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Liliana López-Kleine Universidad Nacional de Colombia

Rosangela H. Loschi Universidade Federal de Minas Gerais, Brazil

Manuel Mendoza Instituto Tecnológico Autónomo de Mexico

Orietta Nicolis Universidad Andrés Bello, Chile

Ana B. Nieto Universidad de Salamanca, Spain

Teresa Oliveira Universidade Aberta, Portugal
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Abstract

The Kumaraswamy distribution has been a very studied tool in the analysis and mod-

eling of limited-range continuous random variables. Several variants of this distribution

have been studied, but they do not have the possibility of lifting the tails of this distri-

bution. However, in many situations, scenarios where the data are bounded and tail-area

events occur at one or both tails independently. In order to model these scenarios, we

propose the trapezoidal Kumaraswamy distribution. This paper is centered on the trape-

zoidal Kumaraswamy distribution, which has two intuitive additional parameters with

respect to the Kumaraswamy distribution and generalizes this. We study its probability

density function and derive some fundamental properties, such as the moments, moment

generating function, and characteristic function. Then, the trapezoidal Kumaraswamy

distribution is rewritten conveniently as a finite mixture showing that its parameters can

be easily estimated using the expectation-maximization algorithm. We report results of

a simulation and an application to a real data set. Comparison with several competing

distributions indicates that the trapezoidal Kumaraswamy distribution presents a better

fit and so it can be quite useful in empirical applications.

Keywords: EM algorithm · Maximum likelihood · Mixture distributions.

Mathematics Subject Classification: 62E15 · 62F10.

1. Introduction

A good alternative for modeling continuous data restricted to a bounded interval is the
double bounded distribution (Kumaraswamy, 1980), named after as the Kumaraswamy dis-
tribution (Jones, 2009). This distribution provides a wide variety of shapes for its probability
density function (PDF) allowing di�erent type of data to be accommodated.

The Kumaraswamy distribution is very flexible. However, it does not consider tail-area
events nor high flexibility in the variance specification. In order to add flexibility into the
model, other distributions derived from the Kumaraswamy distribution have been pro-
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posed. For example, the Kumaraswamy Weibull (Cordeiro et al., 2010) and Kumaraswamy-G
(Cordeiro and de Castro, 2011) distributions have been derived including two additional pos-
itive parameters. The authors studied some of their mathematical properties by presenting
special submodels such as: the Kumaraswamy generalized gamma distribution (de Pascoa
et al., 2011), which is able to model bathtub-shaped hazard rate functions. The importance
of Kumaraswamy generalized gamma distribution is in its capacity to model functions of
monotonous failure frequency and non-monotone, which are fairly common in life-time data
analysis and reliability. Another case is the Kumaraswamy Gumbel distribution (Cordeiro
et al., 2012), which is probably the most widely applied statistical distribution to prob-
lems in engineering. Similarly, the Kumaraswamy-log-logistic (De Santana et al., 2012),
Kumaraswamy-geometric (Akinsete et al., 2014), and Kumaraswamy Fréchet (Mead and
Abd-Eltawab, 2014) distributions, among others of the same family have been proposed.
Furthermore, in the same direction, in order to make some existing distributions flexible,
other models have been proposed as in Liang et al. (2014), Nadarajah and Kotz (2004),
Nadarajah and Kotz. (2006), Akinsete and Famoye (2008), Eugene et al (2002), Cordeiro
and dos Santos Brito (2012), among others. Note that the Kumaraswamy distribution, and
its extensions, are unable to fit data which are concentrated at both tails. The main ob-
jective of this work is to propose a new bounded distribution which is able to model data
which are concentrated at both tails.

The reminder of this article is organized as follows. In Section 2, the trapezoidal Ku-
maraswamy (TK) distribution is proposed and its basic properties are discussed. In Section
3, we estimate parameters through a convenient reparametrization of the TK distribution
given in Section 2. Section 4 conducts a Monte Carlo simulation study for both the TK and
Kumaraswamy distributions, comparing them. In Section 5, two empirical illustrations are
provided corresponding to (i) percent slacks for reduction in pollutant emissions/discharges
for carbon dioxide (CO2) and water (H2O) in Angolan thermal power plants, and (ii) scores
of a university admission test in 1295 school establishments in Metropolitan region of Chile.
The results are compared with the classical Kumaraswamy distribution. Finally, discussions,
conclusions and further research of the proposed distribution appear in Section 6.

