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M. Dolores Ugarte Universidad Pública de Navarra, Spain



Chilean Journal of Statistics

Volume 12, Number 1

April 2021

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
© Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs



Chilean Journal of Statistics Volume 12 – Number 1 – April 2021

Contents

Carolina Marchant and Vı́ctor Leiva
Chilean Journal of Statistics: A forum for the Americas

and the World in COVID-19 pandemic 1

Ruth Burkhalter and Yuhlong Lio
Bootstrap control charts for the generalized Pareto distribution percentiles 3
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Abstract

In this paper, we propose a flexible cure rate model including a frailty term, which
was obtained by incorporating a random e�ect in the risk function of latent competing
causes. The number of competing causes of the event of interest follows a negative bino-
mial distribution, and the frailty variable follows a power variance function distribution,
which includes other frailty models such as gamma, positive stable, and inverse Gaussian
frailty models as special cases. The proposed model takes into account the presence of
covariates and right-censored data, which are suitable for populations with a long-term
survivors. Besides, it allows quantification of the degree of unobserved heterogeneity
induced by unobservable risk factors, which is important to explain the lifetime. Once
the posterior density function is not expressed in the closed form, Markov chain Monte
Carlo algorithms are performed for the estimation procedure. Simulation studies were
considered in order to evaluate the proposed model performance, and its practical rele-
vance was illustrated in a real medical dataset from a population-based study of incident
cases of melanoma diagnosed in the state of São Paulo, Brazil.

Keywords: Competing causes · Frailty models · Markov chain Monte Carlo
· Negative binomial distribution · Power variance function

Mathematics Subject Classification: Primary 62N01 · Secondary 62P10.

1. Introduction

Clinical outcomes in oncology are fundamental for all healthcare providers. Information such
as overall survival, disease-free survival, and cancer-specific survival can be obtained based
on the cancer type and patient features, such as the clinical stage, sex, age, education level,
type of treatment, and other information that is often available in medical records. The
incidence of a tumor is not always related to its severity. For instance, carcinomas of the
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skin are very common worldwide, but their clinical outcomes are among the best in oncology.
Melanoma is not the most common skin malignancy; however, it is one of the most dangerous
ones due to its potential of metastatic dissemination. According to the Brazilian National
Institute of Cancer (INCA), approximately 6,000 new cases were expected in 2018 (INCA,
2018); whereas, according to the International Agency for Research on Cancer (IARC),
approximately 7,000 new cases were reported (IARC, 2021). The number of deaths in Brazil
due to melanoma is estimated to be approximately 2,000 cases per year (INCA, 2018).

The staging system proposed by the American Joint Committee on Cancer (AJCC) is com-
monly used worldwide for melanoma. According to the latest edition (Gershenwald et al.,
2017), clinical stage IV corresponds to metastatic disease, which carries the worst progno-
sis. Even though several new modalities of treatment have been reported recently, treating
these patients is still challenging (Ascierto et al., 2018). Clinical stage III corresponds to
the nodal spreading of the melanoma; in this scenario, surgery is routinely associated with
radiotherapy and/or some modality of systemic treatment such as immunotherapy or tar-
geted therapy (Eggermont and Dummer, 2017). Clinical stages I and II correspond to the
melanoma being limited to the skin, which is associated with a better prognosis. These pa-
tients are normally treated with surgery, and the great majority will be alive after 10 years
of follow-up (Gershenwald et al., 2017).

In the traditional survival analysis approach, it is assumed that all units under study
are susceptible to the event of interest. However, such an assumption is violated in several
situations, such as in melanoma cancer studies, when the event of interest is death by disease.
In the literature, it is known that clinical stages I and II have a better prognosis, meaning
that a proportion of patients will not die from the disease; these patients are termed as having
“immune” elements, “cured”, or long-term survivors. Thus, a class of models, referred to as
cure rate models consider this type of situation and have been studied by several authors.
The Berkson-Gage model (Berkson and Gage, 1952) was probably the first model to propose
the cured fraction, which is based on the assumption that only one cause is responsible for
the occurrence of an event of interest (Cooner et al., 2007).

For melanoma, a patient death can be attributed to latent competing causes as the pres-
ence of cancer cells. These causes are based on the fact that each surviving carcinogenic cell
can be characterized by an unknown time during which the cell could become a definitive
tumor (Tsodikov et al., 2003). The books by Maller and Zhou (1996) and Ibrahim et al.
(2001) as well as the articles by Tsodikov et al. (2003), Chen et al. (1999), Yin and Ibrahim
(2005) and Rodrigues et al. (2009a) are key references.

