters
of interest. In this setting, the parameters are regarded as random variables and have prior
distributions that reflect the uncertainty about their true values before observing the data.
Several authors have suggested informative as well as noninformative prior distributions for
the item para-meters; for example, lognormal priors for the discrimination parameters and a
normal prior for di�culty parameters (see Albert, 1992; Patz and Junker, 1999; Rupp et al.,
2004; Fox and Glas, 2001; Matteucci et al., 2012; Bazán et al., 2006). Ghosh et al. (2000)
pointed out that, with noninformative priors, posterior distributions for item and person
parameters may be improper when the sum of the binary responses for an item or person
takes its minimum or maximum possible value. However, they prove that under certain
conditions the joint posterior distribution is proper.

Here, we assume the item parameters to be exchangeable. We also assume monotonicity
of the ICC, which is satisfied when the discrimination parameter is restricted to be positive.
Thus, we assume the following prior distribution for the item parameters

(ak, bk) ≥ N(µ›,⌃›) IA(ak),

where A = {a œ IR : a > 0}, k = 1, . . . , K, and IA is the indicator function of the set A.
Note that this prior is not conjugate for the observed likelihood. A typical prior for person
parameters assumes that the individual are chosen randomly from an unknown population,
where each individual has the same probability of being chosen. Individuals are also assumed
to be sampled independently, so we assume that

◊i ≥ N(µ◊, ‡◊), i = 1, . . . , N,

where µ◊, ‡◊ are known parameters. These priors have been suggested by others authors
(see Bazán et al., 2006; Sinharay et al., 2006; Fox, 2010; Matteucci et al., 2012). In
generalized linear models, some authors have proposed an elicitation scheme for a class
of informative prior distributions for the regression parameters based on historical data (see
Chen et al., 1999b, 2003). Naranjo et al. (2015) proposed some alternative prior distributions
for the AEP parameters, which have the advantage of allowing one to derive the full
conditional distributions required for a Gibbs sampler. With some adjustments, the Je�reys
prior distribution can be computed from the Fisher information matrix given by Zhu and
Zinde-Walsh (2009).
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Assuming prior independence of the parameters, we can write the joint prior distribution
as

p(✓, ⇠,⌘) = p(✓) p(⇠) p(⌘)

=
NŸ

i=1

p(◊i)
I

KŸ

k=1

p(ak) p(bk) p(–k) p(”1k) p(”2k)
J

.

4.2 Posterior sampling

By the Bayes theorem, the posterior distribution of the parameters of interest is established
as

p(✓, ⇠,⌘|y) = L(✓, ⇠,⌘;y) p(✓, ⇠,⌘)/p(y)

_
NŸ

i=1

KŸ

k=1

Ó
[FAEP(mik |⌘)]yik [1 ≠ FAEP(mik |⌘)]1≠yik

◊ p(◊i) p(ak) p(bk) p(–k) p(”1k) p(”2k)} . (6)

Note that the joint posterior distribution is analytically intractable and thus obtaining
the marginal posterior densities of the parameters is not an easy task; however, samples
from Equation (6) can be obtained using Markov chain Monte Carlo (MCMC) techniques.
The most common MCMC methods are the Gibbs sampling (see Gelfand and Smith, 1990;
Casella and George, 1992) and the Metropolis-Hastings (see Metropolis et al., 1953; Chib and
Greenberg, 1995). Currently, many of the MCMC algorithms have been already implemented
in computer programs, such as, WinBUGS (see Spiegelhalter et al., 2003), JAGS (see Plummer,
2017) and Stan (see Stan Development Team, 2014). All of these software packages provide
programs for Bayesian modeling through posterior simulation given a specified model and
data. In particular, JAGS provides several samplers and attempts to use the most e�cient one
to update the parameters of the model at each iteration. The R packages named R2WinBUGS,
R2jags and rstan allow one to run WinBUGS, JAGS and Stan from within R, respectively.
There are several R packages for IRT. Choi and Asilkalkan (2019) presentes a summary of
the IRT package that have been developed over the last decade. In this paper, we utilize
JAGS within R to obtain samples from the posterior distributions of interest (see Appendix
B).

