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José M. Sarabia Universidad de Cantabria, Spain

Helton Saulo Universidade de Braśılia, Brazil
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Abstract

In this paper, we propose a new generator of distributions called the erf-G family. Our
proposal provides special distributions without adding complexity to parametric spaces
of resulting models. We also furnish empirical evidence that the proposed family may
solve issues of flat or quasi-red likelihoods in some baselines. In particular, we detail
six special models from the erf-G family. We also derive a new log-linear regression
model considering a kind of censoring. We discuss censored and uncensored maximum
likelihood estimation methods for the proposed models. In order to study asymptotic
properties of considered estimators, we carry out a Monte Carlo simulation study. Fi-
nally, using applications to real data we illustrate that proposed models may outperform
classic lifetime models.

Keywords: Error function · Flat likelihood · Generalized distributions · Log-linear
regression models.

Mathematics Subject Classification: Primary 60E10 · Secondary 60E05.

1. Introduction

From both theoretical and applied perspectives, the proposal of new probability distri-
butions is crucial to describe natural phenomena. There are several ways to extend well-
known distributions. One of the most popular ways is to consider distribution generators.
Some of them are: Marshall-Olkin (Marshall and Olkin, 1997), beta (Eugene et al., 2002),
gamma (Zografos and Balakrishnan, 2009), (Ristic and Balakrishnan, 2012) and (Nadara-
jah et al., 2015), Kumaraswamy (Cordeiro and de Castro, 2011), exponentiated generalized
(Cordeiro et al., 2013), red odd exponentiated half-logistic (Afify et al., 2017) classes of
models, among others.
Several generators (beyond of these referred above) have provided models more flex-

ible than classic ones, used widely in applications into the lifetime context. However,
from a literature review, such generators have the disadvantage of adding complexity to
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the parametric space of resulting models. In this paper, we use the error function (erf)
as a way to outperform this issue. The erf (also known as Gauss error function) is an
important special function, that appear often as solutions from several mathematical and
physical problems. Its applications include probability theory, statistics, mass and momen-
tum transfer, branches of mathematical physics, partial di↵erential equations describing
di↵usion process, among others. For more details, we refer to Chevillard (2012).
We propose and study the erf-G family in details. Some of erf-G special cases are intro-

duced and discussed. We derive explicit expressions for some of its mathematical proper-
ties and also propose a log-linear regression (llr) model with log-erfG response variables.
A discussion about estimation and hypothesis inference is furnished for both proposed un-
conditioned and llr models. Simulations results and two applications to real data indicates
that our proposals may outperform well-defined lifetime models. We also highlight that
our study of the erf-G model has very clear and forceful motivations: (i) it does not im-
pose more complex parametric spaces to resulting models; (ii) it may provide concavity to
distributions with flat or quasi-flat likelihoods (details are explored in Section 3); and (iii)
it can generate bathtub failure rate functions. For the reasons listed above, we strongly
believe it is important to study in detail the erf-G distribution. We hope that this new
distribution is part of the arsenal of applied researchers and will be used in many practical
situations.
This paper is organized as follows. In Section 2, we define some erf-G special models.

Inferential tools, including: (i) linear representations for the erf-G probability density func-
tion (PDF) and cumulative distribution function (CDF), (ii) estimation and hypotheses
inference procedures and (iii) regression models, are provided in Section 3. Mathematical
properties of the new family are presented in Section 4. Simulations and applications to
real data are provided in Section 5. In Section 6, main conclusions are listed.

2. Genesis of the new model and some of its special models

In this Section, we present the design of the new model and some of its many special
models.

2.1 General context

First we consider the traditional error function given by

erf(z) =
1
p
⇡

Z z

�z
exp(�t2) dt =

2
p
⇡

Z z

0

exp(�t2) dt, z 2 R. (1)

From now on, we advocate that replacing z in (1) by G(x)/[1 � G(x)] for x 2 X ⇢ R
collapses a new and e�cient generator of distributions. Let G(x) be a cumulative distribu-
tion function (CDF). The following operator may be considered as the CDF of a potential
family of models:

F (x) = erf


G(x)

1�G(x)

�
, x 2 X . (2)

We denote this case as the erf-G family. A stochastic conception of this class which may
furnish insight about the relation between new erf-G models and their respective baselines
(with CDF G) is given by the following theorem.
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Theorem Let Z > 0 be a random variable with CDF given by FZ(z) = erf(z) I(0,1)(z).

