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Abstract

The detailed study of the logit, probit and cloglog link functions is presented for the
generalized linear model with binomial response in the presence of the problem of
explanatory factors levels aggregation. Expressions are deduced for the estimators of the
parameters and their variances, in general terms, which allows for finding the particular
results for any link function chosen. The impact of the link function on the estimates is
illustrated, concluding that the use of the appropriate variance in the levels aggregation
is preferable, regardless of the link function to be used.

Keywords: Binomial regression · Generalized linear models · Level sets · Link
function

Mathematics Subject Classification: Primary 62J12 · Secondary 62J20.

1. Introduction

The binomial model pursues the same objectives as the classical regression model, however,
they di�er in their structure (Collet, 2002; Tutz, 2011). The crucial di�erence is that,
in the binomial model, the dependent variable follows a distribution that takes only two
possible values, zero and one, in contrast to the normally distributed response of the classical
regression model, in which any real value can be observed. Thus, the categorization of the
response variable in the binomial model leads to the second di�erence. This concerns the
need for a link function between the explanatory variables and the mean of the response.

Within the context of binomial models, the logit model is the most widely studied and
applied (Christensen, 1997; Hilbe, 2009; Hosmer and Lemeshow, 2000). It is a particular
case of the generalized linear model (Nelder and Wedderburn, 1972), when logit is the
link function between the random component and the systematic component of the model,
with the probability of success in a Bernoulli trial being modeled. Factors or treatments,
rather than variables, are postulated in the style of the conventional analysis of variance
(McCullagh and Nelder, 1989; McCulloch and Searle, 2001).

In its simplest formulation, the logit model consists of a dichotomous response variable
and a single explanatory factor. Additionally, it is assumed that the responses corresponding
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to the di�erent levels of the explanatory factor are independent binomials. After adjusting
and applying this model on data in a contingency table, suppose that the researcher decides
to group some levels of the factor and reiterate the logit analysis in the usual way. With this
procedure, Ponsot et al. (2009) demonstrated that a violation of the binomial assumption
is incurred, with important implications for the variance. They suggest courses of action to
correct the problem and at the same time improve the accuracy of the results. Specifically,
based on the reference parameterization and the saturated model, the authors suggest a
procedure that takes advantage of the computations of a first logit adjustment and corrects
the distributional assumption about variance, producing more e�cient estimates and with
greater precision than those obtained if you decide to reiterate a logit adjustment. Through
simulations, strong trends were shown in favor of the proposed method, even more, if the
probabilities of success of the response variable associated are more dissimilar to each other.

Note that the aforementioned research is limited to the scope of the logit model, but
what about the problem of factor levels aggregation in models that are usually competitors
or alternatives to the logit model? The logit model is the most used for the advantages it
o�ers, however, it does not always guarantee a good fit for all binomial response data, so the
researcher may consider other alternatives (Bonat et al., 2018; Czado and Santner, 1992;
Czado and Munk, 2000). Logit is the canonical link function for binomial response data, but
probit is also popular (McCullagh and Nelder, 1989; Collet, 2002; Hosmer and Lemeshow,
2000). In fact, any di�erentiable monotonous function can serve as a link between the random
and systematic components of the binomial model, so there are many other functions that
could o�er a better fit than the traditional logit model. Therefore, keeping the problem
within the scope of generalized linear models, this work seeks to answer this question by
generalizing the procedure suggested by Ponsot et al. (2009) so that it is applicable with
any link function.

The paper has been organized as follows: Section 2 explains the problem of explanatory
factors levels aggregation. In Section 3, the fit of binomial models under this situation is
addressed through the usual method. In Section 4, we describe the method suggested by
Ponsot et al. (2009). Section 5 develops the adjustment procedures of three of the best
known binomial models (logit, probit and cloglog), using the methods proposed in Sections
3 and 4. An example of the potential application of these models is shown in Section 6.
Finally, Section 7 presents the main conclusions derived from this work.

2. The problem of explanatory factors levels aggregation

In Table 1, let yi be the observed number of successes observed in the i-th level of the factor
A and ni the total number of observations for that level.

Table 1. Observed number of successes and total of the Y response versus the A factor levels.

Y

A Number of successes Total
1 y1 n1

2 y2 n2

...
...

...
k ≠ 2 yk≠2 nk≠2

k ≠ 1 yk≠1 nk≠1

k yk nk

Total y· n·
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The corresponding responses to the di�erent levels of A are assumed independent of each
other and from a binomial population in the number of successes (Y = 1). This is

Yi
ind≥ Bin(yi; ni, pi), i = 1, . . . , k

where “ind” stands for independent, Yi is the random variable that represents the number
of successes in the i-th sample and pi, considered constant, is the probability of success
associated (0 < pi < 1). Assuming a binomial distribution in the number of successes of the
Yi at each level of the explanatory factor, implies that V[Yi] = nipi(1≠pi) and E[Yi] = nipi.

Sometimes, after adjusting a model the researcher may decide to group levels of the A

factor for various reasons. Suppose the levels k and k ≠ 1 are added doing y
ú
k≠1

= yk≠1 + yk

and n
ú
k≠1

= nk≠1 + nk, obtaining an arrangement of the data as in Table 2. The situation
could extend to more than two levels, simply by adding the last two, then these with the
previous one, and so on.

Table 2. Number of successes and total of the Y response versus the A factor levels, after the aggregation
of the k and k ≠ 1 levels.

Y

A Number of successes Total
1 y1 n1

2 y2 n2

...
...