4.3 A posterior predictive model-checking method

The posterior predictive model-checking (PPMC) method is a popular Bayesian
model-checking tool, has a strong theoretical basis, and can provide graphical or numerical
summaries about the model fit (or lack thereof). For IRT models, Sinharay et al. (2006)
presented an extensive explanation of the PPMC method and discuss di�erent discrepancy
measures to detect various violations to model assumptions. Azevedo et al. (2012) developed
Bayesian methods for the multiple-group IRT model, including an estimation method based
on MCMC and di�erent posterior predictive assessment tools. The idea of PPMC is to
generate replicate data sets by simulating from the posterior predictive distribution, and
then compare these simulated samples with the observed data. If the replicated data and
the observed data di�er systematically, it is an indication of a potential model misfit.

The choice of discrepancy measure is crucial in the application of the PPMC method. In
this paper, we used the Observed Score Distribution (OSD) as the discrepancy measure,
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which has been employed by Béguin and Glas (2001). This discrepancy measure is given by

OSD =
ÿ

k

[NCk ≠ E(NCk)]2
E(NCk) , (7)

where NCk denotes the number of examinees getting exactly k correct items, and E(NCk)
is the expected value of NCk under the model, for k = 0, 1, . . . , K.

In addition, here we propose an alternative discrepancy measure based on the
Kullback-Leibler divergence between the “true” model and an “approximate” model, stated
as

DKL(fi||Âfi) =
ÿ

k

fik log
3

fik

Âfik

4
, (8)

where fik = E(NCk)/N and Âfik = NCk/N .
In order to assess the fit of the IRT model to a given data set, we can repeat the following

steps a large number of times:
(1) Generate a draw of the parameters of interest from the posterior distribution given

by Equation (6).
(2) Obtain a data set from the model given in Equations (4)-(5), using the parameters

drawn in the previous step.
(3) Compute the values of the predictive and realized discrepancy measures given in

Equations (7) or (8), utilizing the data set drawn in the previous step.
With the predictive and realized discrepancy measures, we can creates plots to assess the

fit of the IRT model.

5. Numerical applications

5.1 Simulation study

We carried out a simulation study to assess the performance of the Bayesian estimators of
the parameters of interest. The procedure was applied to each of several combinations of
data-generating and fitted models. Table 1 shows the cases we considered, that is:

• The AEP-III model is based on Equations (4)–(5). This model can describe both
symmetry/asymmetry and light/heavy tails separately for each item.

• In the AEP-II model, the tails of the AEP distribution for each item are described by
means of the parameters ”1k and ”2k, while –k is held fixed at –k = 0.5.

• In the AEP-I model, the symmetry/asymmetry for each item is formulated by means of
the skewness parameter –k, while ”1k and ”2k are held fixed at ”1k = ”2k = 2.
Note that the AEP-I and AEP-II models are both particular cases of the AEP-III model.

Table 1. Cases examined in the simulation study.
Fitted Data-generating model
model AEP-I AEP-II AEP-III Probit
AEP-I • •
AEP-II • •
AEP-III • •
Probit • • • •
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We now describe the simulation study:
(1) We simulated B = 100 data sets from each data-generating model (see below for

details).
(2) For each simulated sample, we obtained Bayesian estimators of the parameters of

interest, both for model given in Equations (4)–(5) and for the two-parameter probit
model.

a) We calculated the Bayes estimators as the sample mean from Equation (6)
using JAGS within R. We employed two chains, each with 26,000 iterations,
with a burn-in of 1000 iterations and a thinning rate of 50, so we kept a total
of 500 iterations to make inferences about the parameters of interest.
The analysis of each sample took around 1.74 minutes on a computer with a
4 GHz Intel Core i7 processor and 32GB of RAM.

b) We calculated 95% credible intervals for each parameter; these intervals are
based on the 2.5-th quantile and the 97.5-th quantile of the corresponding
posterior sample.

(3) From these B samples, we computed the mean squared error (MSE) of the estimators
as

[MSE = s2(◊) + ‚B2(◊),

where s2(◊) =
qB

i=1
(◊B

i ≠ ◊̄B)2/(B ≠ 1) is the sample variance of the Bayes
estimators, ‚B(◊) = ◊̄B ≠ ◊ is the bias, ◊̄B =

qB
i=1

◊B
i /B, and ◊B

i is the Bayes
estimator corresponding to the i-th sample.

(4) Finally, we computed the coverage of the corresponding credible intervals.
To perform this study, we used R together with the R2jags package (see Su and Yajima,

2020). Our simulated data sets consist of N = 100 individuals and K = 3, 5, 10, 20 items.
The true values of the parameters utilized to generate the data sets were varying according
to the Table 2.