Di�erent distributions have been considered for the number of competing causes related to
the occurrence of an event of interest. Chen et al. (1999) used Poisson distribution under a
Bayesian approach, Rodrigues et al. (2009a) considered the negative binomial and geometric
distributions, Rodrigues et al. (2009b) utilize the COM-Poisson distribution, Cancho et al.
(2013) employed the power series distribution, Gallardo et al. (2017) considered the Yale-
Simon distribution, Leão et al. (2018) assumed the Birnbaum-Saunders distribution, and
Leão et al. (2020) used the zero-modified geometric distribution.

The promotion times are usually assumed to be independent and identically distributed,
that is, the lifetimes of the carcinogenic cells follow a common distribution function, with the
most common being exponential, piecewise exponential, and Weibull, among others (Cal-
savara et al., 2017). Besides, the long-term survival models implicitly assume a homogeneous
population for the susceptible units. Although covariates can be included in the model in or-
der to explain some observable heterogeneity, there is an unobserved heterogeneity induced
by unobservable risk factors that are not commonly considered in the model (Wienke, 2011).

The models that take into account the unobservable heterogeneity are known as frailty
models (Vaupel et al., 1979). These models are characterized by the inclusion of a random
e�ect, that is, an unobservable random variable that represents the information that cannot
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be observed, such as unobservable risk factors. If an important covariate is not included in
the model, this will increase the unobservable heterogeneity, thus a�ecting the inferences
about the parameters in the model. Therefore, the inclusion of a frailty term can help to
relieve this problem (Hougaard, 1991).

The frailty term can be included in an additive form in the model. However, a multi-
plicative e�ect on the baseline hazard function is often used. Multiplicative frailty models
represent a generalization of the proportional hazards model introduced by Cox (1972), in
which the frailty term acts multiplicatively on the baseline hazard function. This approach
has been studied by several authors, notably Hougaard (1995), Sinha and Dey (1997) and
Balakrishnan and Peng (2006). Other authors, such as Calsavara et al. (2013), Calsavara
et al. (2017), Scudilio et al. (2019) and Calsavara et al. (2020) considered the frailty models
in the presence of long-term survivors.

We propose a class of survival models including a frailty term in the risk function of latent
competing causes (Cancho et al., 2011), where the distribution of the frailty is the power
variance function (PVF) family suggested by Tweedie (1984) and derived independently
by Hougaard (1986). This approach allows that the competitive causes (cancer cells) have
di�erent frailties and that the frailest will fail earlier than those that are less frail. In addition,
we consider that the number of competing causes related to the occurrence of an event of
interest is modeled by the negative binomial distribution. This class of models allows some
well-known models, depending on the parameter values, to be used. Herein, we illustrate
the applicability of the proposed model in a real medical dataset from a population-based
study of incident cases of melanoma diagnosed in the state of São Paulo, Brazil.

The rest of the paper is organized as follows. In Section 2, we present cure rate models
under latent competing causes and the frailty model following a PVF distribution for the
random e�ect, and the proposed model. Bayesian inference and simulation studies are de-
scribed in Section 3. The proposed methodology is illustrated with real melanoma data also
in this section. Finally, some final remarks are considered in Section 4.

2. Background and proposed model

In this section, we provide preliminary notions of long-term survival models under the bio-
logic perspective, considering a negative binomial distribution for latent causes. Also, notions
of the frailty model with their respective unconditional survival and density functions, as
well as the proposed model, are provided here.

2.1 Cure rate models and frailty models

The time for the jth competing cause to produce the promotion time is denoted by Zj ,
j = 1, . . . , N , where N represents the number of cancer cells. The variable N is unobserv-
able with the probability mass function (PMF) pn = P (N = n|�) for n = 0, 1, . . .. We
assume that, conditional on N and on the parameter vector Ï, Zjs are independent and
identically distributed with the cumulative distribution function F (t|Ï) and the survival
function S(t|Ï) = 1≠F (t|Ï). Also, we assume that Z1, Z2, . . . are independent from N . The
observable time of the occurrence of the event of interest is defined as T = min{Z0, Z1, . . .,
ZN }, where P (Z0 = Œ) = 1, which leads to long-term survivors p0 of the population not
susceptible to the event occurrence. According to Rodrigues et al. (2009a), the survival
function of the random variable T , conditional to parameter vector Ë, is given by

Spop(t|Ë) = P (T Ø t|Ë) =
Œÿ

n=0

P (N = n|�)[S(t|Ï)]n = AN [S(t|Ï)],
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where AN is the probability generating function (PGF) of the random variable N , which
converges when s = S(t|Ï) œ [0, 1].