...
k ≠ 2 yk≠2 nk≠2

k ≠ 1 y
ú
k≠1

n
ú
k≠1

Total y· n·

Usually, by reiterating the model fit procedure, the researcher assumes that the new
random variable Y

ú
k≠1

= Yk≠1 + Yk, that arises from aggregation, still has a binomial
distribution with variance

VBin[Y ú
k≠1

] = n
ú
k≠1

p
ú
k≠1

(1 ≠ p
ú
k≠1

), (1)

where n
ú
k≠1

= nk≠1 + nk and p
ú
k≠1

= E[Y ú
k≠1

]/n
ú
k≠1

= (nk≠1pk≠1 + nkpk)/(nk≠1 + nk).
In this regard, Ponsot et al. (2009) demonstrated that with this proceeding, a violation of

the original binomial assumption is incurred, with important implications for the estimated
variances. In their work, the authors deduced the following:

(1) If pk≠1 ”= pk, the binomial assumption is violated in the sample corresponding to the
level of the response variable where aggregation arises: Y

ú
k≠1

is actually distributed
Poisson-binomial (and not binomial).

(2) The right expression for the variance of Y
ú

k≠1
is

V[Y ú
k≠1

] = nk≠1pk≠1(1 ≠ pk≠1) + nkpk(1 ≠ pk). (2)

Also, the authors argued that Equations (1) and (2) are not equivalent and that in general
it has VBin[Y ú

k≠1
] Ø V[Y ú

k≠1
]. In this regard, let �V = VBin[Y ú

k≠1
] ≠ V [Y ú

k≠1
]. Then, we have

�V = nk≠1nk

nk≠1 + nk
(pk≠1 ≠ pk)2

. (3)
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From Equation 3, the authors deduced that:
(1) If pk≠1 and pk are close (pk≠1 ¥ pk), the di�erence (pk≠1≠pk)2 æ 0, so that �V æ 0

and VBin[Y ú
k≠1

] ¥ V[Y ú
k≠1

].
(2) If pk≠1 and pk are distant from each other (which occurs, for example, when pk≠1 ¥ 0

and pk ¥ 1, or pk≠1 ¥ 1 and pk ¥ 0), then the di�erence (pk≠1 ≠ pk)2 æ 1, so that
�V æ nk≠1nk/(nk≠1 + nk) and VBin[Y ú

k≠1
] ¥ V[Y ú

k≠1
] + nk≠1nk/(nk≠1 + nk). In this

situation, the greatest di�erence between the variances occurs. This di�erence can
be considerable depending on the nk≠1 and nk values.

Now, Figure 1(a) shows the behavior of the variance assumed by the researcher when
the nk≠1 and nk parameters are fixed and vary the values of pk≠1 and pk. Clearly, it
can be seen in the graph that as pk≠1 ¥ 0 and pk ¥ 0, or pk≠1 ¥ 1 and pk ¥ 1,
then VBin[Y ú

k≠1
] æ 0. Meanwhile, relative maximums are obtained along the ordered pairs

(pk≠1, pk) = (pk≠1, 0.5[1+(nk≠1/nk)(1≠2pk≠1)]), where VBin[Y ú
k≠1

] reaches the value n
ú
k≠1

/4
in each one of them (see Appendix A).

(a) (b)

Figure 1. Y ú
k≠1 variances: (a) Binomial variance (VBin[Y ú

k≠1]) assumed by the researcher; (b) True variance

(V[Y ú
k≠1]).

Note that the true variance (Figure 1(b)) shows similar behavior to the binomial variance,
when pk≠1 and pk both tend to 0 or 1. In fact, whenever pk≠1 = pk. However, this behavior
also occurs when one of them tends to 0 and the other to 1 (or viceversa). The minimum
values of the variance occur for the cases mentioned, while the maximum occurs when both
parameters take the value 0, 5 (pk≠1 = pk = 0.5), being V[Y ú

k≠1
] = n

ú
k≠1

/4 said maximum
(see Appendix B).

In Figure 2, the di�erence between the variance assumed by the researcher and the true
variance is shown. Indeed, this figure shows that the di�erences tend to 0 when pk≠1 ¥ pk.
These di�erences grow when pk≠1 and pk tend to opposite ends, reaching their maximum
values in pk≠1 ¥ 0 and pk ¥ 1, and pk≠1 ¥ 1 and pk ¥ 0.

3. Fitting a binomial model using the usual method

Next, we describe the saturated binomial model before aggregation. It is possible to use the
generalized linear model approach (Nelder and Wedderburn, 1972; McCullagh and Nelder,
1989; McCulloch and Searle, 2001; Dobson, 2002; Agresti, 2007, 2015) to the data in Table
1, when the response variables Y1, . . . , Yk are supposed independent and follow a binomial
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Figure 2. Di�erence between binomial and true variances (�V = VBin[Y ú
k≠1] ≠ V[Y ú

k≠1]).

distribution as this belongs to the exponential family of distributions. For the link, any
monotonous and di�erentiable function can be used, however, the choice of it has given rise
to the most important binomial models present in the literature (logit model, probit model,
cloglog model, to mention some, among which the first one stands out).

In its simplest sense, the saturated model (m = k) and reference parameterization can be
postulated, whereby the matrix X is a square matrix (of order k◊k) and invertible (Ponsot,
2011). Being k the reference level, this parameterization leads to the model ⌘ = X�, whose
matrix representation is:

S

WWWWWWWWU

÷1

÷2

...
÷k≠2

÷k≠1

÷k

T

XXXXXXXXV

=

S

WWWWWWWWU

1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
...