2. The new distribution

In this section, we discuss some properties of the Kumaraswamy distribution and we present
the TK distribution as well as its properties.

2.1 Background

The PDF of a random variable Y following a Kumaraswamy distribution is given by

fK(y; –, —) = –—y–≠1(1 ≠ y–)—≠1, y œ (0, 1), (1)

where – > 0 and — > 0. Then, note that

E(Y ) = m1, Var(Y ) = m2 ≠ m2
1,

with mk denoting the k-th moment of the Kumaraswamy distribution stated as

mk =
—�(1 + k

–)�(—)
�(1 + k

– + —)
= —B

3
1 + k

–
, —

4
,

where B is the beta function.
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In practice, the Kumaraswamy distribution has been a useful tool for modeling bounded
data. However, it is common in many cases to have data concentrated at both tails inde-
pendently. Hence, we propose the TK distribution as an extension which allows to model
this situation and that it conserve the flexibility of the Kumaraswamy distribution.

2.2 The trapezoidal Kumaraswamy distribution

Let Y follow a TK distribution of parameters a, b, –, — which we denote by Y ≥
TK(a, b, –, —). Then, the PDF of Y is established as

fTK(y; a, b, –, —) = a + (b ≠ a)y +
3

1 ≠ a + b

2

4
fK(y; –, —), (2)

with 0 < y < 1, 0 Æ a, b Æ 2, 0 Æ a + b Æ 2 and fK(y; –, —) being the Kumaraswamy PDF
of parameters – and — given in Equation (1). The parameters a and b can be intuitively
interpreted as the lift at the left and right tails of the PDF respectively; see Figure 1. As
a particular case, we have that, when a = b = 0, the standard Kumaraswamy distribution
is recovered –see Equation (1)– and we propose the rectangular Kumaraswamy distribution
when a = b = ◊.
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Figure 1. Examples of TK PDF with – = 10, — = 15 and di�erent values of the parameters (a, b). Left: (a, b) =
(0.5, 0) (solid line), (a, b) = (1, 0) (dashed line) and (a, b) = (1.5, 0) (dotted line); right: (a, b) = (0, 1) (solid line),
(a, b) = (0.6, 0.6) (dashed line) and (a, b) = (0.8, 0.4) (dotted line).

We now present some properties of the TK distribution. Let Y ≥ TK(a, b, –, —). Then,
the k-th moment of Y is given by

mk = E(Y k) = a

k + 1 + b ≠ a

k + 2 +
3

1 ≠ a + b

2

4
mú

k, (3)

where mú
k is the k-th moment of the Kumaraswamy distribution of parameters –, —. Then,

Equation (3) can be written as

mk = a

k + 1 + b ≠ a

k + 2 +
3

1 ≠ a + b

2

4
—� (1 + k/–) � (—)
� (1 + — + k/–)

= a

k + 1 + b ≠ a

k + 2 +
3

1 ≠ a + b

2

4
—B (1 + k/–, —) . (4)
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With the expression defined in Equation (4), it is easy to deduce that

E(Y ) = a + 2b

6 +
3

1 ≠ a + b

2

4
—B

3
– + 1

–
, —

4
,

Var(Y ) = 3a + 9b ≠ (a + 2b)2

36

+
3

1 ≠ a + b

2

4
—

3
B

3
– + 2

–
, —

4
≠ (a + 2b)

3 B
3

– + 1
–

, —
4

≠
3

1 ≠ a + b

2

4
—B2

3
– + 1

–
, —

44
.

The moment generating function of the random variable Y is given by

MY (t) = E
1
etY

2
= 1 +

Œÿ

k=1
mk

tk

k! , t œ R,

and its characteristic function is stated as

ÏY (t) = E
1
eitY

2
= 1 +

Œÿ

k=1
mk

(it)k

k! , t œ R.

3. Estimation of trapezoidal Kumaraswamy distribution parameters

In this section, we discuss how to estimate the parameters of the TK distribution e�ciently.