We suppose that the number of cancer cells (N), conditional to � = (÷, ◊)€, follows
a negative binomial distribution (Saha and Paul, 2005) with the PMF and PGF stated,
respectively, as

pn = P (N = n|�) = �(n + ÷
≠1)

n!�(÷≠1)

3
÷◊

1 + ÷◊

4n

(1 + ÷◊)≠1/÷

and

AN (s) =
Œÿ

n=0

pns
n = [1 + ÷◊(1 ≠ s)]≠1/÷

, 0 Æ s Æ 1,

for n = 0, 1, . . . , ◊ > 0, ÷ Ø 0 and 1 + ÷◊ > 0, so that E(N|�) = ◊ and Var(N|�) = ◊ + ÷◊
2.

As discussed by Tournoud and Ecochard (2008), the parameters of the negative binomial
distribution have biological interpretations in which the mean number of competing causes
is represented by ◊, whereas ÷ is the dispersion parameter.

Under this setup, the population survival is given by

Spop(t|Ë) = {1 + ÷◊[1 ≠ S(t|Ï)]}≠1/÷
. (1)

The long-term survivors is determined from Equation (1) as p0 = limtæŒ Spop(t|Ë) =
(1 + ÷◊)≠1/÷

> 0.
Amico and Van Keilegom (2018) reviewed the literature on long-term survival models and

it is a recommended reference about the subject.
The frailty model considers a proportional hazard structure conditional on the random

e�ect V . The random e�ect, called frailty, is a nonnegative variable that indicates the
fragility of the unit. According to proportional hazard approach described by Cox and
Oakes (1984), the conditional hazard is expressed as h(t|V ) = V h0(t), where h0 is the
baseline hazard function.

The survival function of T conditional to V = v is given by

S(t|V, Ï) = S0(t|Ï)V
, (2)

where S0 denotes the baseline survival function.
In this paper, we suppose that the frailty variable V in Equation (2) follows the family of

PVF distributions with parameters µ, Â, and “, suggested by Tweedie (1984) and derived
independently by Hougaard (1986).

Let V be a random variable following a PVF distribution with parameters µ, Â, and “ so
that the density function can be written as (Wienke, 2011)

fv(v; µ, Â, “) = exp
5
≠Â(1 ≠ “)

3
v

µ
≠ 1

“

46
1
fi

Œÿ

k=1
(≠1)k+1 [Â(1 ≠ “)]k(1≠“)

µ
k“�(k“ + 1)

“kk! v
≠k“≠1

◊ sin(k“fi),

where µ > 0, Â > 0 and 0 < “ Æ 1.
Following the historical definition of frailty originally introduced in the field of demography

(Vaupel et al., 1979) and to make sure that the model is identifiable (Wienke, 2011), we
consider the restriction E(V|µ, Â, “) = µ = 1. Consequently the Var(V|µ, Â, “) = µ

2
/Â =

‡
2, where ‡

2 is interpreted as the measure of unobserved heterogeneity.



Chilean Journal of Statistics 57

In order to eliminate the unobserved quantities, the random e�ect can be integrated out.
Thus, the marginal survival function is given by

S(t|Ïú) = EV [S(t|vj , Ï)] =
⁄ Œ

0

exp [≠H0(t|, Ï)vj ] fv(vj |“, ‡
2)dvj = Lv[H0(t|Ï)],

where Ïú = (Ï, “, ‡
2)€ is the parameter vector, fv is the density function of V conditional

to “ and ‡
2, H0 is the cumulative baseline hazard function and Lv denotes the Laplace

transform of the frailty distribution.
The unconditional survival and density functions in the PVF frailty model are expressed,

respectively, by

S(t|Ïú) = exp
I

1 ≠ “

“‡2

C

1 ≠
A

1 + ‡
2
H0(t|Ï)
1 ≠ “

B“DJ

(3)

and

f(t|Ïú) = h0(t|Ï)
3

1 + ‡
2
H0(t|Ï)
1 ≠ “

4“≠1
exp

;
1 ≠ “

“‡2

5
1 ≠

3
1 + ‡

2
H0(t|Ï)
1 ≠ “

4“6<
. (4)

Besides providing an algebraic treatment of the closed form for the marginal survival, the
PVF family is a flexible model in the sense that it includes many other frailty models as
special cases. For instance, the gamma frailty model is obtained if “ = 0; and, in the case
of “ = 0.5, the inverse Gaussian distribution is derived. The positive stable is a special case
of the PVF distribution; however, to show this fact, some asymptotic considerations are
necessary.

2.2 The frailty long-term survival model

Thus, as an alternative to the usual cure rate models given in Equation (1), we propose a
new model that incorporates a frailty term for each competing cause and consider that, con-
ditional on N = n and on Ïú, the latent times follow a survival function as in Equation (3).
As the number of competing causes follows a negative binomial distribution, the population
survival function with the PVF frailty is given by

Spop(t|Ë) =
C

1 + ÷◊

A

1 ≠ exp
I

1 ≠ “

“‡2

C

1 ≠
A

1 + ‡
2
H0(t|Ï)
1 ≠ “

B“DJBD≠1/÷

, (5)

where Ë = (Ïú
, �)€.