Thus, X = G�1
⇥
Z (1 + Z)�1

⇤
is a stochastic transformation having CDF

FX(x) = erf


G(x)

1 � G(x)

�
,

where G(x) represents the CDF of a baseline distribution.

The proof of this theorem holds from the basic probability manipulations. It reveals that
distributions into the new family can understood as a quantile of Y ⇠ G associated with
a mapping X ! (0, 1).
Now, let X ⇠ erf-G(✓) for ✓ 2 ⇥ ✓ Rp, where ⇥ represents the parametric space. The

PDF of X and hazard rate function (HRF) are given respectively by

f(x) =

2g(x;✓) exp

"
�

✓
G(x;✓)

1�G(x;✓)

◆2
#

p
⇡(1�G(x;✓))2

, x 2 R. (3)

and

h(x) =

2g(x;✓) exp

"
�

✓
G(x;✓)

1�G(x;✓)

◆2
#

p
⇡(1�G(x;✓))2

n
1� erf

h
G(x;✓)

1�G(x;✓)

io , x 2 R.

2.2 Some special models

The erf-G model is completely new. There is, therefore, a great variety of new distributions,
based on (2), that can be explored by statisticians and applied researchers. In what follows,
we discuss some special models.

2.2.1 The erf-Gumbel model

The Gumbel distribution is a statistical model defined in real support widely used
in engineering problems (de Andrade et al., 2015). Its CDF is given by G(x;µ,�) =
exp {� exp [�(x� µ)/�]}, where �1 < µ < 1 and � > 0 are the location and scale
parameters, respectively. Applying its CDF and PDF in (2) and (3), we obtain the erf-
Gumbel (erfGum) model, having CDF and PDF given by

F (x) = erf

⇢
1

exp[z1(x)]� 1

�
, x 2 R,

and

f(x) =

2z1(x) exp

(
�z1(x)�


1

exp[z1(x)]� 1

�2)

p
⇡�{1� exp[z1(x)]}2

, x 2 R,

respectively, where z1(x) = exp [�(x� µ)/�] . Figure 1 presents erfGum PDF curves for
some selected parameters. The Gumbel distribution is asymmetric. As we can see in the
Figure 1, the erfGum model can accommodate asymmetric shapes.
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Figure 1. The PDF of the erfGumbel model for some � and µ parameter values.

2.2.2 The erf-normal model

Let � and � be the PDF and CDF of the standard normal model, respectively. Evaluating
these equation in (2) and (3), we obtain the erf-normal (erfN) model, with CDF and PDF
expressed by

F (x) = erf


�(z2(x))

�(�z2(x))

�
, x 2 R,

and

f(x) =

p
2 exp

�
� z2(x)2/2� [�(z2(x))/�(�z2(x))]2

 

⇡[�(�z2(x))]2
, x 2 R,

where z2(x) = (x�µ)/�. Plots for the erfN PDF at selected parameter values are displayed
in Figure 2. Based on Figure 2, likewise that the erfGum, the erfN distribution may present
asymmetrical behaviour in contrast with its baseline.

2.2.3 The erf-gamma model

As third special model, applying gamma model (having shape ↵ and scale �) CDF and
PDF in (2) and (3), we get the erf-gamma (erf�) model with CDF and PDF expressed as

F (x) = erf


�(↵,�x)

�(↵,�x)

�
, x > 0,

where �(s, x) =
R1
x ts�1 exp(�t) dt and �(s, x) =

R x
0
ts�1 exp(�t) dt are the upper and

lower incomplete gamma functions, and

f(x) =

2�↵�(↵)x↵�1 exp

"
�

✓
�(↵,�x)

�(↵,�x)

◆2

� �x

#

p
⇡ [�(↵,�x)]2

, x > 0,
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Figure 2. The PDF of the erfN model for some � and µ parameter values.

where � represents the gamma function. The HRF of the erf� model is defined by

h(x) =

2�↵�(↵)x↵�1 exp

"
�

✓
�(↵,�x)

�(↵,�x)

◆2

� �x

#

p
⇡ [�(↵,�x)]2

⇢
1� erf

✓
�(↵,�x)

�(↵,�x)

◆� , x > 0.

Plots of the erf� PDF and HRF for selected parameter values are presented in Figure
3. At least, the associated HRF can assume bathtub, increasing and decreasing shapes. In
contrast with the gamma model, which assumes only monotone HRF shapes.
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Figure 3. The PDF and HRF of the erf� model for some ↵ and � parameter values.

