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Abstract

We introduce a three-parameter extension of the Lindley distribution, which has as
sub-models the Lindley and Marshall-Olkin Lindley distributions. The proposed model
turns out to be quite flexible: its probability density function can be decreasing or
unimodal and its associated hazard rate may be increasing, decreasing, unimodal or
bathtub-shaped. Since this new distribution has a survival function and a hazard rate
that can be expressed in closed form, it can readily be simulated and used to analyze
censored data. Computable expressions are obtained for certain statistical functions
such as its quantile function, ordinary and incomplete moments, moment generating
function, order statistics and reliability function. The maximum likelihood method is
utilized to obtain estimates of the model parameters and a simulation study is carried
out to assess the performance of the corresponding maximum likelihood estimators. Two
illustrative examples involving hydrological data sets are presented.

Keywords: Data modeling · Extended distributions · Hazard rate · Maximum
likelihood estimation · Monte Carlo simulations · Precipitation data.

Mathematics Subject Classification: Primary 60E05 · Secondary 62E10 · 62N05

1. Introduction

Lindley (1958) introduced a one-parameter distribution in the context of fiducial and
Bayesian statistics, which is obtained as a mixture of exponential(�) and gamma(2, �)
probability density functions (PDFs), as defined in Equation (2). Aly and Benkherouf
(2011) recently proposed a convenient method for adding two parameters to a baseline
distribution, which gives rise to what is referred to as the Harris extended (HE) family
of distributions. This family includes the baseline distribution itself as a basic exemplar
and provides more flexibility for modeling various types of data. This novel approach is
based on the probability generating function of a discrete distribution introduced by Harris
(1948). In this paper, we define a three-parameter generalization of the Lindley distribution
by applying to it the HE generator, the resulting model being named the Harris extended
Lindley (HEL) distribution. This distribution is in fact an extension of the Marshall-Olkin
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extended Lindley (MOL) distribution that was proposed by Ghitany et al. (2012), and
its additional shape parameter ↵ ought to provide an improved fit related to the MOL
distribution. This extra parameter helps in controlling the shape of the HE PDF and
enables us to model heavy-tailed distributions which are fairly common in hydrology; see,
e.g., Li et al. (2013) and Ashkar and El Adlouni (2014). Moreover, the new distribution
has an interesting physical interpretation when ↵ is a positive integer and 0 < ✓ < 1:
it is indeed the distribution of the time until failure of a device composed of N serial
components having constant failure rate, where N is a random variable which arises from
a branching process such as that described in Harris (1948). This distribution can be
utilized for modeling purposes in research fields such as hydrology, engineering, insurance,
biology and epidemiology wherein skewed positive data are frequently encountered.
One of the most crucial aspects of hydrological data analysis consists in achieving a close

fit to the experimental data by employing proper statistical models. The Gumbel, Weibull,
gamma, generalized logistic as well as other well-known distributions have been extensively
utilized for modeling hydrological observations such as rainfall, flood, precipitation and
stream flow data; see, e.g., Zelenhasic (1970), Chadwick et al. (2004), Heo and Boes (2011),
Bhunya et al. (2012) and Kang et al. (2015). Yet, there exists a need for developing more
flexible statistical models that would be applicable to data sets related to hydrological
structures and phenomena or water resource planning and management, and the proposed
three-parameter generalization of the Lindley distribution fits the purpose.
Although little attention has been paid to the Lindley distribution, there has recently

been a surge of interest in this model, generalizations thereof and related applications.
Nadarajah et al. (2007) introduced the exponentiated Lindley distribution as an alterna-
tive to the gamma, log-normal, Weibull and exponentiated exponential distributions; see
also Cordeiro et al. (2016). Several properties of the Lindley distribution have been studied
by Ghitany et al. (2008) who have shown that, for instance, it can provide a better fit than
the exponential distribution. Ghitany et al. (2011) studied another two parameter exten-
sion of Lindley distribution and called it the weighted Lindley distribution. By making
use of the Marshall-Olkin method, Ghitany et al. (2012) introduced and studied another
extension of the Lindley model called the Marshall-Olkin extended Lindley (MOL) distri-
bution. Ghitany et al. (2013) introduced a two-parameter power Lindley distribution and
discussed its properties. A three-parameter generalization of the Lindley model was intro-
duced by Mervoci and Sharma (2014). This extension, referred to as the beta Lindley (BL)
distribution, is generated from the logit of a beta random variable. Ghitany et al. (2015)
considered the problem of estimating the stress-strength parameter of the power Lindley
distribution. Mazucheli et al. (2016) developed some statistical for testing hypotheses on
the parameters of the weighted Lindley distribution. Alizadeh et al. (2017) introduced
another extension of the power Lindley distribution.
The objective of this work is to derive the HEL distribution focusing on its probabilistic