Table 2. Parameter values for the simulation study.
Parameters from to

ak 0.5 2.0
bk -2.0 2.0
–k 0.1 0.9
”1k 0.5 4.0
”2k 0.5 4.0

We assumed the following priors for the discrimination and di�culty parameters:

ak ≥ N(1, 1)I(ak > 0); bk ≥ N(0, 1), k = 1, . . . , K,

while, for the AEP parameters, we took the priors used by Naranjo et al. (2015), namely,

–k ≥ Beta(1, 1); ”1k ≥ Gamma(1, 1) and ”2k ≥ Gamma(1, 1), k = 1, . . . , K.

In Tables 3 and 4, we show the estimated MSE and coverage for the cases considered
in Table 1: AEP-I versus Probit, AEP-II versus Probit, AEP-III versus Probit, and Probit
versus AEP-x, (x = I,II,II). Generally speaking, the AEP models outperform the probit
model, especially AEP-III and AEP-II.
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When we generated simulated data from an AEP-x model, and fitted both the
corresponding AEP-x and the probit models, we observed that in all cases the coverage
of the credible intervals for the item parameter was close to 100% for the AEP-x models. In
contrast, the coverage obtained for the credible intervals of the discrimination and di�culty
parameters of the probit model was much lower, even reaching zero in some cases. In general,
the estimated MSE and bias are lower for the AEP-x models than for the probit model (see
Table 3). Also, when we simulated data from the probit model, and fitted both the AEP-x
and the probit models, we observed that both the coverage and the MSE are very similar
for all models and close to 100%. As expected, all three AEP models fit the data generated
from the probit model reasonably well (Table 4).

5.2 A real-data example

Next, an example is given to illustrate the Bayesian item response modeling approach
proposed in this paper. We consider a data set previously analyzed by Fox (2010), which
consists of 200 eighth-grade students that are subjected to a mathematics test with 5 items.
The data set contains the responses of the examinees, where 1 indicates a correct answer
and 0 an incorrect answer. We assume that the five items measure a unidimensional ability
represented by ◊, which is a continuous latent variable that takes values on the real line. We
estimate the item parameters of both the probit IRT model and the AEP-IRT model using
the MCMC methodology described above. This example was also implemented utilizing the
JAGS package within R (see Appendix B for details).

The probability of a correct response by examinee i to item k is modeled by the following
item response models:
i. (Probit) P (Yik = 1|◊i, ak, bk) = �(ak◊i ≠ bk),

[ii. (AEP-I) P (Yik = 1|◊i, ak, bk, –k) = FAEP(ak◊i ≠ bk|–k),
iii. (AEP-II) P (Yik = 1|◊i, ak, bk, ”1k, ”2k) = FAEP(ak◊i ≠ bk|”1k, ”2k),
iv. (AEP-III) P (Yik = 1|◊i, ak, bk, –k, ”1k, ”2k) = FAEP(ak◊i ≠ bk|–k, ”1k, ”2k),

for i = 1, . . . , 200 and k = 1, . . . , 5, where FAEP is given in Equation (3), and � is the
standard normal CDF.

The prior distributions used were as follows: for all models, we employed a
N(0, 1) distribution for the di�culty parameters, while a truncated normal distribution,
N(1, 1)I(ak > 0), was utilized for the discrimination parameters. These values of the
hyperparameters indicate a moderate level of discrimination and average level of di�culty.
Assuming that the individuals are sampled independently from the population, we specified
a N(0, 1) for the ability parameters of all of the models. This restriction identifies the
two-parameter item response model (see Fox, 2010). Finally, for the AEP parameters we
took the priors used by Naranjo et al. (2015). That is, –k ≥ Beta(1, 1), ”1k ≥ Gamma(1, 1)
and ”2k ≥ Gamma(1, 1), for k = 1, . . . , 5.