2.2.4 The erf-Weibull model

The Weibull distribution can be considered as a standard model for lifetime data and,
therefore, is interesting to study a special model generated from it. From evaluating Weibull
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CDF and PDF in (2) and (3), we obtain the erf-Weibull (erfW) model, characterized by
CDF and PDF given by

F (x) = erf
h
exp

⇣
↵x�

⌘
� 1
i
, x > 0,

and

f(x) = 2⇡�1/2 ↵� x��1 exp


↵x� �

⇣
exp(↵x�)� 1

⌘2�
, x > 0.

The erfW hazard can be expressed as

h(x) =
2↵� x��1 exp

h
↵x� �

�
exp(↵x�)� 1

�2i

p
⇡ {1� erf [exp(↵x�)� 1]}

, x > 0.

Plots of the erfW PDF for selected parameter values are displayed in Figure 4. This figure
provides possible shapes of the erfW HRF, which includes the bathtub shape. It represents
a gain on the Weibull model, which has constant and monotone shapes.
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Figure 4. The PDF and HRF of the erfW model for some ↵ and � parameter values.

2.2.5 The erf-log-logistic distribution

In the survival analysis context, the log-logistic distribution is one of the possible choices
when you want to model data with a unimodal failure rate. For x > 0, the CDF of the log-

logistic model is given by G(x;↵, �) = 1�
h
1 +

�
x
↵

��i�1

, where ↵ > 0 and � > 0 are shape

parameters. Thus, the CDF and PDF regard to the erf-log-logistic (erfLL) distribution are
given by

F (x) = erf

⇣x
↵

⌘��
, x > 0,
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and

f(x) =
2� x��1

p
⇡ ↵�

exp


�

⇣x
↵

⌘2��
, x > 0.

The HRF of the erfLL distribution is easily defined as

h(x) =
2� x��1 exp

h
�
�
x
↵

�2�i

p
⇡ ↵�

⇢
1� erf

⇣x
↵

⌘��� , x > 0.

Plots of the erfLL PDF for selected parameter values are displayed in Figure 5. Figure 5
also provides some possible shapes of the erfLL hazard function for appropriate parameter
values, including bathtub, increasing and decreasing shapes. These plots indicate that the
erfLL model is fairly flexible and can be used to fit several types of positive data.
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Figure 5. The PDF and HRF of the erfLL model for some ↵ and � parameter values.

2.2.6 The erf-Frechet distribution

The CDF of the Frechet model is given by G(x; �,�) = exp(���x��) for x > 0 and
�,� > 0. An important generalization based on this distribution was proposed by da Silva
et al. (2013). Considering G(x) as the Frechet CDF in equations (2) and (3), we get the
erf-Frechet (erfF) model with CDF and PDF expressed as

F (x) = erf

⇣
exp(��x��)� 1

⌘�1
�

and

f(x) =
2� �� x���1 exp

n
���x��

�
⇥
exp(��x��)� 1

⇤�2
o

p
⇡ [1� exp(���x��)]2

. (4)
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The risk function associated appears as

h(x) =
2� �� x���1 exp

n
���x��

�
⇥
exp(��x��)� 1

⇤�2
o

p
⇡ [1� exp(���x��)]2

n
1� erf

h
(exp(��x��)� 1)�1

io .

Some plots for the erfF PDF and HRF are provide in Figure 6. The erfF HRF covers the
inverted bathtub shape in contrast with the Frechet HRF, that assumes only monotone
behavior.
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Figure 6. The PDF and HRF of the erfF model for some � and � parameter values.

3. Miscellaneous

In this Section, we provide a complete background for inferential processes.

3.1 A linear expansion

General expressions for the PDF and CDF functions are highly appreciated by applied
researchers, as they allow approximate results to be obtained when analytical solutions
are not available. Here, we refer to some works that consider these expansions: Cordeiro
et al. (2015), Leao et al. (2013), de Andrade et al. (2016) and Afify et al. (2017). This
section aims to provide expansions for (2) and (3) in order to determine representations
for some erf-G mathematical properties, which do not present closed-forms. First, consider
the Maclaurin expansion for the erf function given by

erf(x) =
2
p
⇡

1X

k=0

(�1)kx2k+1

k!(2k + 1)
. (5)
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By applying (5) in (2), one has that