...
...

... . . . ...
...

1 0 0 0 · · · 1 0
1 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0

T

XXXXXXXXV

S

WWWWWWWWU

—1

—2

...
—k≠2

—k≠1

—k

T

XXXXXXXXV

. (4)

The X matrix can be partitioned as:

X =
5
j I
1 0€

6
∆ X≠1 =

5
0€ 1
I ≠j

6
. (5)

Since ⌘ = X� ∆ � = X≠1⌘. When saturated, the model raised in Equation (4) does not
have su�cient degrees of freedom to calculate the deviance or Pearson statistics (Ponsot,
2011). However, you can still estimate its parameters (�) and determine its statistical
significance.

Let ‚÷i = g(‚µi), i = 1, . . . , k. From Equations (4) and (5), it follows in general terms that

‚—j =
I

‚÷k if j = 1
‚÷j≠1 ≠ ‚÷k if j = 2, . . . , k.

(6)

Since � ≥ AN[�, (X€WX)≠1], the parameters variance is

V[ ‚�] = (X€WX)≠1 = X≠1W≠1(X€)≠1

where W = diag {w1, . . . , wk} with wi = (ˆµi/ˆ÷i)2
VBin[Yi], for i = 1, . . . , k.
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Therefore, in general terms, the variance of ‚� is given by

V[ ‚—j ] =

Y
_____]

_____[

VBin[Yk]
(ˆµk/ˆ÷k)2

, if j = 1;

VBin[Yj≠1]
(ˆµj≠1/ˆ÷j≠1)2

+ VBin[Yk]
(ˆµk/ˆ÷k)2

, if j = 2, . . . , k.

(7)

After fitting a saturated binomial model, assume that the last two levels k≠1 and k of the
A factor are added, leaving the data arranged as in Table 2. As already mentioned sometimes
the researcher reiterates the usual adjustment process, as in the previous section, assuming
that the new random variable Y

ú
k≠1

= Yk≠1 + Yk has variance VBin[Y ú
k≠1

] = n
ú
k≠1

p
ú
k≠1

(1 ≠
p

ú
k≠1

), with n
ú
k≠1

= nk≠1 + nk and p
ú
k≠1

= (nk≠1pk≠1 + nkpk)/n
ú
k≠1

.
In this new fit, the design matrix that arises from aggregation (call X⇤) now has

dimensions (k≠1)◊(k≠1) due to the elimination of the k-th row and k-th column. However,
if the reference parameterization is maintained, then with respect to the aggregate level k≠1
is possible to propose a model as in Equation (4) on the new data set.

As in Equation (6), the estimated parameter vector elements obtained by the usual method
(denote the superscript h like ‚�úh) are expressed as

‚—úh
j =

I
‚÷ú

k≠1
, if j = 1;

‚÷j≠1 ≠ ‚÷ú
k≠1

, if j = 2, . . . , k ≠ 1.
(8)

Observe that the new diagonal matrix W úh keeps the k ≠2 elements of W , changing only
the one that corresponds to the level k ≠ 1, that is, we have

W úh = diag
)
w1, . . . , w

ú
k≠1

*

= diag

I
(ˆµ1/ˆ÷1)2

VBin[Y1] , . . . ,
(ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

)2

VBin[Y ú
k≠1

]

J

.

Thus, the variances and covariances matrix is given by

V[ b�úh] = [(X⇤)€W úhX⇤]≠1 = (X⇤)≠1(W úh)≠1[(X⇤)€]≠1

and as in Equation (7), the variance of ‚—úh
j is

V[ ‚—úh
j ] =

Y
________]

________[

VBin[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 1;

VBin[Yj≠1]
(ˆµj≠1/ˆ÷j≠1)2

+
VBin[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 2, . . . , k ≠ 1.

(9)

Equations (8) and (9) are generalizations of the usual procedure for fitting binomial models
when any di�erentiable monotone function is used as a link. Therefore, from now on, they
are part of the context that we call the generalized usual method (GUM).



Chilean Journal of Statistics 89

4. Fitting a binomial model using the Ponsot method

In the presence of the saturated model given in Equation (4), Ponsot et al. (2009) proposed
a method to reiterate the adjustment of a binomial model, after the levels aggregation, when
the first adjustment uses the logit link function.

Now, let g(µi) be any di�erentiable monotonous link function. Asymptotically, in the
saturated model V[X b�] = X(X€WX)≠1X€ = XX≠1W≠1(X€)≠1X€ = W≠1. Then,
under conditions of regularity and as a consequence of the usual central limit theorem, as
well as properties of the maximum-likelihood estimators, we have that

g(‚µi) = x
€
i

‚� ≥ AN

Q

ax
€
i �; w

≠1

i =
C

(ˆµi/ˆ÷i)2

VBin[Yi]

D≠1

= VBin[Yi]
(ˆµi/ˆ÷i)2

R

b . (10)

Applying the delta method in Equation (10) (Agresti, 2007), we get

µi = g
≠1(÷i)

ˆg
≠1(÷i)
ˆ÷i

= ˆµi

ˆ÷i
.

Thus, we reach

‚µi ≥ AN

1
µi = g

≠1(x€
i �);VBin[Yi]

2
.