Usually, the most common choices for the promotion time distribution that specify the
function S(t|Ï) have been exponential, piecewise exponential, or Weibull, among others. To
capture the unobservable characteristics of each competing cause, we propose to incorporate
a random e�ect (frailty term) on the baseline hazard function that acts multiplicatively in
the promotion time. This approach allows that the competitive causes have di�erent frailties
and that the frailest will fail earlier than those that are less frail (Wienke, 2011).

We assume a Weibull distribution for the cumulative baseline hazard function, given by
H0(t|Ï) = exp(–)t⁄, where – œ R, ⁄ > 0 and Ï = (–, ⁄)€. Henceforward, we will refer to
the model in which the survival function is as shown in Equation (5), by the PVF frailty
cure rate model or simply the PVF cure rate model (PVFCR). Note that the usual cure
rate model given in Equation (1) is obtained as ‡

2 æ 0.
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3. Bayesian inference and simulation study

In this section, we provide the Bayesian inference and simulation studies in order to eval-
uate the performance of the Bayesian estimators of the proposed model under di�erent
sample sizes and degree of heterogeneity in the sample. Also, we provide here the real data
application.

3.1 Bayesian inference

Let us consider the situation when the time to the event is not completely observed and
is subject to right censoring. For a given sample of size m, the observed time for the ith
unit is Wi = min{Ti, Ci}, with Ti = min{Zi0, Zi1, . . . , ZiNi} and Ci is the censoring time, for
i = 1, . . . , m. Let ”i be an indicator variable, in which ”i = 1 if Wi = Ti and ”i = 0 otherwise.
We include the covariate through the expected number of competing causes by E(Ni|�) =
◊i = exp(x€

i —), i = 1, . . . , m, where — is a k ◊ 1 vector of regression coe�cients. The
observed data are represented by D = (m, w, ”, X), w = (w1, . . . , wm)€, ” = (”1, . . . , ”m)€,
and X is an m ◊ k matrix containing the covariates.

The likelihood function of parameter Ë = (Ïú
, �)€ = (–, ⁄, “, ‡

2
, ÷, —)€ under noninfor-

mative censoring can be written as

L(Ë|D) Ã
mŸ

i=1

[fpop(wi|Ë)]”i [Spop(wi|Ë)]1≠”i

Ã
mŸ

i=1

Ë
exp(x€

i —)f(wi|Ïú)
È”iÓ

1 + ÷ exp(x€
i —)[1 ≠ S(wi|Ïú)]

Ô≠ 1
÷

≠”i

,

where S(wi|Ïú) and f(wi|Ïú) are given in Equations (3) and (4), respectively.
The posterior distribution of Ë comes out to be

fi(Ë|D) Ã fi(Ë)⁄r exp
C

mÿ

i=1
”ix

€
i — + r

3
– + 1 ≠ “

“‡2

4D
mŸ

i=1

C
w

⁄≠1
i

3
1 + ‡

2 exp(–)w⁄
i

1 ≠ “

4“≠1D”i

◊
mŸ

i=1

5
1 + ÷ exp(x€

i —)
3

1 ≠ exp
;

1 ≠ “

“‡2

5
1 ≠

3
1 + ‡

2 exp(–)w⁄
i

1 ≠ “

4“6<46≠1/÷≠”i

◊
mŸ

i=1
exp

5
≠

3
1 ≠ “

“‡2

4 3
1 + ‡

2 exp(–)w⁄
i

1 ≠ “

4“6”i

, (6)

where r =
qm

i=1
”i and fi(Ë) is the prior distribution of Ë.

We consider independent prior distributions by defining them as — ≥ Normalk+1(0, 100I),
with I being a (k + 1) ◊ (k + 1) identity matrix, – ≥ Normal(0, 100), “ ≥ Uniform(0, 1),
and ÷, ⁄ and ‡

2 following a gamma distribution with mean value of 1 for all and variances
of 1, 100 and 1, respectively. In this paper, no prior information about the parameters is
available, which is the reason for the choice of non-informative prior distributions, besides
of the assumption that the parameters are independent a prior. It is possible that the prior
distributions can be postulated by expert knowledge and past experiences in situations they
are available.

The posterior density of Ë in Equation (6) is analytically intractable because the integra-
tion of the joint density is not easy to perform. An alternative is to rely on Markov chain
Monte Carlo (MCMC) simulations. Here, we consider the adaptive Metropolis-Hastings al-
gorithm with a multivariate distribution as the proposed distribution (Haario et al., 2005)
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implemented in the statistical package LaplacesDemon (Hall et al., 2020), which provides a
friendly environment for Bayesian inference within the R program (R Core Team, 2020).