F (x) =
2
p
⇡

1X

k=0

(�1)k
h

G(x)
1�G(x)

i2k+1

k!(2k + 1)
. (6)

From the Taylor expansion, we have

x

1� x
=

1X

i=1

xi for |x| < 1, (7)

(7) applied in (6) collapses

F (x) =
2
p
⇡

1X

k=0

(�1)k

k!(2k + 1)

" 1X

i=1

G(x)i
#2k+1

. (8)

Setting ` as a positive integer number, we have

 1X

k=0

akx
k

!`

=
1X

m=0

c`,mxm, (9)

where

c`,0 = a`0, c`,m =
1

ma0

mX

j=1

(j`�m+ j)ajc`,m�j , m � 1.

From (9) in (8), we get

F (x) =
2
p
⇡

1X

k=0

1X

m=0

(�1)kd2k+1,m

k!(2k + 1)
G(x)m+2k+1 =

1X

k,m=0

bk,mG(x)m+2k+1, (10)

where d2k+1,0 = 1, d2k+1,m =
1

m

mX

j=1

⇥
2j(k + 1)�m

⇤
d2k+1,m�j ,m � 1 and

bk,m =
2 (�1)k d2k+1,m
p
⇡ k! (2k + 1)

.

By applying the derivate with respect to x in (10), erf-G PDF can be express as

f(x) =
1X

k,m=0

bk,m (m+ 2k + 1) g(x)G(x)m+2k =
1X

k,m=0

ak,m g(x)G(x)m+2k, (11)

where ak,m = bk,m (m + 2k + 1). Equations (10) and (11) indicate that erf-G random
variables can be represented as a linear combination of exp-G distributions (discussed in
detailed by Tahir and Nadarajah (2015)) having additional parameter m+ 1.
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3.2 Maximum likelihood estimation

Let x1, . . . , xn be a n-points observed sample obtained from X ⇠ erfG(✓). The log-
likelihood function for the vector of parameters ✓ 2 ⇥ ✓ Rp is expressed as

`(✓) = n log

✓
2
p
⇡

◆
+

nX

i=1

log [g(xi|✓)]� 2
nX

i=1

log [1�G(xi|✓)]�
nX

i=1

G(xi|✓)2

[1�G(xi|✓)]2
,

(12)

In this case, the jth element of the score vector, U(✓) = [U1(✓), . . . , Up(✓)]> =
@`(✓)

@✓1
, . . . ,

@`(✓)

@✓p

�>
, is given by

Uj(✓) =
nX

i=1

ġ(xi|✓)

g(xi|✓)
+ 2

nX

i=1

Ġ(xi|✓)

[1�G(xi|✓)]
� 2

nX

i=1

G(xi|✓)Ġ(xi|✓)[1�G(xi|✓)]2

[1�G(xi|✓)]4

� 2
nX

i=1

G(xi|✓)2Ġ(xi|✓)[1�G(xi|✓)]

[1�G(xi|✓)]4
,

where ġ(xi|✓) = @g(xi;✓)/@✓j and Ġ(xi|✓) = @G(xi;✓)/@✓j . Thus, the maximum likeli-
hood estimator (ML estimator) are given by

✓̂ = argmax✓2⇥{`(✓)}

or, equivalently, ✓̂ is a root of the non-linear equations system defined by U(✓̂) = 0.
To illustrate as the erf-G model can modify geometrically a G distribution log-likelihood,

we compare two pairs of distributions: (exponential (Exp), erf-exponential (erfExp)) and
(Maxwell (Max), erf-Maxwell (erfMax)). The erfExp log-likelihood function is given by

`(�) = n log

✓
2�
p
⇡

◆
+ �

nX

i=1

xi +
nX

i=1

(1� e�xi).

From Figure 7, it is noticeable that the erf-G structure may provide concavity to distri-
butions with flat or quasi-flat likelihoods. It advocates in favor of the proposed family.
Among other advantages, a greater concavity of likelihood provides better quality in the
estimation process. In the next section, we illustrate that the maximum likelihood esti-
mates (ML estimates) based on (12) may be more accurate than those obtained from the
corresponding baseline.