3.1 Log-likelihood function

The likelihood function for a sample of n observations from the TK distribution is specified
as

L(a, b, –, —) =
nŸ

i=1

3
a + (b ≠ a)yi +

3
1 ≠ a + b

2

4
fK(yi; –, —)

4
. (5)

Then, one strategy to build estimators for its parameters is to maximize the corresponding
log-likelihood given by

¸(a, b, –, —) =
nÿ

i=1
log

3
a + (b ≠ a)yi +

3
1 ≠ a + b

2

4
fK(yi; –, —)

4
. (6)

The maximum likelihood estimators of a, b, – and — are obtained from the di�erentiation
of Equation (6) with respect to the mentioned parameters and equating to zero. However,
in this case, the obtained equations do not have closed-form. Hence, they need to be ob-
tained by numerically maximizing the log-likelihood function using a nonlinear optimization
algorithm, such as the Newton algorithm or the quasi-Newton algorithm, such the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Nocedal and Wright, 1999).

An e�ciently strategy to estimate the parameters of the TK distribution is solving this
problem as a missing data problem, specifying the likelihood function defined in Equation
(5) conveniently, as described in next subsection.
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3.2 The EM algorithm

First, we can observe that Equation (2) can be rewrite as a mixture of beta distributions
and a Kumaraswamy distribution, that is, by means of

fTK(y; a, b, –, —) = a

2(2 ≠ 2y) + b

22y +
3

1 ≠ a + b

2

4
fK(y; –, —), (7)

where f1(y) = fB(y; 1, 2) = 2 ≠ 2y and f2(y) = fB(y; 2, 1) = 2y are particular cases of
the beta PDF defined as fB(y; –ú, —ú), whereas f3(y) = fK(y; –, —) corresponds to Ku-
maraswamy PDF described in Equation (1). In addition, here w1 = a/2, w2 = b/2 and
w3 = (1≠(a+b)/2) are the weights such that w1+w2+w3 = 1 and 0 Æ w1, w2, w3 Æ 1. Then,
this problem can be solved as a finite mixture of distributions by using the expectation-
maximization (EM) algorithm (McLachlan and Peel, 2004). The EM algorithm is a general
method for finding maximum likelihood estimates when there are missing values or latent
variables. The idea behind the EM algorithm applied to mixture models is to assume that
the mixture is generated by missing observations of a discrete random variable Z, where
zi œ {1, 2, 3} indicates which mixture component generated the observation yi. The likeli-
hood function of the complete data formed by the observed data (y) and the unobserved
data (z), for a sample of n, is established by

pY ,Z(y, z; �) =
nŸ

i=1
pY ,Z(yi, zi; �) =

nŸ

i=1

3
a

2(2 ≠ 2yi)
41zi=1 3

b

2(2yi)
41zi=2

◊
33

1 ≠ a + b

2

4
fK(yi; –, —)

41zi=3

,

where Y and Z are the random vectors associated with (y) and (z), respectively. In addition,
� = (a, b, –, —) is the parameter vector and 1 is the indicator function, that is 1zi=j = 1 if
zi = j (with j œ {1, 2, 3}) holds, and 1zi=j = 0, otherwise. Note that, in the EM algorithm, it
is necessary to specify an auxiliary function Q, corresponding to the conditional expectation
of the log-likelihood function with complete data (y, z) given the observed data Y = y, and
a parameterization �(p≠1), that is, we have that

Q
1
�, �(p≠1)

2
= EY ,Z,�(p≠1)(log(pY ,Z(Y ,Z; �)))

=
nÿ

i=1
EY ,Z,�(p≠1)(log(pY ,Z(Yi, Zi; �)))

=
nÿ

i=1

3ÿ

j=1
r(p≠1)

ij log(pY ,Z(yi, zi; �))

=
nÿ

i=1

3ÿ

j=1
r(p≠1)

ij (log(wjfj(yi; �))),

where w1 = a/2, w2 = b/2, w3 = (1 ≠ (a + b)/2), f1(yi; �) = 2 ≠ 2yi, f2(yi; �) = 2yi,
f3(yi; �) = fK(yi; –, —) as in Equation (7), and

r(p≠1)
ij = P(Zi = j; Yi = yi, �(p≠1)) =

w(p≠1)
j fj(yi; �(p≠1))

q3
l=1 w(p≠1)

l fl(yi; �(p≠1))
.
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In the E-Step, we need to find the expected value of 1zi=j for j = 1, 2, 3 given yi and the
current parameterization �(p≠1), stated as

E
Ë
1zi=j ; yi, �(p≠1)

È
= r(p≠1)

ij .