and statistics aspects, as well as applications in hydrology.
The remainder of the paper is organized as follows. We define the new distribution

in Section 2. In Section 3, we provide computable expressions for some of its statistical
functions such as its quantile function (QF), ordinary and incomplete moments, mean
deviations, moment generating function (MGF) and order statistics. In Section 4, the
model parameters are estimated by making use of the maximum likelihood (ML) method
and a simulation study is carried out. In Section 5, we illustrate the usefulness of the
proposed distribution by modeling two hydrological data sets. Finally, Section 6 o↵ers
some concluding remarks.
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2. The HEL Distribution

In this section, we provide probabilistic aspects of the HEL distribution. The survival
function (SF) and PDF of the distribution introduced by Lindley (1958) are respectively
given by

ḠL(x) =

✓
1 + �+ �x

1 + �

◆
e��x, x > 0, (1)

and

gL(x) =
�2

�+ 1
(1 + x) e��x, x > 0, (2)

where the parameter � is assumed to be positive. We now describe a technique whereby
the so-called Harris extended family of distributions can be generated and apply it to
the Lindley distribution. The resulting distribution is referred to as the Harris extended
Lindley (HEL) distribution. Let G(x) = G(x; ⇠) be a baseline cumulative distribution
function (CDF) and

Ḡ(x) = Ḡ(x; ⇠) = 1�G(x; ⇠)

be the corresponding SF of a lifetime random variable W , where ⇠ = (⇠1, . . . , ⇠q) is a
parameter vector of dimension q. Furthermore, let g(x) = g(x; ⇠) be the PDF of W . The
SF of the HE family is then defined by

F̄HE(x) =
✓1/↵ Ḡ(x)

⇥
1� ✓̄Ḡ(x)↵

⇤1/↵ , x > 0, (3)

where ✓̄ = 1� ✓, the parameters ✓ > 0 and ↵ > 0 being additional shape parameters that
allow for greater flexibility. Thereupon, the HE PDF has the form

fHE(x) =
✓1/↵ g(x)

⇥
1� ✓̄Ḡ(x)↵

⇤1+1/↵
, x > 0.

Aly and Benkherouf (2011) pointed out that when ↵ > 0 is a positive integer, the HE
family can be looked upon as resulting from examining a simple discrete branching process
where a particle either splits into (↵ + 1) identical branches or remains the same during
a short interval. Clearly, Equation (3) constitutes a flexible generator for obtaining new
parametric distributions from existing ones. For ✓ = 1, F̄ (x) = Ḡ(x) and Ḡ(x) is thus a
basic exemplar of the distribution. Additionally, the Marshall and Olkin (1997) extended
(MOE) family arises from Equation (3) by letting ↵ = 1. Accordingly, the HE family can
be viewed as a generalization of the MOE family.
The SF of the HEL distribution is defined as

F̄ (x) =
✓1/↵ḠL(x)

⇥
1� ✓̄ḠL(x)↵

⇤1/↵ , x > 0, (4)

for ↵ > 0, ✓ > 0, � > 0, where ḠL(x) is given in Equation (1), with its PDF corresponding
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to Equation (4) being

f(x) =
✓1/↵ �2 (1 + x) e��x

(1 + �)
⇥
1� ✓̄ ḠL(x)↵

⇤1+1/↵
, x > 0. (5)

Henceforth, a random variable X having the PDF specified in Equation (5) is denoted by
X ⇠ HEL(✓,↵,�). This three-parameter PDF has two shape parameters and one scale
parameter, and it can be either decreasing or unimodal. The two main special cases of the
HEL model are: (i) the MOL distribution in which case ↵ = 1; (ii) the Lindley distribution
which is obtained by letting ↵ = ✓ = 1. The hazard rate (HR) associated with HEL model
is given by

h(x) =
�2 (1 + x)

(�+ 1 + �x)

⇥
1� ✓̄ ḠL(x)

↵
⇤�1

, x > 0.