As a result, a sample of size np from the joint posterior distribution of Ë is obtained
(eliminating burn-in and jump samples). The sample from the posterior can be expressed
as (Ë1, Ë2, . . . , Ënp). The posterior mean of Ë can be approximated by

‚Ë = 1
np

npÿ

k=1

Ëk, (7)

and the posterior mean of the long-term survivors is approximated by

‚p0 = 1
np

npÿ

k=1

(1 + ÷k◊k)≠1/÷k . (8)

Considering the function Yk(t) = Spop(t|Ëk), where Spop(t|Ëk) is presented in Equation (5),
conditional to Ëk, the posterior mean of the improper survival function is approximated by

‰Spop(t|Ë) = 1
np

npÿ

k=1

Yk(t), for each t > 0. (9)

3.2 Simulation study

For data generation in this simulation study, we consider the model in given in Equation (5)
with the Weibull distribution for the cumulative baseline hazard function with – = 0, ⁄ = 1
(exponential distribution with a rate of exp(–)), and one binary covariate X drawn from a
Bernoulli distribution with the parameter 0.5. The PVF frailty distribution parameters are
“ = 0.5 and ‡

2 œ {0.5, 1, 1.5, 2}. The data of failure times were simulated with ÷ = 0.5,
◊l = exp(—0 + l—1), and l = 0, 1, where —0 = ≠0.5 and —1 = 0.7. The attribution of the
parameters’ values is motivated by the estimates obtained from real dataset application in
Section 3.3 when fitted the model with only sex as a covariate.

In this way, p0l = (1 + ÷◊l)≠1/÷, so that the long-term survivors for the two levels of X

are p00 = 0.59 and p01 = 0.39. The censoring times were sampled from the exponential
distribution with the parameter · (rate), where · was set in order to control the propor-
tion of censored observations. The algorithm to generate the observed times and censoring
indicators is presented in the Algorithm 1.

Algorithm 1 Data generation algorithm.
1: Draw Xi ≥ Bernoulli(0.5) and ui ≥ Uniform(0, 1).
2: Let Xi = l. If ui < p0l, ti = Œ, otherwise,

ti = (1 ≠ “)
‡2 exp(–)

3;
1 ≠ “‡

2

1 ≠ “
log

5
1 ≠

3
u

≠÷ ≠ 1
÷ exp(—0 + —1xi)

46<1/“

≠ 1
4

.

3: Draw ci ≥ Exponential (·) , which controls the proportion of censored observations.
4: Let wi = min{ti, ci}.
5: If ti < ci, set ”i = 1, otherwise, ”i = 0, for i = 1, . . . , m.

We consider four sample sizes, m = 100, 300, 500 and 1000. For each combination of
parameter values and sample sizes, we simulated B = 1000 random samples.
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As mentioned previously, the Bayesian estimation procedures were performed using the
adaptive Metropolis-Hastings algorithm such that the estimation of the covariance matrix is
updated every 100 iterations. We generated 40,000 values for each parameter, disregarding
the first 10,000 iterations to eliminate the e�ect of the initial values. In addition, jumps of size
30 were chosen to reduce the correlation e�ects between the samples. As a result, the final
sample size of the parameters generated from the posterior distributions was np = 1,000. For
good convergence results to be obtained, the convergence of the chains was monitored in all
simulation scenarios, through monitoring graphics similar to what we did in the application
(Section 3.3) and made available in the Appendix.

For each random sample, the estimates of Ë and the long-term survivors are obtained by
Equation (7) and (8), respectively. We computed the average of B estimates of Ë (AE) and
the root of the mean squared error (RMSE) of the estimators obtained from the PVFCR
model. The results are summarized in Table 1.

According to the results, the average estimates of p00 and p01 were not a�ected by the
increase of ‡

2 value. Even for small sample sizes, the average estimates were close to the
fixed values. The RMSE values appear reasonably close to zero as the sample size increases,
except for the parameter ‡

2, which needs a large sample size close to zero. For a fixed sample
size, the RMSE of the ‡

2 estimation increases as the ‡
2 also increases.

To discuss the computational time, we simulated 100 datasets of each configuration and
summarize these times (in seconds) in Table 2. The computational time increases as the
sample size increases. For example, when m = 100 we take about 20 seconds, on average,
to fit the proposed model, while we need about 80 seconds on average when m = 1000,
regardless ‡

2 value. This simulation study was conducted in a computer with the following
configuration: Intel(R) Core(TM) i7-core 1.80GHz[Cores 4] processor (logical processors 8),
8 GB RAM, and Microsoft Windows 10 Home Single Language operating.