3.3 The log-erf-Frechet regression model

In several applications, lifetimes are related to exatory variables. Regression models are
sought for this end. Let T be a random variable with PDF (4), then Y = log(T ) has
the log-erf-Frechet (lerfF) distribution, denoted as Y ⇠ lerfF. Taking the parametrization
� = exp(µ) and � = 1/�, the PDF of Y can be written as
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Figure 7. The log-likelihood function for the Exp, erfExp, Max and erfMax distributions.

f(y, µ,�) =
2

p
⇡�

exp


�
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y � µ

�

◆�
exp

⇢
exp


�

✓
y � µ

�

◆��✓
exp

⇢
exp


�

✓
y � µ

�

◆��
� 1

◆�2

⇥ exp

"
�

✓
exp

⇢
exp


�

✓
y � µ

�

◆��
� 1

◆�2
#
,

(13)

for �1 < y < 1, �1 < µ < 1 and � > 0. Now, if T ⇠ erfF(�,�), then Y = log(T ) ⇠
lerfF(µ,�) with CDF

FY (y) = erf

"✓
exp

⇢
exp


�

✓
y � µ

�

◆��◆�1
#
,

and survival function (sf) given by

S(y;µ,�) = 1� erf

"✓
exp

⇢
exp


�

✓
y � µ

�

◆��◆�1
#
. (14)

Now, we are in position of defining the standardized random variable Z = (Y � µ)/�
with PDF

⇡(z) =
2
p
⇡
exp(�z) exp

⇥
exp(�z)

⇤�
exp[exp(�z)]� 1

 �2
exp

�
� {exp[exp(�z)]� 1}�2

�
.

(15)

Considering the substitution u =
�
exp[exp(�z)]�1

 �1
, the r-th moment of Z is given by

E(Zr) =
2
p
⇡

Z 1

0

�
� log[log(u�1 + 1)]

 r
exp(�u2)du.
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Using the Mathematica software, it is possible to verify that the second ordinary moment
of Z is finite:

E(Z2) =
2
p
⇡

Z 1

0

�
� log[log(u�1 + 1)]

 2
exp(�u2)du = 0.321075 < 1.

Let xi = (xi1, . . . , xip)> be the exatory variable vector associated with the ith response
variable Yi for i = 1, . . . , n.
Consider the sample (Y1,x1), . . . , (Yn,xn) of n independent variables, where each ran-

dom response is defined by Yi = min{log(Ti), log(ci)} and log(Ti) and log(ci) are the
log�lifetime and log�censoring, respectively. We consider non-informative censorship
such that the lifetimes and censorship times are independent.
The linear regression model for the lerfF response variable, Yi, is given by

Yi = x>
i � + �Zi, i = 1, 2, . . . , n. (16)

where Zi is a random variable with PDF (15), � = (�1, . . . ,�p)> and � > 0 are unknown
parameters, and xi is the ith explanatory random variables vector.
In this case, the location of (Y1, . . . , Yn)> is µ = (µ1, . . . , µn)> such that µi = x>

i � or,
in matrix terms, µ = X� with model matrix X = (x1, . . . , xn)>.
Let F and C be the sets of individuals for which yi is the log�lifetime or log�censoring,

respectively.
The total log-likelihood function for the parameters ✓ = (�,�>)> of model (16) has the

form

`(✓) =
X

i2F
`i(✓) +

X

i2C
`(c)i (✓),

where `i(✓) = log[f(yi)], `
(c)
i (✓) = log[S(yi)], f(yi) and S(yi) are given in equations (13)

and (14). Then, the log�likelihood function reduces to

`(✓) = q

✓
log(2)�

log(⇡)

2
� log(�)

◆
+
X

i2F

⇢
�

✓
yi � x>

i �

�

◆
+ exp
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�

✓
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i �

�
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�2 log

✓
exp

⇢
exp
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✓
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i �

�

◆��
� 1

◆
�

✓
exp
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exp
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�

✓
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i �

�

◆��
� 1
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+
X

i2C
log

(
1� erf

"✓
exp

⇢
exp


�

✓
yi � x>

i �

�

◆��◆�1
#)

,

(17)

where q is the observed number of failures. The ML estimator b✓ of ✓ can be obtained by
maximizing the Equation (17). Using the adjusted model (16), the sf of Yi can be estimated
by

bS(yi; b�, b�>) = 1� erf

2

4
 
exp

(
exp

"
�

 
yi � x>

i
b�

b�

!#)!�1
3

5 .