This HR can assume the four principal shapes associated with increasing, decreasing,
bathtub-shaped or upside-down bathtub-shaped HRs. The HEL model is thus most ap-
propriate to analyze a variety of hydrological and lifetime data sets. We note that there
appears to be very few three-parameter distributions in the literature whose HR can take
on the four main shapes of an HR. Moreover, the SF and HR of the HEL distribution have
closed-form representations. Accordingly, this model can readily be utilized to analyze
censored data sets. As well, simulating it is straightforward.
Figures 1 and 2 display some plots of the PDF and HR of the HEL distribution for

certain parameter values. Figure 1 indicates that the HEL PDF can be right-skewed and
reversed-J shaped. Figure 2 reveals that the HEL HR can be increasing (IFR), decreasing
(DFR), upside-down bathtub (UBT) or bathtub-shaped (BT).
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Figure 1. Plots of the HEL PDF for certain parameter values.

Given the functional form of the HEL PDF denoted by f(x), a general representation
of the mode that would be expressible in terms of the parameters of the distribution
does not appear to be tractable. However, for a specific set of parameters, the command
NSolve[f’[x]==0,x,Reals] in Mathematica can readily be utilized to determine the
mode. If the solution happens to be greater than zero, then the PDF has a mode at
that point; otherwise, it is strictly decreasing on the positive half-line. The extremum of
the HR can be similarly obtained whenever it exists.
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Figure 2. Plots of the HEL HR for certain parameter values.

3. Statistical Functions of the HEL Distribution

In this section, we provide computable representations of certain statistical functions of
the HEL distribution. More specifically, we focus, in order, on the quantile function, some
useful expansions, the moments, including the incomplete ones, the moment generating
function and the order statistics. The derived expressions can be easily evaluated by most
symbolic computation software packages such as Maple, Mathematica and Matlab. These
platforms can process analytic expressions of great complexity. Whenever available, an ex-
plicit representation of a statistical function is preferable to its determination by numerical
integration.
The QF of a distribution has numerous uses in both statistical theory and applications.

In the case of the HEL distribution, its QF is obtained by inverting the HEL CDF and is
given by

Q(u) = �1� 1

�
� 1

�
W


�(1 + �)

1� ⌧

e1+�

�
, 0 < u < 1, (6)

where ⌧ = 1� (1�u)
⇥
✓ + ✓̄(1� u)↵

⇤�1/↵
and W (x) is the negative branch of the Lambert

W function, see Corless et al. (1996) and Jodrá (2010) for details on its properties. The
Lambert function cannot be expressed in terms of elementary functions. However, it is a-
nalytically di↵erentiable and integrable and its principal branch satisfies x = W (x ex), x �
�1. Furthermore, whenever |x|  e�1, W (x) =

P1
n=1(�n)n�1 xn/n. Clearly, if U has

a uniform distribution in the interval (0, 1), then X = Q(U) has the PDF specified in
Equation (5). The Lambert W function is implemented within various scientific libraries,
as for example, in the R software (by the lamW package), Mathematica (by the ProductLog
function), Matlab (by the lambertw function) and Maple (by the LambertW function), thus
allowing for e�cient evaluation of the QF of the HEL distribution.
Some useful expansions are now provided. Let ga(x) = a g(x)Ḡ(x)a�1 be the Lehmann

type-II-G (LII-G) PDF with power parameter a > 0. We demonstrate that the HEL PDF
can be expressed as a linear combination of LII-Lindley (LIIL) PDFs. First, for 0 < ✓ < 1,
we consider the negative binomial series

(1� z)�p =
1X

i=0

�(p+ i)