For each model, we employed two chains, each with 26000 iterations, and the first 1000
were discarded, taking a thinning rate of 50. Thus, 1000 posterior samples were used to
obtain the summary statistics about the parameters of interest. Standard convergence
diagnostics were carried out. To mention a few, the value of Gelman-Rubin R̂ was close
to 1 for each parameter of interest and for all the models we considered. Also, the Geweke
diagnostics were calculated and showed evidence of convergence.
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Table 3. Estimated MSE | Bias | (coverage).
Parameters AEP-I Probit AEP-II Probit AEP-III Probit

a1 0.08 |-0.005| (1.0) 0.08 |0.02 | (1.0) 0.12 |-0.16| (1.0) 0.17 |0.27| (0.70) 0.018 |-0.10| (1.0) 0.148 |0.36| (1.0)
a2 0.17 |-0.27| (0.96) 0.15 |-0.23| (0.96) 0.54 |-0.68| (0.92) 0.34 |0.27| (0.90) 0.161|-0.33 | (1.0) 0.220|-0.33| (1.0)
a3 0.08 |-0.05| (1.0) 0.09 |0.07| (1.0) 0.04 |-0.03| (1.0) 0.14 |-0.46| (0.96) 0.043|-0.18| (1.0) 0.187 | 0.36|(0.96)
b1 0.53 |-0.72| (1.0) 0.30 |-0.56| (0.33) 0.15 |-0.09| (1.0) 0.08 |0.23| (0.71) 0.011|0.09| (1.0) 0.944| 0.95| (0.0)
b2 0.15 |0.38| (1.0) 0.54 |0.73| (0.0) 0.05 |-0.01| (1.0) 0.05 |0.07| (0.60) 0.001|-0.01| (1.0) 0.031| 0.11| (1.0)
b3 1.25 |1.11| (0.90) 1.59 |-1.25| (0.0) 0.04 |0.06| (1.0) 0.03 |-0.04| (0.10) 0.012|-0.08| (1.0) 0.355|0.57| (0.41)
–1 0.07 |-0.27| (1.0) - - - 0.095 |-0.22|(1.0) -
–2 0.005 |0.06| (1.0) - - - 0.015|0.07| (1.0) -
–3 0.12 |0.34| (1.0) - - - 0.264| 0.45| (1.0) -
”11 - - 0.46 |0.21| (0.96) - 0.354|-0.12| (1.0) -
”12 - - 2.04 |0.26| (1.0) - 0.794|-0.52| (1.0) -
”13 - - 4.84 |-2.04| (0.84) - 0.447| 0.27| (0.84) -
”21 - - 4.48 |-2.63| (0.68) - 5.644 |2.32|(0.68) -
”22 - - 1.61 |-0.13|(1.0) - 0.469 |-0.38|(1.0) -
”23 - - 0.51 |-0.48| (1.0) - 0.324|0.38| (1.0) -

Table 4. Probit versus AEP: Estimated MSE ÈcoverageÍ.
Parameters Probit AEP-I AEP-II AEP-III

a1 0.16 È0.86Í 0.16 È0.95Í 0.23 È1.0Í 0.14 È1.0Í
a2 0.15 È1.0Í 0.15 È1.0Í 0.27 È1.0Í 0.03 È1.0Í
a3 0.18 È1.0Í 0.17 È1.0Í 0.06 È1.0Í 0.16 È1.0Í
b1 0.09 È0.90Í 0.11 È1.0Í 0.06 È1.0Í 0.47 È1.0Í
b2 0.05 È1.0Í 0.01 È1.0Í 0.03 È1.0Í 0.02 È1.0Í
b3 0.08 È0.90Í 0.39 È1.0Í 0.16 È1.0Í 0.51È1.0Í
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Table 5 shows the parameter estimates for each of the fitted models. Posterior means are
used as point estimates of the parameters of interest. The deviance information criterion
–DIC– (see Spiegelhalter et al., 2002) for each model was obtained too, and was utilized to
assess the fit of the various models.
Table 5. Parameter estimation for Fox (2010) data set.

Parameters Probit AEP-I AEP-II AEP-III
a1 1.54 1.52 1.84 1.65
a2 0.90 0.88 1.78 1.54
a3 0.66 0.70 1.50 1.32
a4 0.91 0.89 1.47 1.48
a5 0.46 0.49 1.61 1.22
b1 -0.27 -0.04 -0.26 -0.02
b2 -0.79 -0.25 -0.52 -0.05
b3 -0.11 0.05 0.31 0.55
b4 -0.73 -0.35 -0.83 -0.19
b5 -0.42 -0.18 -0.02 0.53
–1 – 0.58 – 0.50
–2 – 0.69 – 0.61
–3 – 0.56 – 0.51
–4 – 0.63 – 0.62
–5 – 0.59 – 0.61
”11 – – 3.80 1.36
”12 – – 0.18 0.75
”13 – – 0.76 0.56
”14 – – 1.03 1.26
”15 – – 0.10 0.67
”21 – – 4.36 1.15
”22 – – 5.68 1.61
”23 – – 3.79 1.70
”24 – – 3.50 1.38
”25 – – 3.67 1.53