In the M-Step, we find �(p) which maximizes Q(�, �(p≠1)). Calculating the derivates of Q
with respect to w1, w2, w3 under the restriction w1 + w2 + w3 = 1, is possible obtain the
estimators

w(p)
j =

qn
i=1 r(p≠1)

ij
qn

i=1
q3

j=1 r(p≠1)
ij

=
n(p≠1)

j

n
.

Additionally, the derivates with respect to – and — lead to the usual maximum likelihood
estimators of the Kumaraswamy distribution, which solve the equations expressed as

(— ≠ 1)
qn

i=1 r(p≠1)
i3 y–

i log(yi)
1 ≠ y–

i

≠ n(p≠1)
3
–

≠
nÿ

i=1
r(p≠1)

i3 log(yi) = 0 (8)

n(p≠1)
3
—

+
nÿ

i=1
r(p≠1)

i3 log(1 ≠ y–
i ) = 0. (9)

The corresponding estimates generated from Equations (8) and (9) can be obtained using the
quasi-Newton algorithm. Once we update the parameters, we must repeat both the E and
M steps, iteratively. In our case, in the M-step of the algorithm, we use the BFGS method
to iteratively solve the non-linear maximization problem associated. The BFGS method is
implemented in the R software by the functions optim and optimx; see www.R-project.org
and R Core Team (2018).

4. Simulation study

In this section, we conduct a simulation study to compare the performance of the TK
distribution with the Kumaraswamy distribution for samples generated from each of them.

4.1 Scenario of the simulations

In order to capture the particular tail behavior of each one, we use a sample size of 1000 and
generate 100 sample sets to calculate the mean log-likelihood function and the Akaike infor-
mation criterion (AIC). First, we simulate from the TK distribution with parameters given
by � = (0.2, 0.5, 7, 10), that is, we simulate an asymmetric distribution with independent
lifting in both tails to capture the essense of the proposed TK distribution. Second, we col-
lect a sample from the Kumaraswamy distribution with parameters stated as �B = (7, 10),
that is, an asymmetric distribution but without lifted tails in its PDF.

4.2 Results of the simulations

In our first simulation from the TK distribution, we can observe in Table 1 that the TK
distribution achieves a better fit than the Kumaraswamy distribution. In Table 2, we can
appreciate that the Kumaraswamy distribution tries to fit the model by increasing the

www.R-project.org
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variance, that is, finding small values for – and — to overcome the inability of this distribution
to raise the tails.

Table 1. Comparison between the mean log-likelihood and mean AIC of the TK and Kumaraswamy
distributions for 100 samples of size 1000 drawn from a TK distribution with parameters (0.2, 0.5, 7, 10)

Distribution Log-likelihood AIC
TK 363.26 ≠718.53
Kumaraswamy 237.38 ≠470.75

Table 2. Comparison between the mean of the estimated parameters of the TK and Kumaraswamy dis-
tributions for 100 samples of size 1000 drawn from a TK distribution with parameters (0.2, 0.5, 7, 10)

Estimated parameter
Distribution a b – —

True 0.20 0.50 7.00 10.00
TK 0.20 0.49 7.03 10.28
Kumaraswamy - - 2.72 1.94

In Figure 2, we can see the histogram for simulated data from the TK distribution and
the adjusted PDFs for the TK and Kumaraswamy distributions. The interpretation of the
estimated parameters a, b is straightforward and corresponds exactly to the lifting of the
tails of PDF in left and right tails respectively. In addition, note that the Kumaraswamy
distribution is unable to capture this lifting.
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Figure 2. Histogram for simulate data set from TKD and adjusted PDFs for two di�erent models: In solid line, the
TK model; In dashed line the Kumaraswamy model.