�(p) i!
zi,

which holds for |z| < 1 and any real number p > 0, where �(a) =
R1
0 za�1e�zdz is the
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complete gamma function. Using this power series in Equation (5), we have

f(x) = ✓1/↵ gL(x)
1X

j=0

✓̄j
�(↵�1 + 1 + j)

�(↵�1 + 1)j!
ḠL(x)

j ↵,

where ḠL(x) and gL(x) are the SF and PDF of the Lindley distribution as provided by
Equations (1) and (2). Note that for ✓ > 1, we can write

f(x) = ✓�1gL(x)
1X

j=0

1X

`=j

(�1)j
✓
✓ � 1

✓

◆` ✓`

j

◆
�(↵�1 + 1 + `)

�(↵�1 + 1)`!
ḠL(x)

j ↵.

On combining the last two expressions for f(x) in a single one, we have

f(x) =
1X

j=0

wj hj ↵+1(x), (7)

where hj ↵+1(x) = (j ↵+ 1) gL(x) ḠL(x)j ↵ is the LIIL PDF with power parameter j ↵+ 1
and

wj = wj(↵, ✓) =

8
><

>:

✓1/↵ ✓̄j �(↵�1+1+j)
(j ↵+1)�(↵�1+1)j! , 0 < ✓ < 1

(�1)j ✓�1

(j ↵+1)

P1
`=j(

✓�1
✓ )`

✓
`

j

◆
�(↵�1+1+`)
�(↵�1+1)`! , ✓ > 1.

Equation (7) reveals that the HEL PDF (for any ✓ > 0) can indeed be expressed as a linear
combination of LIIL PDFs. It can also be shown that the HEL PDF can be expressed as
a linear combination of gamma PDFs. Given Equations (1) and (2), it follows from the
representation of Equation (7) that

f(x) =
1X

j=0

wj (j ↵+ 1)

✓
�2

�+ 1

◆
(1 + x)

✓
1 +

�x

1 + �

◆j ↵

e�(j ↵+1)�x.

On expanding [1 + �x/(1 + �)]j ↵ and using the Taylor series z� =
P1

k=0(�)k (z�1)k/k!,
where (�)k = �(� � 1) · · · (� � k+ 1) is the falling factorial, after some algebra, we obtain

f(x) =
1X

i,j=0

vi,jx
i (1 + x) e�(j ↵+1)�x, (8)

where vi,j = (j ↵+ 1)wj
⇥
�2+i/(�+ 1)i+1

⇤
(j ↵)i/i! for i, j = 0, 1, 2, . . . .

Letting ⇡(x;↵,�) = �↵ x↵�1 e��x/�(↵) be the gamma PDF with shape parameter ↵ > 0
and rate parameter � > 0, we can then rewrite Equation (8) as

f(x) =
1X

i,j=0

h
v(1)i,j ⇡ (x; i+ 1, (j ↵+ 1)�) + v(2)i,j ⇡ (x; i+ 2, (j ↵+ 1)�)

i
, (9)

where v(1)i,j = i! vi,j/[(j ↵+ 1)�]i+1 and v(2)i,j = (i+ 1)! vi,j/[(j ↵+ 1)�]i+2.
Equation (9) indicates that the HEL PDF can also be expressed as a linear combination

of gamma PDFs. Thus, this representation can be used to obtain explicit expressions for
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the ordinary and incomplete moments and the MGF of the HEL distribution from the
corresponding quantities associated with the gamma distribution. Equations (7) and (9)
constitute the main results of this section.
Certain of the main characteristics of a distribution such as tendency, dispersion, skew-

ness and kurtosis can be investigated via its moments. We now establish that the ordinary
moments of the HEL distribution can be obtained as infinite power series. It follows from
Equation (7) that

µ0
r = E(Xr) =

�2

1 + �

1X

j=0

wj

Z 1

0
xr(1 + x)

✓
1 +

�x

1 + �

◆j ↵

e�� (j ↵+1)xdx,

or equivalently

µ0
r =

�2

1 + �

1X

j=0

wj

Z 1

0
xr(1 + x)

1X

i=0

✓
�

1 + �

◆i

xi
(j ↵)i
i!

e�� (j ↵+1)xdx.