Under general regularity conditions, the asymptotic distribution of
p
n(b✓ � ✓) can be
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approximated by the multivariate normal Np+1(0, J(✓)�1), where J(✓) = @2 `(✓)/@✓>@✓
is the (p + 1) ⇥ (p + 1) observed information matrix. Statistical inference procedures for
the parameter vector ✓ can be made based on the asymptotic normality. In particular, an
100(1� ↵)% asymptotic confidence interval for each parameter ✓s is given by

ACIs = (✓s � z↵/2

p
bJs,s, ✓s + z↵/2

p
bJs,s),

where bJs,s denotes the sth diagonal element of the inverse of the estimated observed infor-
mation matrix J(b✓)�1 and z↵/2 is the quantile 1�↵/2 of the standard normal distribution.

4. Some mathematical properties

From now on, we present the process of obtaining the mathematical properties of the new
model.

4.1 Quantile function

The quantile function (qf) of the erf-G distribution is obtained in an explicit form by
inverting (2)

QF (u) = QG

 
��1(u+1

2
)

p
2 + ��1(u+1

2
)

!
, (18)

where QG is the baseline quantile function and ��1 is the standard normal quantile func-
tion. Beyond to allow defining important quantiles (e.g., the median), (18) may also be
used as a random variables generator, adopting uniform outcomes as inputs.

4.2 Ordinary and incomplete moments

Let X be a random variable following erf-G distribution. From Equation (11), the rth
moment of X may be written as

E(Xr) =
1X

k,m=0

am,k E(Y
r
m+2k+1

),

where Ym+2k+1 follows the exponentiated distribution at the power parameter m+2k+1.
Another way to represent the rth moment is through of the quantile function as follow:

E(Xr) =
1X

k,m=0

am,k

Z
1

0

h
QG
�
u

1
m+k+1

�ir
du.

The rth incomplete moment of X can be given as follow

Tr(z) =

Z z

�1
xrf(x)dx =

1X

k,m=0

am,k T
⇤
r(z),



16 Zea and de Andrade

where T⇤
r(z) is the rth incomplete moment of the Ym+2k+1. A second manner to obtain

the rth incomplete moment of X is by using the quantile function, we have

Tr(z) =

Z z

�1
xrf(x)dx =

1X

m,k=0

am,k

Z
[G(z)]m+2k+1

0

h
QG
�
u

1
m+2k+1

�ir
du.

4.3 Moment generating function

By using the Equation (11), the mgf of X can be expressed as

M(t) =
1X

m,k=0

bm,k Mm+2k+1(t),

where Mm+2k+1(t) is the mgf of Ym+2k+1 given by

Mm+2k+1(t) =

Z 1

�1
exp(tx)(m+ 2k + 1)g(x)[G(x)]m+2kdx.

Another form to obtain an expansion of the mgf of X is by using the qf. We have

M(t) =
1X

m,k=0

(m+ 2k + 1) bm,k

Z
1

0

exp
⇥
tQG(u)

⇤
um+2kdu.

4.4 Entropy

Two well-known variability measures are the Shannon and Rényi entropies. Determining
their expressions consist an important task to quantify disorder in stochastic systems. In
what follows, we derive these measures for the erf-G family. First consider the expansion:
Assuming that |z| < 1 and ⇢ > 0,

(1� z)�⇢ =
1X

j=1

wjzj , wj =
�(⇢+ j)

j!�(⇢)
. (19)

Considering the Taylor expansion and (19) an expression to the erf-G Rényi entropy is
(for � > 0 and � 6= 1)

IR(�) =
1

1� �
log

✓Z 1

0

[f(x)]�dx

◆

=
1

1� �
log

2

4 2�

⇡�/2
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Z 1
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dx

3

5
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1
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8
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:� log(2)�
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2
log(⇡) + log

0

@
1X
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1X

j=1

(��)k wj
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Z 1

0

⇥
g(x)

⇤�⇥
G(x)

⇤2k+j
dx

1

A

9
=

; ,

where wj =
�[2(� + 1) + j]

j!�[2(� + 1)]
.
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The Shannon entropy is defined as E{� log[f(X)]} and it can be obtained from the Rnyi
entropy doing � " 1. Note that

E
�
�log[f(X)]

 
= �2 log(2)+

1

2
log(⇡)�E

⇥
log(X)

⇤
+E

(
G(X)

1�G(X)

�2)
�2E

⇥
log(1�g(X))

⇤
.