3.3 Application

The melanoma dataset used in this study is part of a retrospective cohort of patients di-
agnosed with melanoma in the state of São Paulo, Brazil, between 2000 and 2014, with
follow-up conducted until 2018. The records were provided by the Fundação Oncocentro de
São Paulo (FOSP), which is responsible for coordinating the Hospital Cancer Registry of
the State of São Paulo, and it can be downloaded in http://www.fosp.saude.sp.gov.br.
The FOSP is a public institution connected to the State Health Secretariat, which assists
the study and implementation of public policies in the field of Oncology.

The time to death due to cancer was defined as the period between the dates of melanoma
diagnosis and death. Those patients who did not die due to melanoma during the follow-up
period were characterized as right-censored observations. The sample size was m = 5358
patients and the percentage of censored observations was 71%. The explanatory variables
measured at baseline were as follows: sex (male or female), age (Æ 45 years or > 45 years),
education level (no formal education, primary school, high school, or college), and cancer
clinical stage (I, II, III or IV).

This datas were studied by Calsavara et al. (2020), where they evaluated only the e�ect of
surgery in lifetime considering a non-proportional hazards model with a frailty term. Here,
we also consider other relevant information available in the registry, such as gender, age at
diagnosed, education level, and the clinical stage, as previously mentioned.

In the observations, 49.38% were male, and 79% were younger than 45 years old. For the
education level, 58.3% had a primary school degree, 19.3% completed high school, 15% had
a college degree and the remaining (7.4%) with no formal education. A total of 42.83% of the
melanoma cases were classified as clinical stage I; II: 23.12%; III: 18.23%; and IV: 15.82%.

http://www.fosp.saude.sp.gov.br
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Table 1. The RMSE and the AE values for simulated data from the PVFCR model when p00 = 0.59,

p01 = 0.39, —0 = ≠0.5, —1 = 0.7, – = 0, ⁄ = 1, ÷ = 0.5, and “ = 0.5.

Sample size (m)
100 300 500 1000

‡
2 Parameter RMSE AE RMSE AE RMSE AE RMSE AE

p00 0.071 0.587 0.039 0.588 0.032 0.587 0.022 0.588
p01 0.069 0.403 0.038 0.395 0.031 0.392 0.022 0.389
—0 0.545 -0.192 0.338 -0.299 0.294 -0.334 0.198 -0.393
—1 0.465 0.857 0.257 0.810 0.203 0.793 0.150 0.765

0.5 ÷ 1.055 1.394 0.825 1.116 0.727 1.008 0.531 0.835
– 0.405 -0.210 0.289 -0.155 0.247 -0.133 0.188 -0.092
⁄ 0.205 1.116 0.116 1.053 0.095 1.039 0.065 1.019
“ 0.085 0.471 0.103 0.481 0.110 0.476 0.112 0.467
‡

2 0.545 0.988 0.445 0.891 0.407 0.844 0.381 0.788
p00 0.073 0.588 0.041 0.588 0.033 0.588 0.023 0.587
p01 0.072 0.404 0.038 0.396 0.031 0.394 0.021 0.390
—0 0.560 -0.182 0.392 -0.262 0.318 -0.307 0.232 -0.367
—1 0.481 0.871 0.288 0.837 0.218 0.810 0.159 0.775

1 ÷ 1.097 1.444 0.948 1.227 0.805 1.095 0.618 0.905
– 0.538 -0.375 0.419 -0.310 0.360 -0.267 0.290 -0.192
⁄ 0.168 1.064 0.108 1.015 0.086 1.001 0.069 0.996
“ 0.094 0.455 0.121 0.444 0.124 0.436 0.127 0.422
‡

2 0.293 1.056 0.278 0.990 0.273 0.956 0.325 0.960
p00 0.068 0.585 0.042 0.585 0.033 0.586 0.023 0.586
p01 0.068 0.399 0.039 0.395 0.031 0.394 0.022 0.389
—0 0.584 -0.135 0.438 -0.220 0.333 -0.289 0.254 -0.344
—1 0.505 0.892 0.298 0.845 0.215 0.808 0.163 0.785

1.5 ÷ 1.167 1.516 1.048 1.309 0.836 1.130 0.673 0.961
– 0.667 -0.534 0.536 -0.434 0.442 -0.359 0.369 -0.293
⁄ 0.164 1.027 0.108 0.983 0.089 0.973 0.073 0.970
“ 0.108 0.437 0.124 0.431 0.133 0.416 0.137 0.404
‡

2 0.496 1.118 0.538 1.064 0.533 1.080 0.540 1.095
p00 0.072 0.582 0.042 0.585 0.034 0.583 0.024 0.585
p01 0.066 0.395 0.038 0.393 0.030 0.392 0.021 0.390
—0 0.589 -0.128 0.463 -0.216 0.391 -0.245 0.269 -0.334
—1 0.483 0.894 0.289 0.850 0.239 0.823 0.162 0.784