After some algebra, we obtain

µ0
r =

�2

1 + �

1X

i,j=0

pi,j
�(r + i+ 1)

[�(j ↵+ 1)]r+i+1

✓
1 +

r + i+ 1

�(j ↵+ 1)

◆
, (10)

where pi,j = wj [(j ↵)i/i!] (�/(1 + �))i.
Table 1 includes numerical values for the first four ordinary moments of the HEL distri-

bution as evaluated from Equation (10) by truncating the series to 100 terms and computed
by numerical integration for some parameter values. We note that the numerical values
obtained from both approaches are consistently in close agreement.

Table 1. Ordinary moments of the HEL distribution for certain parameter values with � = 10.

↵ = 0.5 ↵ = 1.5
µ0
r Numerical Equation (10) Numerical Equation (10)

✓ = 0.5
µ0
1 0.0670906 0.0670905 0.0833919 0.08156687

µ0
2 0.0105268 0.01052653 0.0158697 0.01586975

µ0
3 0.00276376 0.002763106 0.00492889 0.004928885

µ0
4 0.0010382 0.001036676 0.0020813 0.002081299

✓ = 1.5
µ0
1 0.141446 0.1414455 0.127601 0.1276013

µ0
2 0.0364545 0.0364543 0.0295221 0.02952214

µ0
3 0.0132554 0.01325516 0.0098071 0.009807097

µ0
4 0.00616152 0.006160951 0.00425269 0.004252694

The rth incomplete moment of X is given by mr(y) =
R y
0 xr f(x)dx. On making use of

Equation (7) and proceeding as in the case of ordinary moments, we obtain

mr(y) =
�2

1 + �

1X

j,i=0

wj

✓
�

1 + �

◆i (j ↵)i
i!

Z y

0
xr+i(1 + x)e�� (j ↵+1)xdx. (11)

On expressing the integral in Equation (11) in terms of the incomplete gamma function
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�(a, y) =
R y
0 za�1 e�zdz, we have

mr(y) =
�2

1 + �

1X

i,j=0

Ki,j

⇢
� (r + i+ 1, (j ↵+ 1)�y)

[(j ↵+ 1)�]r+i+1
+

� (r + i+ 2, (j ↵+ 1)�y)

[(j ↵+ 1)�]r+i+2

�
, (12)

where Ki,j = wj [�/(1 + �)]i (j ↵)i/i! for i, j = 0, 1 . . ..
Bonferroni and Lorenz curves as well as mean deviations can be determined by letting r =

1 in Equation (12). The Bonferroni and Lorenz curves are defined (for a given probability
⇡) as B(⇡) = m1(q)/(⇡ µ0

1) and L(⇡) = m1(q)/µ0
1, respectively, where q = Q(⇡) may be

established from Equation (6). The mean deviations about the mean and about the median
are given by �1 = E(|X�µ0

1|) = 2µ0
1 F (µ0

1)�2m1(µ0
1) and �2 = E(|X�M |) = µ0

1�2m1(M),
where the median M and the mean µ0

1 can be evaluated from Equations (6) and (10),
respectively. We now provide a general formula for M(t) = E(etX), the MGF of X. The
MGF of the gamma PDF with parameters ↵ and � is (1� t/�)�↵ (t < �). Then, if follows
from Equation (9) that, for t < �,

M(t) =
1X

i,j=0

"
v(1)i,j

✓
1� t

(j ↵+ 1)�

◆�i�1

+ v(2)i,j

✓
1� t

(j ↵+ 1)�

◆�i�2
#
.