Table 3 reports the relative bias (RB) and the root-mean-squared error (RMSE) for each
parameter estimator over the 100 simulated samples under the TK distribution. They are
defined as

RB(◊) = 1
100

100ÿ

i=1

A ‚◊(i) ≠ ◊

◊

B

, MSE(◊) = 1
100

100ÿ

i=1
(‚◊(i) ≠ ◊)2,

where ◊ represents any particular parameter, and ‚◊(i) is the estimate of ◊ for the i-th sample.
Table 3 reports that the estimate of each parameter in each data set is reasonable when
fitting the TK distribution.
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Table 3. RB and RMSE of each parameter under 100 samples of size 1000 drawn from a TK distribution
with parameters (0.2, 0.5, 7, 10).

Parameter
Indicator a b – —

RB 0.00088 ≠0.00287 0.00038 0.00276
RMSE 0.00554 0.04537 0.08497 0.87242

In our second simulation from the Kumaraswamy distribution, we can observe in Table 4
that the TK distribution achieve an equally good fit than the Kumaraswamy distribution. In
Table 5, note that the TK distribution gives similar estimates for the parameters, compared
to the Kumaraswamy distribution.

Table 4. Log-likelihood and AIC for simulated data

Distribution Log-likelihood AIC
TK 843.52 ≠1679.03
Kumaraswamy 843.29 ≠1682.58

Table 5. Comparison between the mean of the estimated parameters of the TK and Kumaraswamy dis-
tributions for 100 samples of size 1000 drawn from a Kumaraswamy distribution with parameters (7, 10)

Estimated parameter
Distribution a b – —

True 0.00 0.00 7.00 10.00
TK 2.85e-04 1.12e-03 7.07 10.29
Kumaraswamy - - 7.05 10.22

Unsurprisingly, when the sample is generated from the Kumaraswamy distribution, we
do not see significant di�erences on the mean log-likelihood and AIC achieved by the two
adjusted Kumaraswamy and TK distributions. When the sample is drawn from the TK
distribution with a di�erence between the its two tails, a = 0.2 and b = 0.5, the best fit in
terms of the mean log-likelihood and AIC is achieved by the TK distribution. This can be
explained by the fact that the data generated from the tails of the distribution cannot be
captured only by using a Kumaraswamy distribution.

5. Empirical illustrations with real data

In this section, in order to illustrate the TK distribution in practice, we apply the pro-
posed results to two real data sets. We compare the goodness of fit between the TK and
Kumaraswamy distributions.

5.1 Pollutant emissions in Angolan thermal power plants

Data on Angolan thermal power plants span the period 2010 to 2014 were obtained from
a enterprise named ENE-EP. They are based on the plants balance sheets and income
statements, which are gathered and organized by ENE-EP as part of regular reporting.
The variables of interest for our study are the percent slacks for reduction in pollutant
emissions/discharges for CO2 and H2O. This scalar measure deals directly with the input
excesses and the output shortfalls of the decision making unit concerned and is typically
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Table 7. Log-likelihood and AIC values or H2O data

Distribution
Indicator TK Kumaraswamy
Log-likelihood 82.21 24.40
AIC ≠156.43 ≠44.81

used as e�ciency measure for modeling environmental performance (Barros and Wanke,
2017).

E�ciency scores computed from the slacks based model with undesirable (bad) outputs
(SBM-Undesirable) range between 0 and 1, where 1 denotes a maximum or 100 % of e�-
ciency. This suggests that a given thermal plant is operating at the frontier of the productive
technology. In fact, e�ciency is a productivity ratio between two DMUs: in data envelop-
ment analysis (DEA) based models, all plants are assessed against a convex frontier of best
practices formed by the most productive DMUs that can deliver higher outputs consuming
lower inputs or benchmarks. In DEA, each production unit is known as a decision making
unit (DMU).