DIC 1332.9 1303.0 1463.6 2235.1

We observe that item five discriminates poorly in the AEP-I and Probit models, with
values less than 1, except for item 1. Item 1 is the most discriminative item for all fitted
models. The average estimated discrimination level is 0.89 with the AEP-I IRT model, which
is slightly smaller than the prior mean. The posterior means for the skewness parameters
show that the marginal posterior densities are non-symmetric and slightly positively skewed
(see the AEP-III and AEP-I models). For the estimated di�culty parameter, we can observe
that the item with higher values for di�culty is item 3, whereas the less di�cult items are 2
and 4. The proportion of correct responses for each of the five items are estimated as 56%,
73%, 54%, 71%, and 65%, respectively. In Table 5, we also observe that, for the AEP-I IRT
model, we have a lower value of DIC with respect to the probit, AEP-III and AEP-II IRT
models. This criterion indicates that the AEP-I IRT model is preferable with respect to the
other models considered.

We applied the PPMC method to assess the fit of each of the IRT models. We calculated
the values of discrepancy measure OSD and compared the observed and predicted score
distribution through plots of the discrepancy measures. Figure 3 and Figure 4 show the
OSD and KL discrepancy measures, respectively. The PPMC method provides graphical
evidence that the Probit and AEP-I models cannot adequately explain the observed score
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Figure 3. PPMC based on the OSD discrepancy.

distribution of the actual dataset, even though the AEP-I model seems preferable under the
DIC criterion. As a quick numerical summary of the plots, we also calculated the average
orthogonal distances from the 45-degree line to the points given by the realized and predictive
OSDs. We used this mean orthogonal distance (MOD) to provide a quantitative measure
of the fit (included in Figures 3 and 4). A large value of the MOD suggests that the model
does not adequately capture the features of the data.

Neither the results in Figure 3 nor those in Figure 4 are in agreement with the results
obtained using the DIC (see Table 5). The DIC has been criticized on several grounds (see
Spiegelhalter et al., 2014). In this particular application, the PPMC procedure seems to
yield better results.

6. Concluding remarks

In this paper, we have proposed the use of link functions based on the asymmetric
exponential power distribution to model item response data. These link functions provide
great flexibility to model a wide range of item characteristic curve shapes and include
the symmetric probit model as a special case. The resulting model can handle both
symmetry/asymmetry and light/heavy tails at the same time.

In contrast with traditional approaches to IRT modeling, the Bayesian approach has a
number of advantages. For one thing, inferences based on posterior simulations are both
more flexible and relatively easy to implement in JAGS within the R software. Also, the
possible lack of identifiability in the general IRT model may be tackled using suitable prior
distributions.
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Figure 4. PPMC based on the DKL discrepancy.

Our simulation study shows that the general IRT AEP-based model and the corresponding
Bayesian estimates perform well. Our results also suggests that the DIC does not provide
a good measure of model fit in our setting, perhaps because it is not based on a proper
predictive criterion. By contrast, the posterior predictive model-checking procedure used
here provides a nice graphical summary and, together with the mean orthogonal distance,
provides a better way of comparing models. Moreover, in the real data example the
Kullback-Leibler discrepancy proposed here seems to outperform the OSD discrepancy.
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Appendix A

Consider the standard version (µ = 0, ‡ = 1) of the AEP PDF given in Equation (2) stated
as

fAEP(x|–, ”1, ”2) =

Y
______]

______[

1Ô
2fi

exp

Y
]

[≠
-----

xÔ
2fi–/�(1 + 1/”1)

-----

”1
Z
^

\, if x Æ 0;

1Ô
2fi

exp

Y
]

[≠
-----

xÔ
2fi(1 ≠ –)/�(1 + 1/”2)

-----

”2
Z
^

\, if x > 0.

The CDF of the AEP distribution is expressed by

• For x Æ 0,

F (x|–, ”1, ”2) =
⁄ x

≠Œ
fAEP(z|–, ”1, ”2) dz

=
⁄ x

≠Œ

1Ô
2fi

exp

Y
]

[≠
-----

xÔ
2fi–/�(1 + 1/”1)

-----

”1
Z
^

\ dz.