The last aspect being discussed in this section is the distribution of order statistics. Order
statistics appear in many areas of statistical theory and practice. Suppose X1, . . . , Xn is a
random sample from the HEL distribution and let Xi:n denote the ith order statistic. The
PDF of Xi:n can be expressed as

fi:n(x) = K
n�iX

k=0

(�1)k
✓
n� i

k

◆
f(x)F (x)k+i�1, (13)

where K = 1/B(i, n� i+ 1) and B(p, q) = �(p)�(q)/�(p+ q) is the beta function.
Consider the following representation available from Gradshteyn and Ryzhik (2000) for

a power series raised to a positive integer n:

0

@
1X

j=0

aj u
j

1

A
n

=
1X

j=0

bn,j u
j , (14)

where the coe�cients bn,j , for n = 1, 2, . . . and j = 1, 2, . . ., are obtained from the recursive
equation

bn,j = (j a0)
�1

jX

m=1

[m(n+ 1)� j] am bn,j�m,

with bn,0 = an0 . On integrating the right-hand side of Equation (7), we can write

F (x) = ḠL(x)
1X

j=0

wj ḠL(x)
j ↵,
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and then making use of Equation (14), we have

F (x)k+i�1 =
1X

j=0

tk+i�1,j ḠL(x)
j ↵+k+i�1,

where tk+i�1,j = (j w0)�1
Pj

m=1 [m(k + i) � j]wm tk+i�1,i�m for j � 1 and tk+i�1,0 =
wk+i�1
0 . Inserting the previous expression for F (x)k+i�1 and the representation of Equation

(7) of the PDF appearing in Equation (13) gives

fi:n(x) = K
1X

r,j=0

n�iX

k=0

vr,j,kh(r+j)↵+k+i(x), (15)

where

vr,j,k =
(�1)k (r ↵+ 1) wr tk+i�1,j

(r + j)↵+ k + i

✓
n� i

k

◆
.

Equation (15) reveals that the PDF of the HEL order statistics can be expressed as a
triple linear combination of LIIL PDFs. Accordingly, certain mathematical properties of
the HEL order statistics could be determined from those of the LIIL distribution.

4. Parameter Estimation

We now discuss the estimation of the model parameters using the ML method. There
exist several approaches for estimating parameters; however, the ML method is the most
commonly employed. The ML estimators enjoy several desirable properties and can be
utilized in the construction of confidence intervals for the model parameters. They also
appear in some test statistics. The normal approximation to the distribution of these
estimators follows from large sample distribution theory.
Let X1, . . . , Xn be a sample of size n from the HEL distribution whose associated PDF

is given in Equation (5). The log-likelihood function ` = `(⇥) of the vector of parameters
⇥ = (✓,↵,�)> is given by

` =
n

↵
log ✓+n log

✓
�2

1 + �

◆
+

nX

i=1

log(1+ xi)��xi � (1+
1

↵
)

nX

i=1

log[1� ✓̄ḠL(x)
↵]. (16)

The ML estimates b✓, b↵ and b� are determined by maximizing the log-likelihood function
of Equation (16) with respect to the parameters ✓, ↵ and �. In general, there is no closed-
form representation for these estimates, which are determined in practice the by making
use of numerical methods. Equation (16) can be maximized either directly by using the
R (optim function), SAS (NLMixed procedure) or Ox (MaxBFGS function), or by solving
the nonlinear likelihood equations obtained by equating the partial derivatives of ` with
respect to each parameter to zero.
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The components of the score vector U(⇥) are expressed as

U✓ =
n

↵ ✓
�
✓
1 +

1

↵

◆ nX

i=1

ḠL(x)↵

1� ✓̄ḠL(x)↵
,

U↵ = � n

↵2
log ✓ � 1

↵2

nX

i=1

ḠL(x)↵ log ḠL(x)

1� ✓̄ḠL(x)↵
,

U� =
n(2 + �)

�+ �2
+ xi +

✓
1 +

1

↵

◆ nX

i=1


↵ ✓̄ḠL(x)↵�1

(1 + �)2[1� ✓̄ḠL(x)↵]
�xi [2 + �+ (1 + �)xi] e

��xi

�
.