After some algebraic manipulations, we obtain

E
⇥
log(X)

⇤
=

1X

m,k=0

bm,k(m+ 2k + 1)

Z
1

0

um+2k log
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g(QG(u))
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du,

E
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1�G(X)
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Z 1
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�2)
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=
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(1� u)2
du

and

E
⇥
log(1� g(X))

⇤
= �

1X

i=0

1X

m,k=0

bm,k(m+ 2k + 1)

(i+ 1)(m+ 2k + i+ 2)
.

5. Numerical applications

In order to assess the performance of estimation procedures, we carry out a Monte Carlo
study and two real data set applications.

5.1 A Monte Carlo study

This section aims to quantify the performance of ML estimators for erf-G parameters
distribution. To that end, we consider the exponential (exp), Levy and Maxwell (Max)
models, after we specify the following baseline models: erf{Exp, Levy, Max} using equation
(3). The PDF’s of the Exp, Levy and Max distributions are given, respectively, by

f(x,�) = � exp(��x), x > 0, � > 0,

f(x,�) =

r
�

2⇡

exp(� a
2x)

x
3
2

, x > 0, � > 0

and

f(x; a) =

r
2

⇡
a

3
2x2 exp

✓
1

2
ay2
◆
, y > 0, a > 0.

We make a Monte Carlo study with 10, 000 replications such that, for several baseline
parameter values and sample sizes n 2 {50, 200}, two comparison criteria are quantified:
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biases and root mean squared error (RMSE). All computations are implemented using the
R programming language, which has numerous advantages, perhaps the main one being
the fact that it is distributed free of charge through the so-called GNU Public license. For
more information about R, visit the https://www.r-project.org website. To ensure the
reproducibility of this experiment, the following comments are needed: It was utilized the
maxLik(.) function of the R package maxLik . Specifically, the BFGS iterative method was
used in the optimization process.
Simulation results are presented in Figures 8, 9 and 10. Based on these plots, we conclude

that: (i) As expected, the biases and RMSE decreases as the sample size increases; (ii) The
erf-G models has superior performance when compared to their respective baseline models.
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Figure 8. RMSEs and biases of b� for the erfExp and Exp models.
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Figure 9. RMSEs and biases of b� for the erfLevy and Levy models.



Chilean Journal of Statistics 19

 

 
MSE Erf−Max

MSE Max

Bias Erf−Max

Bias Max

0.
0

0.
1

0.
2

0.
3

1 2 3 4 5

M
se

 a
nd

 B
ia

s

λ

(a) n = 50

 

 

MSE Erf−Max

MSE Max

Bias Erf−Max

Bias Max

0.
00

0.
02

0.
04

0.
06

0.
08

1 2 3 4 5

M
se

 a
nd

 B
ia

s

λ

(b) n = 200

Figure 10. RMSEs and biases of b� for the erfMax and Max models.

5.2 Real data applications

Two applications to real data illustrate the performance of proposed models. First we
describe a set of lifetime data by means of some erf-G models comparatively to the corre-
sponding G distributions. Second the llr model performance is quantified and compared.

5.2.1 Unconditioned model

This section addresses an application to a real data set to illustrate the usefulness of the
proposed family.
To that end, we consider three baseline distributions: exponential (Exp), Kumaraswamy

(K) and Weibull (W). The main objective is to show that the distributions extended from
the erf-G family perform better when compared with their baseline distributions.
We use a data set obtained in Proschan (1963) and corresponds to the time of successive

failures of the air conditioning system of jet airplanes. These data were also studied by
Dahiya and Gurland (1972), Gleser (1989) and Kuş (2007), among others. The data are
194, 413, 90, 74, 55, 23, 97, 50, 359, 50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9 ,
254, 493, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 100, 14, 29, 37, 186, 29, 104, 7, 4,
72, 270, 283, 7, 57, 33, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12, 239,
14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15,
2, 91, 59, 447, 56, 29, 176, 225, 77, 197, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230,
152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106,
46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 5, 61, 31, 118, 326, 12, 54, 36,
34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62,
26, 71, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 62, 11, 191, 14, 16, 18, 130, 90, 163,
208, 1, 24, 70, 16, 101, 52, 208, 95.