2 ÷ 1.140 1.502 1.056 1.307 0.961 1.214 0.696 0.979
– 0.751 -0.632 0.621 -0.530 0.572 -0.491 0.441 -0.370
⁄ 0.154 0.988 0.110 0.957 0.099 0.950 0.083 0.950
“ 0.105 0.438 0.130 0.419 0.133 0.415 0.132 0.407
‡

2 0.920 1.147 0.948 1.112 0.946 1.117 0.890 1.211

Table 2. Minimum (Min.), first quartile (1qt), median, mean, third quartile (3qt), maximum (Max.) and

standard deviation (SD) of the computational times (in seconds) to fit the proposed model for 100 simulated

datasets when p00 = 0.59, p01 = 0.39, —0 = ≠0.5, —1 = 0.7, – = 0, ⁄ = 1, ÷ = 0.5, and “ = 0.5.

‡
2

m Min. 1qt Median Mean 3qt Max. SD
100 17.552 19.857 20.235 20.611 21.047 25.153 1.435

0.5 300 32.851 33.305 33.680 34.034 34.615 37.338 1.000
500 45.156 46.119 46.997 47.120 47.862 50.318 1.179
1000 73.332 78.920 80.223 80.319 81.589 86.031 2.232
100 17.802 19.802 20.130 20.578 21.017 25.440 1.462

1 300 32.669 33.108 33.414 33.756 34.104 36.512 0.908
500 45.354 46.114 46.726 47.165 47.981 53.343 1.399
1000 72.485 78.950 80.214 80.110 81.444 87.051 2.438
100 17.459 19.774 20.140 20.482 21.093 24.777 1.392

1.5 300 32.601 33.218 33.464 33.786 34.084 36.288 0.894
500 45.301 46.055 46.951 47.226 48.014 53.091 1.445
1000 72.669 78.528 79.973 79.941 81.424 87.039 2.451
100 17.780 19.871 20.300 20.646 21.181 25.277 1.413

2 300 32.703 33.261 33.598 34.031 34.622 37.533 1.062
500 45.368 46.351 46.907 47.216 48.038 51.567 1.161
1000 71.902 78.524 79.632 79.794 81.015 84.453 2.504

Figure 1 presents the Kaplan-Meier estimates for each explanatory variable. Of note, there
was strong evidence that a fraction of the population had been long-term survivors. Among
all of the variables considered in our study, those with clinical stage I melanoma had a better
prognosis.
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Figure 1. Kaplan-Meier estimates for the melanoma dataset grouped by sex, age, education level, and clinical stage,

respectively.

To evaluate the e�ects of sex, age, education level, and clinical stage, the PVFCR model
was fitted to the dataset. The adaptive Metropolis-Hastings algorithm was run, discarding
the first 20,000 iterations as burn-in samples and using a jump of size 150 to avoid correlation
problems, with a sample size of np = 1,000. The convergence of the chain was evaluated
by multiple runs of the algorithm from di�erent starting values and was monitored through
graphical analysis. Good convergence results were obtained (see Appendix). The estimates
of Ë and the long-term survivors were obtained by Equation (7) and (8), respectively, and
the posterior mean of the improper survival function was given by Equation (9).

Table 3 lists the posterior mean, posterior standard deviation and 95% highest poste-
rior density (95% HPD) intervals for all parameters from the PVFCR model. None of the
parameters related to the explanatory variables have a 95% HPD value of zero.

The PVFCR model allows us to capture and to quantify the degree of unobservable het-
erogeneity, represented by ‡

2, obtaining a posterior mean of 1.159 (95% HPD: 0.018; 2.687),
which indicates a reasonable degree of unobserved heterogeneity in the sample. It is of
great importance in clinical practice, once important covariates were not observed and not
available in the dataset, such as Breslow thickness, ulceration and Mitotic rate.

Breslow thickness is the single most important prognostic factor for clinically localized
primary melanoma. It is measured from the top of the granular layer of the epidermis (or,
if the surface is ulcerated, from the base of the ulcer) to the deepest invasive cell across the
broad base of the tumor (dermal/subcutaneous). Ulceration is an integral component of the
AJCC staging system and an independent predictor of outcome in patients with clinically
localized primary cutaneous melanoma. Multiple studies indicate that mitotic count is an
important prognostic factor for localized primary melanoma since it represents tumor cells
division (Bertolli et al., 2019; Fonseca et al., 2020).



Chilean Journal of Statistics 63

Table 3. The posterior mean, standard deviation (SD) and 95% HPD of the fitted PVFCR model param-

eters.