Now, when k ≠ 1 and k levels are added, the maximum-likelihood estimator of the new
mean µ

ú
k≠1

is given by

‚µú
k≠1

= \E[Y ú
k≠1

] = \E[Yk≠1] + [E[Yk] = ‚µk≠1 + ‚µk. (11)

Due to ‚µú
k≠1

is the weighted sum of two linear functions of asymptotically independent
normal random variables, their asymptotic distribution is also normal with

E[‚µú
k≠1

] = E[‚µk≠1] + E[‚µk] = µk≠1 + µk

and

V[‚µú
k≠1

] = V[‚µk≠1] + V[‚µk] = VBin[Yk≠1] + VBin[Yk] = V[Y ú
k≠1

].

Again, using the delta method, the required distribution of ‚÷ú
k≠1

= g(‚µú
k≠1

) is
asymptotically normal with expected value E[‚÷ú

k≠1
] = g(µú

k≠1
) = ÷

ú
k≠1

and asymptotic
variance stated as

(‡2)ú
k≠1

= V[‚µú
k≠1

]
C

ˆg(µú
k≠1

)
ˆµ

ú
k≠1

D2

= V[Y ú
k≠1

]
C

ˆ÷
ú
k≠1

ˆµ
ú
k≠1

D2

. (12)

From (‡2)ú
k≠1

, Ponsot et al. (2009) suggested creating a matrix ⌃, equivalent to W≠1

from the original fit and from which its k ≠ 2 elements remains, but with the k ≠ 1 element
added corrected for true variance V[Y ú

k≠1
], as in Equation (12). This suggested matrix is of
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the form expressed as

⌃ =

S

WWWWWU

1/w1 0 · · · 0 0
0 1/w2 · · · 0 0
...

... . . . ...
...

0 0 · · · 1/wk≠2 0
0 0 · · · 0 (‡2)ú

k≠1

T

XXXXXV
.

The variance and covariance matrix of the estimators using this suggested method (now
denoted with the superscript s) is given by

V[ ‚�ús] = (X⇤)≠1⌃[(X⇤)€]≠1

resulting in

V[ ‚—ús
j ] =

Y
________]

________[

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 1;

VBin[Yj≠1]
(ˆµj≠1/ˆ÷j≠1)2

+
V[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, if j = 2, ·, k ≠ 1.

(13)

As in Equation (8), the elements of the estimated parameter vector using the suggested
method ( ‚�ús) are defined as

‚—ús
j =

I
‚÷ú

k≠1
if j = 1

‚÷j≠1 ≠ ‚÷ú
k≠1

if j = 2, · · · , k ≠ 1.
(14)

The above results are a generalization of the method suggested by Ponsot et al. (2009),
which we call the generalized suggested method (GSM). The GSM allows us to adjust a
binomial model using the suggested method, but now using any link function.

Next, we describe di�erences between the variances obtained through GUM and GSM.
Let �V(‚—ú

1
) = V[—úh

1
]≠V[—ús

1
] be the di�erence between the variances obtained by the GUM

and the GSM, for the —
ú
1

parameter. Then, from Equations (9) and (13), we have

�V(‚—ú
1
) =

VBin[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
≠

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
,

=
VBin[Y ú

k≠1
] ≠ V[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
,

= �V
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
,

where �V is defined as in Equation (3).
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For the parameters —
ú
j , with j = 2, . . . , , k ≠ 1, let �V(‚—ú

j ) = V(‚—úh
j ) ≠ V(‚—ús

j ) be the
di�erence between the variances obtained by both methods. Again, from Equations (9) and
(13), we get

�V(‚—ú
j ) =

S

WU
VBin[Yj≠1]

(ˆµj≠1/ˆ÷j≠1)2
+

VBin[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22

T

XV

≠

S

WU
VBin[Yj≠1]

(ˆµj≠1/ˆ÷j≠1)2
+

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22

T

XV

=
VBin[Y ú

k≠1
]

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
≠

V[Y ú
k≠1

]
1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22

= V[—úh
1

] ≠ V[—ús
1

] = �V(‚—ú
1
).

This last result demonstrates that the di�erence in the variances obtained by both
methods, for the first component of the vector ‚�ú (that is, ‚—ú

1
), is the same for the remaining

components. Thus, we have that

�V(‚—ú
j ) = �V

1
ˆµ

ú
k≠1

/ˆ÷
ú
k≠1

22
, for j = 1, . . . , k ≠ 1. (15)

In Equation (15), the denominator is dependent on the selected link function and the
numerator is a function of �V. The same conditions established at the end of the Section
2 apply to pk≠1 and pk.

5. Some binomial models using the GUM and GSM

Assume the k and k ≠ 1 level aggregation situation in Table 2, and let

‚pú
k≠1

= nk≠1 ‚pk≠1 + nk ‚pk

nk≠1 + nk
, (16)

as it follows from Equation (11). In this section, the adjustment procedure of three of the
best known binomial models (logit, probit and cloglog) is shown, using the methods obtained
in the previous sections.

The link function in the logit model is stated as

÷i = logit(pi) = log
3

pi

1 ≠ pi

4
= log

3
µi

n ≠ µi

4
.

Then, we have

ˆ÷i

ˆµi
= 1

nipi(1 ≠ pi)
= 1

VBin[Yi]
.
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Thus, we get

ˆµi

ˆ÷i
= VBin[Yi].

From Equations (8) and (14), the parameters estimated by both methods are identical
and equal to

‚—úh
j = ‚—ús

j =
I
logit(‚pú

k≠1
), if j = 1;

logit(‚pj≠1) ≠ logit(‚pú
k≠1

), if j = 2, . . . , k ≠ 1.