Before proceeding, it is worth noting that if the variable assumes the extreme values of
zero and one (Y ú œ [0, 1]), then a practical transformation must be applied (Smithson and
Verkuilen, 2006) by

y = (n ≠ 1)
n

yú + 1
2n

, yú œ [0, 1],

where n is the sample size.
In our study, we consider 160 e�ciency scores (n = 160) for the 32 Angolan thermal power

plants from 2010 to 2014. This e�ciency scores has been measures for CO2 and H2O. From
Figures 3 and ??, note that the data distribution have a lifted left tail. Then, it is justified
to fit the TK distribution to model these data. The model under consideration is defined by

Yi
IND≥ TK(a, b, –, —), i = 1, . . . , 160,

where IND stands for independent. Note in Tables 6 and 7 that the TK distribution achieves
a best fit compared to the Kumaraswamy distribution. In Tables 8 and 9, we report the
estimated parameters. It is clear that the distribution in this example is lifted in the left
tail, since for CO2 data we have ‚a = 0.3806 and ‚b = 0, whereas for H2O data, ‚a = 0.3303
and ‚b = 0, and then we can see that these estimates have a very intuitive interpretation
since the tails of the PDF are lifted visually in these quantities. This fact is attempted to
be compensated in the Kumaraswamy distribution by increasing the variance (decreasing ‚–
and ‚—).

Table 6. Log-likelihood and AIC values for CO2 data

Distribution
Indicator TK Kumaraswamy
Log-likelihood 66.86 14.00
AIC ≠125.73 ≠23.99

In Figure 3, we can see the adjusted PDFs for the two di�erent models, with the TK
distribution being the model that better captures the distribution of the data.
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Table 8. Estimated parameters for CO2 data

Estimated parameter
Distribution a b – —

TK 0.3806 2.50e-45 7.0541 5.1930
Kumaraswamy - - 1.7546 1.2278

Table 9. Estimated parameters for H2O data

Estimated parameter
Distribution a b – —

TK 0.3303 1.12e-43 8.2015 5.5768
Kumaraswamy - - 2.1070 1.2778
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Figure 3. Adjusted PDFs for two di�erent models: in solid line, the TK distribution; and in dotted line the Ku-
maraswamy distribution for CO2 (left) and H2O (right) data.

5.2 University admission score

We analyze the average score of university admission test in 1295 school establishments in
Metropolitan region of Chile, 2016. This test is applied to students who have graduated
from school in Chile, which is carried out at a national level and covers di�erent areas of
knowledge. In Chile, this test is named “prueba de selección universitaria (PSU)” and allows
the student’s admission to the di�erent universities of the country, depending on the result
obtained in this test. The data set is available in the website https://es.datachile.io.

We are interested in the performance of the students who have applied to the PSU. To
measure performance, a total of 1295 average scores per establishment have been collected in
the Metropolitan region of Chile and scored in the interval (0, 1) through the transformation
proposed by Smithson and Verkuilen (2006) formulated as

y = n ≠ 1
n

yú ≠ a1
a2 ≠ a1

+ 1
2n

, yú œ [a1, a2].

Then, y œ (0, 1) and in our case a1 = 293.5, a2 = 715.5 and n = 1295. We can see in Figure
4 that the data distribution have a lifted right tail and slightly lifted left tail. Thus, it is
justified to fit the TK distribution to model these data. The model under consideration is

https://es.datachile.io
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Table 10. Log-likelihood and AIC values for PSU data

Distribution
Indicator TK Kumaraswamy
Log-likelihood 393.68 352.95
AIC ≠779.35 ≠701.90

Table 11. Estimated parameters for PSU data

Estimated parameter
Distribution a b – —

TK 0.0066 0.3072 2.9844 6.6608
Kumaraswamy - - 2.3976 3.3506

defined by

Yi
IND≥ TK(a, b, –, —), i = 1, . . . , 1295.

We can see in Table 10 that the TK distribution achieves a best fit compared to the Ku-
maraswamy distribution. In Table 11 we report the estimated parameters. It is clear that
the distribution in this example is lifted in the tails (‚a = 0.0066 and ‚b = 0.3072) and we
can see that these estimates have a very intuitive interpretation since the tails of the PDF
are lifted visually in these quantities. This fact is once again attempted to be compensated
in the Kumaraswamy distribution by increasing the variance (decreasing ‚– and ‚—).