95% HPD
Parameter Mean SD Lower Upper
⁄ 1.585 0.060 1.465 1.705
– -3.045 0.220 -3.500 -2.659
÷ 1.477 0.175 1.126 1.818
—0 -2.516 0.249 -2.984 -2.010
—sex (male) 0.572 0.078 0.402 0.715
—age (>45 years) 0.311 0.097 0.115 0.492
—education (no formal study) 1.094 0.174 0.782 1.415
—education (primary school) 0.595 0.129 0.339 0.832
—education (high school) 0.432 0.149 0.156 0.738
—stage (II) 1.338 0.117 1.123 1.565
—stage (III) 2.492 0.132 2.259 2.760
—stage (IV) 4.697 0.183 4.354 5.060
“ 0.380 0.246 0.001 0.813
‡

2 1.159 0.763 0.018 2.687
College is the baseline for education level and stage I is the baseline for the melanoma clinical

stage.

All of the findings of this study are consistent with those observed in routine clinical
practice. Sex and age have already been reported as prognostic factors, suggesting that
young patients and women have a better prognosis (Sabel et al., 2005; Balch et al., 2014).
The education level is very likely to be related to knowledge about diseases and the necessity
of medical evaluation for an early diagnosis. Clinical staging is also used for prognosis
stratification, and the curves shown in this paper are very similar to those presented in the
three latest updates of the AJCC staging system for melanoma (Balch et al., 2001, 2009;
Gershenwald et al., 2017). The long-term survivors’ estimates and survival estimates for a
specific patient can be seen in Figures 2 and 3, respectively. As expected, the patients with
clinical stage IV melanoma had a worse prognosis, regardless of their sex and age. On the
other hand, the patients in clinical stage I melanoma as well as females and those younger
than 45 years old had a better prognosis.
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Figure 2. Long-term survivors’ estimates (symbol) and 95% HPD intervals (bars) according to the fitted PVFCR

model by considering sex (f, female and m, male), age (Æ 45 years and > 45 years), clinical stage (I, II, III and IV),

and education level (no formal study, primary school, high school, and college).
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Figure 3. Survival functions estimated by the PVFCR model considering sex (f, female and m, male), age (Æ 45

years and > 45 years), and clinical stage I, II, III, and IV, respectively, for a fixed education level (high school

category).

4. Final remarks

In this paper, we studied the cure rate model formulated by Cancho et al. (2011) in a
di�erent way, that is, we considered a random unobservable e�ect in promotion time of
each competing cause, which allowed the unobserved heterogeneity to be quantified. The
PVF frailty model was considered for the latent variables, and it included many other
frailty models as special cases. A simulation study was conducted to illustrate the reliable
performance of the Bayesian estimators of the proposed model, as the RMSE was reasonably
close to zero as the sample size increased.

A point of attention is the fact that for large values of the parameter ‡
2, one needs a

large sample size for RMSE goes close to zero. However, it is worth to note that we obtained
satisfactory values of RMSE and average of the estimates when ‡

2 = 1 that is the close
value of the estimated ‡

2 in the application to the real dataset.
The applicability of the proposed model was demonstrated with a real melanoma dataset,

explaining the model fit results and discussing its relevance in the real world. We hope that
this model can be generalized to wider applications in survival analysis.
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Appendix

MCMC convergence monitoring for PVFCR model in Melanoma dataset

A jump of size 150 was considered to reduce correlation e�ects between the samples, as one
can see in the autocorrelation graphs in figures 4, 5 and 6. Thus, final samples are considered
with a lag of 150. After burn-in (20000) and jump samples, a sample of 1000 size from the
posterior distribution of the parameters is generated. The time series graphs in Figures 7,
8 and 6 were built from the final posterior distribution sample, in which a type of blur is
observed in a small variability of sampled values.
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Figure 4. Autocorrelation graphs for ⁄, –, ÷, —0, —sex and —age parameters.
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Figure 5. Autocorrelation graphs for —school and —stage parameters.
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Figure 6. Autocorrelation (first panel) and time series (second panel) graphs for “ and ‡2
parameters.

Time

ts
(c

ad
ei

a[
, j

])

0 200 400 600 800 1000

1.
4

1.
5

1.
6

1.
7

1.
8

Time

ts
(c

ad
ei

a[
, j

])

0 200 400 600 800 1000

−4
.0

−3
.5

−3
.0

−2
.5

Time

ts
(c

ad
ei

a[
, j

])

0 200 400 600 800 1000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Time

ts
(c

ad
ei

a[
, j

])

0 200 400 600 800 1000

−3
.0

−2
.5

−2
.0

−1
.5

Time

ts
(c

ad
ei

a[
, j

])

0 200 400 600 800 1000

0.
4

0.
5

0.
6

0.
7

0.
8

Time

ts
(c

ad
ei

a[
, j

])

0 200 400 600 800 1000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 7. Time series graphs for ⁄, –, ÷, —0, —sex and —age parameters.
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Figure 8. Time series graphs for —school and —stage parameters.
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