Setting these equations to zero and solving them simultaneously yields the ML estimates
of the model parameters.
We now assess the performance of the ML estimators of the model parameters by means

of Monte Carlo simulations. The simulations are replicated 1,000 times with samples of
sizes n = 50, 100, 200 and the following parameter values: I: ✓ = 0.5, ↵ = 0.5 and � = 1;
II: ✓ = 0.1, ↵ = 1.5 and � = 1; III: ✓ = 1.5, ↵ = 0.5 and � = 1; IV: ✓ = 1.5, ↵ = 1.5
and � = 1. Table 2 lists the average bias (Bias) of the ML estimators, mean squared
errors (MSE), coverage probabilities (CP) and average widths (AW) of the confidence
intervals for the parameters ✓, ↵ and � and the three sample sizes. From these results, we
conclude that the ML estimators perform well when it comes to estimating the parameters
of the HEL distribution. In general, the biases, MSEs and AWs decrease when the sample
size increases. Moreover, the CPs of the confidence intervals are quite close to the 95%
nominal level. Thus, the ML estimators and their asymptotic distributional properties can
be adopted for constructing approximate confidence intervals for the parameters of the
HEL distribution.

5. Empirical Illustrations with Hydrological Data

In this section, we fit the HEL model and some other competing models to two hydro-
logical data sets. We assess how well the HEL distribution performs as compared to the
beta-Lindley (BL) studied by Mervoci and Sharma (2014), exponentiated power Lindley
(EPL) due to Ashour and Eltehiwy (2015), beta-exponential (BE) proposed by Nadara-
jah and Kotz (2006), exponentiated Nadarajah and Haghighi (ENH) defined by Lemonte
(2013), Harris extended exponential (HEE) discussed by Pinho et al. (2015), exponenti-
ated Weibull (EW) studied by Mudholkar and Sharivastava (1993), power Lindley (PL)
introduced by Ghitany et al. (2013), exponentiated Lindley defined by Nadarajah et al.
(2007) and Lindley distributions. For each model, we estimated the parameters by the
ML method and assessed the goodness-of-fit by means of the Akaike information criterion
(AIC), Cramér-von Mises (W), Anderson-Darling (AD), Kolmogrov-Smirnov (KS) and
average scaled absolute error (ASAE) statistics. The ASAE is defined as (see Castilo and
Hadi, 2005)) ASAE = (1/n)

Pn
i=1(|x(i) � bx(i)|)/(x(n) � x(1)), where x(i) is the observed

value of ith order statistic, and bx(i) is obtained from the QF, Q(ui), wherein the ML esti-
mates are substituted to the parameters, with ui = i/(n+1). The ASAE statistic is useful
for measuring the accuracy of the fitted model. In general, the smaller values of the above
statistics indicate a better fit to the data.
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Table 2. Monte Carlo simulation results for the listed statistical indicator.

Parameter n Bias MSE CP AW

I

✓ 50 �0.044 0.112 0.92 1.483
100 �0.037 0.045 0.95 0.979
200 �0.037 0.033 0.98 0.749

↵ 50 0.626 1.690 0.96 2.079
100 0.419 0.429 0.95 0.983
200 0.314 0.110 0.95 0.799

� 50 �0.028 0.193 0.93 1.459
100 �0.042 0.111 0.96 1.154
200 �0.046 0.079 0.95 0.123

II

✓ 50 0.022 0.007 0.93 0.368
100 0.012 0.003 0.96 0.232
200 0.004 0.001 0.95 0.153

↵ 50 0.621 1.340 0.95 4.809
100 0.199 0.537 0.95 2.475
200 0.078 0.167 0.95 1.588

� 50 0.162 0.293 0.91 2.117
100 0.080 0.133 0.94 1.436
200 0.026 0.063 0.95 0.994

III

✓ 50 1.317 0.589 0.98 1.508
100 0.609 0.371 0.98 1.192
200 0.288 0.148 0.96 0.506

↵ 50 1.375 0.473 0.90 1.624
100 0.563 0.171 0.98 1.270
200 0.157 0.049 0.95 0.014

� 50 0.264 0.479 0.91 1.006
100 0.204 0.278 0.95 0.214
200 0.199 0.130 0.96 0.102

IV

✓ 50 0.638 3.602 0.90 2.835
100 0.237 1.276 0.91 1.401
200 0.141 0.629 0.94 0.038

↵ 50 �0.003 0.083 0.96 1.156
100 0.015 0.042 0.96 0.818
200 �0.001 0.021 0.95 0.571

� 50 0.117 0.255 0.96 1.977
100 0.035 0.104 0.96 1.323
200 0.024 0.055 0.96 0.923
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The CDFs of the BL, EPL, BE, ENH, HEE, EW, MOL, PL and EL distributions are
given by

FBL(x, a, b, ✓) = I
1�(1+

✓ x
1+✓ )e

�✓x
(a, b), x, ✓ > 0,

FEPL(x,↵,�, ✓) =
⇣
1� (1 + ✓ x�

1+✓ )e
�✓ x�

⌘↵
, x,↵,�, ✓ > 0,

FBE(x, a, b,�) = I1�e�� x(a, b), x, a, b,� > 0.