The variances of the estimators obtained by GUM, according to Equation (9), are obtained
as

V[ ‚—úh
j ] =

Y
_____]

_____[

1
VBin[Y ú

k≠1
] , if j = 1;

1
VBin[Yj≠1] + 1

VBin[Y ú
k≠1

] , if j = 2, . . . , k ≠ 1.

Meanwhile, the variances estimated by the GSM for these same estimators, according to
Equation (13), are given by

V[ ‚—ús
j ] =

Y
_____]

_____[

V[Y ú
k≠1

]
(VBin[Y ú

k≠1
])2

, if j = 1;

1
VBin[Yj≠1] +

V[Y ú
k≠1

]
(VBin[Y ú

k≠1
])2

, if j = 2, . . . , k ≠ 1.

Regarding the di�erences between these variances, from Equation (15), we have that

�V(‚—ú
j ) = �V(‚—ú

1
) = �V

(VBin[Y ú
k≠1

])2
.

Figure 3 graphically displays the behavior of �V(‚—ú
j ) for the logit model. It is observed

that its performance is very similar to that of �V shown in Figure 2.
The link function in the probit model is given by

÷i = probit(pi) = �≠1(pi) = �≠1

3
nipi

ni

4
= �≠1

3
µi

ni

4
.

Hence, we get

µi = ni�(÷i)

and since [�]Õ = „, then we have that

ˆµi

ˆ÷i
= ni„(÷i) = ni„[�≠1(pi)].
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Figure 3. Di�erences between variances estimated using the GUM and GSM (�V(‚—ú
j ) = V(‚—úh

j ) ≠ V (‚—ús
j )) with

logit link function

From Equation (8) and (14), the parameters estimated by the GUM and GSM are identical
and equal to

‚—úh
j = ‚—ús

j =
I
probit(‚pú

k≠1
), if j = 1

probit(‚pj≠1) ≠ probit(‚pú
k≠1

), if j = 2, . . . , k ≠ 1.

From Equation (9), the variances of the estimators obtained by the GUM are stated as

V[ ‚—úh
j ] =

Y
________]

________[

VBin[Y ú
k≠1

]
Ó

n
ú
k≠1

„[�≠1(pú
k≠1

)]
Ô2

, if j = 1;

VBin[Yj≠1]
{nj≠1„[�≠1(pj≠1)]}2

+
VBin[Y ú

k≠1
]

Ó
n

ú
k≠1

„[�≠1(pú
k≠1

)]
Ô2

, if j = 2, . . . , k ≠ 1.

Meanwhile, the variances estimated by the GSM, according to Equation (13), are expressed
as

V[ ‚—ús
j ] =

Y
________]

________[

V[Y ú
k≠1

]
Ó

n
ú
k≠1

„[�≠1(pú
k≠1

)]
Ô2

, if j = 1;

VBin[Yj≠1]
{nj≠1„[�≠1(pj≠1)]}2

+
V[Y ú

k≠1
]

Ó
n

ú
k≠1

„[�≠1(pú
k≠1

)]
Ô2

, if j = 2, . . . , k ≠ 1.

From Equation (15), the di�erences between these estimated variances are defined by

�V(‚—ú
j ) = �V(‚—ú

1
) = �V

Ó
n

ú
k≠1

„[�≠1(pú
k≠1

)]
Ô2

.

Figure 4 graphically displays the behavior of �V(‚—ú
j ) for the probit model. Without

considering the di�erence of scales inherent in each case, it is observed that it is similar
to that of the logit model, di�ering mainly in the borders or neighborhoods where ‚pk≠1 and
‚pk both approach 0 or 1.
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Figure 4. Di�erences between variances estimated using the GUM and GSM (�V(‚—ú
j ) = V[‚—úh

j ] ≠ V[‚—ús
j ]) with

probit link function.

The link function in the cloglog model is established by

÷i = cloglog(pi) = log[≠ log(1 ≠ pi)] = log[≠ log(1 ≠ µi/ni)] = g(µi).

By di�erentiating, we obtain

ˆ÷i

ˆµi
= ≠ 1

ni(1 ≠ pi) log(1 ≠ pi)
.

Thus, we get

ˆµi

ˆ÷i
= ≠ni(1 ≠ pi) log(1 ≠ pi).

From Equation (8) and (14), the parameters estimated by GUM and GSM are, once again,
identical and equal to

‚—úh
j = ‚—ús

j =
I
cloglog(‚pú

k≠1
), if j = 1;

cloglog(‚pj≠1) ≠ cloglog(‚pú
k≠1

), if j = 2, . . . , k ≠ 1.

The variances of the estimators obtained by the GUM, according to Equation (9), are stated
as

V[ ‚—úh
j ] =

Y
__________]

__________[

VBin[Y ú
k≠1

]
[nú

k≠1
(1 ≠ p

ú
k≠1

) log(1 ≠ p
ú
k≠1

)]2 , if j = 1

VBin[Yj≠1]
[nj≠1(1 ≠ pj≠1) log(1 ≠ pj≠1)]2

+
VBin[Y ú

k≠1
]

[nú
k≠1

(1 ≠ p
ú
k≠1

) log(1 ≠ p
ú
k≠1

)]2 , if j = 2, . . . , k ≠ 1.
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Meanwhile, the variances estimated by the GSM for these same parameters, according to
Equation (13), are given by

V[ ‚—ús
j ] =

Y
__________]

__________[

V[Y ú
k≠1

]
[nú

k≠1
(1 ≠ p

ú
k≠1

) log(1 ≠ p
ú
k≠1

)]2 , if j = 1;

VBin[Yj≠1]
[nj≠1(1 ≠ pj≠1) log(1 ≠ pj≠1)]2

+
V[Y ú

k≠1
]

[nú
k≠1

(1 ≠ p
ú
k≠1

) log(1 ≠ p
ú
k≠1

)]2 , if j = 2, . . . , k ≠ 1.