Now, making the change of variable

t =
A

|z|Ô
2fi–/�(1 + 1/”1)

B”1

, dt = ”1|z|”1≠1

3�(1 + 1/”1)Ô
2fi–

4”1

dz = ≠”1 tz≠1 dz,

we have

dz = ≠
Ô

2fi – t1/”1≠1

�(1/”1) dt.

Note also that t æ +Œ as z æ ≠Œ, while t æ t1(x) ©
1

|x|Ô
2fi–/�(1+1/”1)

2”1
as z æ x.

Hence,

F (x|–, ”1, ”2) = –
⁄ Œ

t1(x)

t1/”1≠1 exp(≠t)
�(1/”1) dt

= –

A

1 ≠
⁄ t1(x)

0

t1/”1≠1 exp(≠t)
�(1/”1) dt

B

= –
5
1 ≠ G

3
t1(x); 1

”1

, 1
46

; x Æ 0, (9)

where G() denotes the gamma CDF.
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• For x > 0,

F (x|–, ”1, ”2) =
⁄ x

≠Œ
fAEP(z|–, ”1, ”2) dz

=
⁄

0

≠Œ
fAEP(z|–, ”1, ”2) dz +

⁄ x

0

fAEP(z|–, ”1, ”2) dz

= – +
⁄ x

0

fAEP(z|–, ”1, ”2) dz by Equation (9)

Similarly to the previous case, making the change of variable

t =
A

|z|Ô
2fi(1 ≠ –)/�(1 + 1/”2)

B”2

, dt = ”2z”2≠1

A
�(1 + 1/”2)Ô

2fi(1 ≠ –)

B”2

dz,

we have

F (x|–, ”1, ”2) = – + (1 ≠ –)
⁄ t2(x)

0

t1/”2≠1 exp(≠t)
�(1/”2) dt

= – + (1 ≠ –)G
3

t2(x); 1
”2

, 1
4

; x > 0,

where

t2(x) =
A

|x|Ô
2fi(1 ≠ –)/�(1 + 1/”2)

B”2

.

Appendix B. JAGS implementation

The proposed models were all implemented in JAGS using the R2jags package to fit the
models and to perform convergence diagnostics right within R. Here we use the data set of
Section 5.2 to illustrate the implementation of our model in JAGS.

(1) Packages. Load the required R packages:
library(R2jags)
library(coda)
library(lattice)
library(R2WinBUGS)
library(rjags)

(2) Data. Read the data from the working directory:
setwd("my directory")
cito<-matrix(read.table(file="cito.txt", sep=","),200,5,byrow=T)
N<-dim(cito)[1]; K<-dim(cito)[2]
cito.data <- list("cito","N","K")
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(3) The model. Write the model in BUGS code and save it as “cito.model.jags” in the
working directory.
model{

for (i in 1:N){
for(k in 1:K){

p[i,k]<-phi(a[k]*theta[i]-b[k])
Y[i,k] ~ dbern(p[i,k])

}
theta[i] ~ dnorm(0,1)

}
for (i in 1:K){

a[k] ~ dnorm(1,1)T(0,)
b[k] ~ dnorm(0,1)

}
}

(4) Parameters. Define the parameters of interest:
cito.params<-c("a","b")

(5) Initial values. Define the starting values for the MCMC runs:

cito.inits<-function()
{

list("a"=c(0.5,0.5,0.5,0.5,0.5), "b"=c(0,0,0,0,0))
}

Alternatively, specify separate starting values for each chain:
units1<-list("a"=c(0.1,0.1,0.1,0.1,0.1), "b"=c(-4,-4,-4,-4,-4))
units2<-list("a"=c(3,3,3,3,3), "b"=c(4,4,4,4,4))
cito.inits2<-list(units1, units2)

(6) Fit. Fit the model in JAGS:

set.seed(123)
fit.cito<-jags(data=cito.data, inits = cito.inits2, parameters.to.save=

cito.params, n.chains =2, n.iter = 9000, n.burnin=1000,
model.file="cito.model.jags")

print(fit.cito)

(7) Diagnostic. Convert the model output into an MCMC object in order to have
access to several convergence diagnostics:
cito.mcmc<-as.mcmc(cito,fit)
xyplot(cito.mcmc,layout=c(2,6), aspect="fill")
densityplot(cito.mcmc)
autocorr.plot(cito.mcmc)
elman.plot(cito.mcmc)
geweke.diag(cito.mcmc)
geweke.plot(cito.mcmc)
raftery.diag(cito.mcmc)
raftery.plot(cito.mcmc)
heidel.diag(cito.mcmc).
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