In Figure 4, we can see the adjusted PDFs for the two di�erent models, with the TK
distribution being the model that better captures the distribution of the data.
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Figure 4. Adjusted PDFs for two di�erent models: in solid line, the TK distribution; and in dotted line the Ku-
maraswamy distribution for PSU data.
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6. Concluding remarks and future research

The Kumaraswamy distribution and other distributions derived from this have been very
used in practice. However, until now, it has not been proposed a distribution that allows
us to raise the tails of the probability density function in the case of having data accumu-
lated in one or both ends. In this work, we introduced a new four-parameter model called
the trapezoidal Kumaraswamy distribution, that is a generalization of the Kumaraswamy
distribution which has the rectangular Kumaraswamy distribution as a particular case.
The trapezoidal Kumaraswamy distribution comes to solve the problem of adjusting data
with some concentration in the extremes. The trapezoidal Kumaraswamy distribution can
be represented as a finite mixture model generated by two specific beta distributions and
the Kumaraswamy distribution. The trapezoidal Kumaraswamy distribution presented two
additional parameters with respect to the Kumaraswamy distribution and they have the ad-
vantage of being very intuitive, because they represent the lifting of the probability density
function in the tails. The estimation procedure for their parameters is straightforward and
in this paper was presented a methodology of estimation achieving good results both with
the simulated and real data. In the simulation studies, we observed marked di�erences in
favor of the trapezoidal Kumaraswamy distribution when the samples have some concen-
tration in the tails. In the empirical illustration, the trapezoidal Kumaraswamy distribution
turned out to be the model that best adjusted the data and that attended to the essence of
the data distribution with some accumulation at the ends. Then, we can conclude that the
trapezoidal Kumaraswamy distribution seems to be a new robust alternative for modeling
data bounded on the unit interval.

Some open problems that arose from the present investigation are the following:

• An extension of this work that is under development is to propose the reparametrized
trapezoidal Kumaraswamy distribution in terms of its mean and connect to it a regression
structure, then we will propose a trapezoidal Kumaraswamy regression model.

• The development of a bayesian methodology can be of interest for an alternative imple-
mentation.

• The benefits of the distribution will be extended to any bounded distribution.
• A re-parametrization of the trapezoidal Kumaraswamy distribution in terms of its mode

is of interest, as this will allow us to connect its mean to a regression structure in a similar
manner to that as in generalized linear models.

• A quantile regression model with a trapezoidal Kumaraswamy distributed response will
be studied.

Therefore, the proposed results in this study opens opportunities to explore other theoretical
and numerical issues.
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Appendix

This appendix presents one piece of R codes used for fitting the trapezoidal Kumaraswamy
distribution.
library(extraDistr)
# For evaluation of Kumaraswamy probability density function (dkumar)
## Trapezoidal Kumaraswamy probability density function ##
dtrapkum<-function(data,w1,w2,alpha,beta){ # w1 and w2 are the weights

# described in the paper
eval<-w1*dbeta(data,1,2)+w2*dbeta(data,2,1)+(1-w1-w2)*dkumar(data,alfa,beta)
return(eval)
}

# Function used in Algorithm to estimate the Kumaraswamy parameters
model<-function(x,data){
alfa0<-(sum(tau3)/x[1])+sum(tau3*log(data))
-sum(tau3*(x[2]-1)*data^x[1]*log(data)/(1-data^x[1]))
beta0<-(sum(tau3)/x[2])+sum(tau3*log(1-data^x[1]))
c(alfa0=alfa0,beta0=beta0)
}

# Initial values
a<-0.1
b<-0.2
alfa<-2
beta<-2
w1<-a/2
w2<-b/2
w3<-1-w1-w2

# EM algorithm #
for(k in 1:1000){
# E step
tau1<-w1*dbeta(data,1,2)/(dtrapkum(data,w1,w2,alpha,beta))
tau2<-w2*dbeta(data,2,1)/(dtrapkum(data,w1,w2,alpha,beta))
tau3<-(1-w1-w2)*dkumar(data,alfa,beta)/(dtrapkum(data,w1,w2,alpha,beta))
# M step
pi1<-sum(tau1)/length(data)
pi2<-sum(tau2)/length(data)
solution<-multiroot(f=model,start = c(alfa,beta),maxiter=5000,data=data)
solution
alfa<-solution$root[1]
beta<-solution$root[2]
}
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