From Equation (15), we get

�V(‚—ú
j ) = �V(‚—ú

1
) = �V

[nú
k≠1

(1 ≠ p
ú
k≠1

) log(1 ≠ p
ú
k≠1

)]2 .

Figure 5 shows the performance of �V(‚—ú
j ) for the cloglog model. Of course, it also

constitutes a particularization of �V. However, it is observed that the region or border
where �V(‚—ú

j ) æ 0 is a little more extensive than the previous models.

Figure 5. Di�erences between variances estimated using the GUM and GSM (�V(‚—ú
j ) = V[‚—úh

j ] ≠ V[‚—ús
j ]) with

cloglog link function.

6. Illustration of the procedures

Table 3 reproduces the example presented by Ponsot (2011). There, the situation of interest
focused on studying the relationship between a Y response variable and an A explanatory
factor with three levels.

Table 3. Example: Y (0, 1) versus A(1, 2, 3).

Y

A 0 1 Total
1 189 161 350
2 300 50 350
3 32 318 350

Total 521 529 1050
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From Equation (4), it follows the saturated model using the parameterization with the
third level of the factor as reference stated as

S

U
÷1

÷2

÷3

T

V =

S

U
g(p1)
g(p2)
g(p3)

T

V =

S

U
1 1 0
1 0 1
1 0 0

T

V

S

U
—1

—2

—3

T

V .

Table 4 contains the estimates of the parameters of the linear predictor and its variances
for the di�erent binomial models, according to the link function used (for this case, logit,
probit and cloglog links). This Table also contains the Wald ‰

2 tests for H0: —i = 0 in
order to check the statistical significance of the estimated parameters, as well as the 95%
confidence intervals (CI) built for —i. The predicted probabilities and their CI, following
Agresti (2007), are shown in Table 5.

Table 4. Original model: ‚—i and Wald test (H0: —i = 0) according to the link function.

Estimation of —i 95% CI
Link i ‚—i V[‚—i] ‰2 p-value Decision LL UL
logit 1 2.296 0.034 153.3 < 0.0001 Reject 1.933 2.660

2 ≠2.457 0.046 131.5 < 0.0001 Reject ≠2.877 ≠2.037
3 ≠4.088 0.058 289.5 < 0.0001 Reject ≠4.559 ≠3.617

probit 1 1.132 0.009 201.8 < 0.0001 Reject 1.148 1.516
2 ≠1.432 0.013 154.3 < 0.0001 Reject ≠1.658 ≠1.206
3 ≠2.400 0.016 367.6 < 0.0001 Reject ≠2.645 ≠2.154

cloglog 1 0.872 0.005 153.3 < 0.0001 Reject 0.734 1.010
2 ≠1.356 0.011 161.8 < 0.0001 Reject ≠1.565 ≠1.147
3 ≠2.742 0.025 300.7 < 0.0001 Reject ≠3.052 ≠2.432

where LL: lower limit and UL: upper limit.

Note that the three binomial models reject the null hypotheses H0: —i = 0, that is, their
parameters are significant and fit the data well. Among them, the probit model is the one
with the best fit for presenting higher values for the ‰

2 statistic (which increases the power
of the test). The predicted probabilities for each model are equal, regardless of the link
function used, and their confidence intervals coincide in many cases, up to the order of
thousandths. Now, suppose that after fitting any of these models, levels 2 and 3 of the A

factor are added (see Table 3). Then, a new contingency table is obtained, such as the one
shown in Table 6. In this case, the new model is given by

5
÷

ú
1

÷
ú
2

6
=

5
g(pú

1
)

g(pú
2
)

6
=

5
1 1
1 0

6 5
—

ú
1

—
ú
2

6
.

The new estimates obtained by using the GUM, that is, re-adjusted binomial models using
logit, probit and cloglog link functions on the resulting contingency table (see Table 6) are
shown in Table 7. The predicted probabilities for each of the models, without attention to
parameters significance levels, are reproduced in Table 8.

Given the last two levels aggregation, the new parameter vector �ú is estimated di�erently
than in the original model, as shown in Table 7. As for the new predicted probability
vector (bpú), without considering the significance levels of the parameters, the results are
as expected: the first component is the same as the original model (‚pú

1
= ‚p1), while in the

second component you get that ‚pú
2

= 0.5257, in accordance with Equation (16).
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Table 5. Predicted probabilities and 95% CI according to link function.

Estimation of pi 95% CI
Link i ‚pi LL UL
logit 1 0.4600 0.4084 0.5125

2 0.1429 0.1100 0.1836
3 0.9086 0.8736 0.9346

probit 1 0.4600 0.4083 0.5124
2 0.1429 0.1093 0.1827
3 0.9086 0.8746 0.9352

cloglog 1 0.4600 0.4094 0.5137
2 0.1429 0.1102 0.1841
3 0.9086 0.8755 0.9358

where LL: lower limit, and UL: upper limit.

Table 6. Example: Y (0, 1) versus A(1, 2).

Y

A 0 1 Total
1 189 161 350
2 332 368 700

Total 521 529 1050

Table 7. Usual procedure (GUM): ‚—ú
i and Wald test (H0: —ú

i = 0) according to the link function.