Some descriptive statistics for these data are given in Table 1. Note that the mean
is greater than the median and the asymmetry coe�cient is positive, i.e., the empirical
distribution from data is positively asymmetric. There is a lot of variability in the data
and they are overdispersed. Further, from the kurtosis coe�cient, the distribution of the
data is platykurtic.
Table 2 provides the ML estimates of considered model parameters (corresponding stan-

dard errors in parentheses) and the values of some goodness-of-fit measures: the Akaike
information criterion (AIC), Bayesian information criterion (BIC) and consistent Akaike
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information criterion (CAIC). In general, it is considered that the lower values (AIC, BIC
and CAIC) indicate better fits. In all the situations, the proposed models outperform the
corresponding baselines.

Table 1. Descriptive statistics for the air conditioning system of airplanes data.

Statistic
Mean 93.141
Median 57
Variance 11398.471
Minimum 1
Maximum 603
Skewness 2.322
Kurtosis 3.692

Table 2. The ML estimates (standard errors in parentheses) and the AIC, BIC and CAIC for the phos-
phorus concentration data.

Distribution b↵ b� b� b� b⌘ Cramr K-S AD AIC BIC CAIC

BGP 10.778 1.031 22.346 28.890 – 0.302 0.079 2.044 2386.988 2400.433 2387.180

(0.791) (0.356) (1.549) (0.872)

KumaBXII 16.190 6.810 5.761 0.057 0.100 0.215 0.069 1.487 2381.423 2398.230 2381.713

(3.375) (1.831) (2.008) (0.019) (0.059)

Gama-Gama 10.997 0.001 22.975 – – 0.851 0.122 5.085 2475.640 2485.724 2475.755

(0.227) (0.000) (0.002)

erf-We 0.043 0.524 – – – 0.475 0.109 2.857 2390.732 2397.455 2390.789

(0.006) (0.025)

As qualitative comparison sources, plots ofnthe empirical and estimated PDF and CDF
of the under discussion models are displayed in Figures 11. Results indicate the fitted
erfW, erfExp and erfK models are better than the associated baselines for phosphorus
concentration data. These are first practical evidences in favor of the use of the proposed
family.
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Figure 11. Plots of the fitted BGP, KumaBXII, Gamma-Gamma and erfW PDFs (left) and of the estimated CDFs

of the BGP, KumaBXII, gamma-gamma and erfW models (right)s.
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5.2.2 Regression model

Now, consider results obtained from a lifetime test experiment on 76 specimens of a
type of electrical insulating fluid subjected to constant voltage stress, say x, at seven
levels, x = 26, 28, 30, 32, 34, 36 and 38 kV. The time period until each sample has failed
(or ”broke”), say breaking time Y , was observed. Such study was firstly performed by
Nelson (1972) and Vanegas et al. (2012). Now, we aim to investigate how the voltage level
influences the failure time. Does the erfG structure present advantage in the regression
context likewise that for uncorrelated distributions?
To that end, we compare the lerfF and log-Frechet (L-F) regression models. Table 3

presents results for ML estimates of the adjusted models as well as their respective signif-
icance and standard error measures. We also provide values of the AIC, BIC and CAIC
statistics as comparison means. From results of individual confidence intervals for �i, one
has that both considered slopes (and, as a consequence, used predictive variables) are
meaningful at the level 5%, employing the asymptotic distribution of the t statistic for
H : �1 = 0. From comparison point-of-view, lerfF regression model outperforms L-F,
illustrating the importance of the erf-G family in the regression context.

Table 3. ML estimates of the parameters from some fitted regression models to the Minutes to breakdown
data set, the corresponding standard errors (in parentheses), p-value (in brackets) and the AIC, BIC and
CAIC measures.

Model �0 �1 � AIC BIC CAIC
lerfF 13.5272 -0.3329 3.1597 297.5957 304.5879 297.9290

(1.9256) (0.0586) (0.3053)
[<0.0001] [<0.0001] [<2e-16]

L-F 7.1364 -0.1790 1.7176 320,9327 327,9249 321,2660
(2.3629) (0.0697) (0.1601)
[0.0025] [0.0102] [<2e-16]

6. Conclusions and future works

In this paper, we propose and study a new class of distributions called efr-G family. This
family is based on the known error function and does not add parameters to its resulting
models regard to the baseline distribution. As other advantage, the erf-G family seems to
solve or at least to improve estimates based on flat likelihoods. We derive some of its math-
ematical properties, such as quantile function, ordinary and incomplete moments, moment
generating function and Shannon and Rényi entropy measures. A log-linear regression
model in the new family is also proposed. Simulation studies and real data applications
illustrate the usefulness of the our proposals. For future works, new regression models and
a complete study of residual analysis for the proposed models will be developed.
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