Estimation of —ú
i 95% CI

Link i ‚—ú
i V[‚—ú

i ] ‰2 p-value Decision LL UL L(CI)
logit 1 0.103 0.006 1.8 0.174 Not reject ≠0.045 0.251 0.296

2 ≠0.263 0.017 4.0 0.045 Reject ≠0.521 ≠0.006 0.515
probit 1 0.065 0.002 1.9 0.174 Not reject ≠0.028 0.157 0.185

2 ≠0.165 0.007 4.0 0.045 Reject ≠0.326 ≠0.004 0.322
cloglog 1 ≠0.293 0.003 30.2 < 0.000 Reject ≠0.398 ≠0.189 0.209

2 ≠0.191 0.009 3.9 0.047 Reject ≠0.380 ≠0.003 0.377
where L(CI): length of CI, LL: lower limit, and UL: upper limit.

Table 8. Usual procedure (GUM): Predicted probabilities and 95% CI according to link function

Estimation of pú
i 95% CI

Link i ‚pú
i LL UL L(CI)

logit 1 0.4600 0.4084 0.5125 0.1041
2 0.5257 0.4887 0.5625 0.0738

probit 1 0.4600 0.4083 0.5124 0.1041
2 0.5257 0.4887 0.5625 0.0738

cloglog 1 0.4600 0.4094 0.5137 0.1043
2 0.5257 0.4893 0.5631 0, 0738

where L(CI): length of CI, Ll: lower limit, and UL: upper limit.
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Although these are the expected values, with – = 0.05 and according to the results of
Table 7, in the logit and probit models there is insu�cient evidence to reject H0: —

ú
1

= 0,
in a strict statistical sense, and so the predicted probabilities in Table 8 for these models
should not be considered valid. In fact, the correct predictions for the logit model would be

‚pú
1

= exp(‚—ú
1

+ ‚—ú
2
)

1 + exp(‚—ú
1

+ ‚—ú
2
)

= exp(0 ≠ 0.263)
1 + exp(0 ≠ 0.263) = exp(≠0.263)

1 + exp(≠0.263) = 0.4346 and

‚pú
2

= exp(‚—ú
1
)

1 + exp(‚—ú
1
)

= exp(0)
1 + exp(0) = 0.5000

while those corresponding to the probit model would be given by

‚pú
1

= �(‚—ú
1

+ ‚—ú
2
) = �(0 ≠ 0.165) = �(≠0.165) = 0.4345 and

‚pú
2

= �(‚—ú
1
) = �(0) = 0.5000.

For that matter, only the cloglog model would remain valid since the nullity hypothesis for
all its parameters is rejected.

In contrast, Table 9 and 10 present the estimates of the parameters and the predicted
probabilities respectively, for the binomial models addressed, but now obtained through the
GSM.

Table 9. Suggested procedure (GSM): ‚—ú
i and Wald test (H0: —ú

i = 0) according to the link function.

Estimation of —ú
i 95% CI

Link i ‚—ú
i V[‚—ú

i ] ‰2 p-value Decision LL UL L(CI)
logit 1 0.103 0.002 4.5 0.034 Reject 0.008 0.198 0.190

2 ≠0.263 0.014 5.0 0.025 Reject ≠0.494 ≠0.033 0.462
probit 1 0.065 0.001 4.5 0.034 Reject 0.005 0.124 0.119

2 ≠0.165 0.005 5.0 0.025 Reject ≠0.309 ≠0.020 0.289
cloglog 1 ≠0.293 0.001 73.3 < 0.000 Reject ≠0.360 ≠0.226 0.134

2 ≠0.191 0.008 4.8 0.028 Reject ≠0.362 ≠0.020 0.341
where L(CI): length of CI, Ll: lower limit, and UL: upper limit.

Table 10. Suggested procedure (GSM): Predicted probabilities and 95% CI according to link function.

Estimation of pú
i 95% CI

Link i ‚pú
i LL UL L(CI)

logit 1 0.4600 0.4084 0.5125 0.1041
2 0.5257 0.5019 0.5494 0.0475

probit 1 0.4600 0.4083 0.5124 0.1041
2 0.5257 0.5019 0.5494 0.0475

cloglog 1 0.4600 0.4094 0.5137 0.1043
2 0.5257 0.5022 0.5497 0.0475

where L(CI): length of CI, Ll: lower limit, and UL: upper limit.
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As expected by Equations (8) and (14), the estimates of —
ú
i for each of the binomial

models adjusted by using GUM and GSM are identical. However, the estimated variances are
di�erent in both procedures: those estimated by the GSM procedure are smaller. Therefore,
it is preferable to those estimated by the GUM procedure. Of course, these decreases in
the variances imply the reduction in the lengths of the confidence intervals, as it can be
seen when comparing the respective tables. This applies both to the estimators of the linear
predictor and to the second component of the predicted probability vector, regardless of the
binomial model implemented.

Additionally, when the aggregate model data is adjusted by appealing to the suggested
procedure, there is a change in the conclusions about the significance of ‚—ú

1
for the logit and

probit models. Thus, estimates of the predicted probabilities in Table 10 are now statistically
valid and better approximate the available data. The latter also applies to the cloglog model
which, even though their estimates are considered valid when obtained by the usual GUM
procedure, improve when the GSM is used.

7. Conclusions

This work constitutes a generalization of the method proposed by Ponsot et al. (2009)
for fitting binomial logit models, in the situation of factor levels aggregation on a simple
contingency table (with a factor and a dichotomous response variable). This generalization
consists of an extension, both of the usual procedure and of the procedure suggested by the
author, for the adjustment of binomial models by means of link functions not only logit,
but also probit and cloglog.

The results showed that the problem of factor levels aggregation persists in models that
are usually competitors or alternatives to the logit model. That is because, regardless of the
link function used, the violation of the binomial assumption remains when the associated
probabilities of success at aggregated levels are dissimilar. Then, the suggested procedure
maintains its advantages with any of the link functions used, being it preferable to the usual
adjustment procedure, as it o�ers the necessary correction and subsequent improvement of
the results.

The link function that is selected does not favor the application of a particular method
between the two presented. However, it was confirmed that, in any scenario, that is, when any
link function is appealed to derive a binomial model, the estimates obtained by the suggested
method improve when the correct distribution assumption is used. The choice between
one method or another is based mainly on the probabilities of success associated with the
aggregate levels. If they present slight di�erences, the estimates of the usual method are
not very di�erent from those of the suggested method. On the contrary, as these di�erences
grow, it is better to rely on the suggested method.

In the future, it is expected to apply the comparisons made for the saturated model,
using di�erent link functions, to the general case of the aggregation of factor levels in
the unsaturated model, as proposed by Ponsot et al. (2012). It is also expected to apply
re-sampling techniques to study the behavior of the standard errors of the estimators in
this more general case. Extensions to the so-called tobit model are also of interest (Barros
et al., 2018; Desousa et al., 2018). Finally, the applications of the methodology is explored
in the sense proposed by Da Silva et al. (2016), that is, for multinomial-ordinal models of a
longitudinal nature.
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Appendix A. Extreme values of VBin[Y ú
k≠1

]

Let VBin[Y ú
k≠1

] = n
ú
k≠1

p
ú
k≠1

(1 ≠ p
ú
k≠1

), where n
ú
k≠1

= nk≠1 + nk and p
ú
k≠1

= (nk≠1pk≠1 +
nkpk)/n

ú
k≠1

. Then, the partial derivatives of VBin[Y ú
k≠1

], with respect to pk≠1 and pk, are
given by

ˆVBin[Y ú
k≠1

]
ˆpk≠1

= nk≠1

A

1 ≠ nk≠1pk≠1 + nkpk

n
ú
k≠1
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n
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n
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k≠1

(nú
k≠1

≠ 2nk≠1pk≠1 ≠ 2nkpk),

ˆVBin[Y ú
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]
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= nk
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1 ≠ nk≠1pk≠1 + nkpk

n
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n
ú
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n
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(nú
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≠ 2nk≠1pk≠1 ≠ 2nkpk).

Equating to zero, the critical points are all those ordered pairs of the form

(pk≠1, pk) =
3

pk≠1, 0.5
5
1 + nk≠1

nk
(1 ≠ 2pk≠1)
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The second partial derivatives of VBin[Y ú
k≠1

] are stated as

A =
ˆ

2
VBin[Y ú

k≠1
]

ˆp
2

k≠1

= nk≠1

n
ú
k≠1

(≠2nk≠1) = ≠
2n

2

k≠1

n
ú
k≠1

B =
ˆ

2
VBin[Y ú

k≠1
]

ˆpkˆpk≠1

= nk≠1

n
ú
k≠1

(≠2nk) = ≠2nk≠1nk

n
ú
k≠1

C =
ˆ

2
VBin[Y ú

k≠1
]

ˆp
2

k

= nk

n
ú
k≠1

(≠2nk) = ≠ 2n
2

k

n
ú
k≠1

while the Hessian is expressed by

H = AC ≠ B
2 =

A

≠
2n

2

k≠1

n
ú
k≠1

B A

≠ 2n
2

k

n
ú
k≠1

B

≠
A

≠2nk≠1nk

n
ú
k≠1

B2

= 0

Thus, that the Hessian criterion fails in the decision. Nevertheless, it is clear from the
examination of Figure 1 that the set of points found are relative maximum values.

Appendix B. Extreme values of V[Y ú
k≠1

]

Let V[Y ú
k≠1

] = nk≠1pk≠1(1 ≠ pk≠1) + nkpk(1 ≠ pk). Then, the partial derivatives of V[Y ú
k≠1

],
with respect to pk≠1 and pk, are given by

ˆV [Y ú
k≠1

]
ˆpk≠1

= nk≠1(1 ≠ pk≠1) ≠ nk≠1pk≠1 = nk≠1(1 ≠ 2pk≠1)

ˆV [Y ú
k≠1

]
ˆpk

= nk(1 ≠ pk) ≠ nkpk = nk(1 ≠ 2pk)
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which, when equated to zero, throw as a critical point (pk≠1, pk) = (0.5, 0.5).
As second partial derivatives of V[Y ú

k≠1
], we have

A =
ˆ

2
V [Y ú

k≠1
]

ˆp
2

k≠1

= nk≠1(≠2) = ≠2nk≠1

B =
ˆ

2
V [Y ú

k≠1
]

ˆpkˆpk≠1

= 0

C =
ˆ

2
V [Y ú

k≠1
]

ˆp
2

k

= nk(≠2) = ≠2nk.

Consequently, the Hessian is given by H = AC ≠B
2 = (≠2nk≠1)(≠2nk)≠(0)2 = 4nk≠1nk.

Due to H > 0 and A < 0, then at the critical point (pk≠1, pk) = (0.5, 0.5), there is a relative
maximum whose value is V[Y ú

k≠1
] = (nk≠1 + nk)/4 = n

ú
k≠1

/4.
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