FENH(x,�,↵,�) =
⇣
1� e1�(1+�x)↵

⌘�
, x,�,↵,� > 0,

FHEE(x,�, k,�) =
�1/ke��x

[1� (1� �)e�� k x]1/k
, x,�, k,� > 0,

FEW(x; c,↵,�) =
⇣
1� e�(x/�)c

⌘↵
, x, c,↵,� > 0,

FMOL(x,↵,�) =
1� (1 + �)�1[1 + �+ �x]e��x

1� (1� ↵)(1 + �)�1[1 + �+ �x]e��x
, x,↵,� > 0,

FPL(x,�, ✓) = 1� (1 + ✓ x�

1+✓ )e
�✓ x�

, x,�, ✓ > 0,

FEL =


1�

✓
1 + ✓ + ✓ x

1 + ✓

◆
e�✓x

�↵
, x, ✓ > 0,

respectively, where Iz(p, q) denotes the incomplete beta function.
First, we consider a data set consisting of s exceedances (rounded to one decimal place)

of flood peaks (in m3/s) of the Wheaton river, which is located in the Yukon Territory,
Canada, for the years 1958-1984. The data set is the following: 1.7, 2.2, 14.4, 1.1, 0.4,
20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7,
37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8,
14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0,
1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. Some summary statistics of
these data are: n = 72, x̄ = 12.20417, s = 12.29722, coe�cient of skewness = 1.47251 and
coe�cient of kurtosis = 2.88955. The boxplot of these observations displayed in Figure
3(a) indicates that the distribution is right-skewed. The TTT (total time on test) plot
(see, e.g., Gill, 1986; Aarset, 1987) of these data is shown in Figure 3(b). It is first convex
and then concave, which suggests a bathtub-shaped failure rate. Accordingly, the HEL
distribution could, in principle, be appropriate for modeling these data. The ML estimates
(with the corresponding standard errors -SEs- in parentheses) as well as the ASAE, AIC,
KS, CM and AD statistics are given in Table 3. All five goodness-of-fit statistics indicate
that the HEL model provides the best fit. For a visual comparison, the empirical SF (ESF)
and estimated SF associated with the HEL model as well as a theoretical versus empirical
probability (PP) plot, which compares the empirical CDF of the data with the fitted CDF,
are respectively included in Figures 4(a) and 4(b). Clearly, the HEL model closely fits the
data distribution.
In this second illustration, the data set, which is freely available on the Korea Meteo-

rological Administration (KMA) website (http://www.kma.go.kr), represents the annual
maximum daily rainfall amounts in millimeters in Seoul (Korea) during the period 1961-
2002. Some summary statistics of these precipitation data are: n = 128, x̄ = 144.5991,
s = 66.17812, coe�cient of skewness = 0.94067 and coe�cient of kurtosis = 0.80435. The
boxplot of these observations that is displayed in Figure 5(a) indicates that the distribu-
tion is right-skewed. The TTT plot appearing in Figure 5(b) suggests an increasing failure
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Figure 3. Boxplot (a) and TTT plot (b) for the flood data.

Table 3. ML estimates, SEs (in parentheses) and goodness-of-fit measures for the flood data.

Distribution Estimates ASAE AIC KS CM AD

HEL(✓, ↵, �) 0.077 6.135 0.110 0.017 503.194 0.073 0.054 0.338
(0.038) (2.031) (0.014)

BL(a, b, ✓) 0.556 0.275 0.334 0.020 510.206 0.115 0.126 0.775
(0.098) (0.241) (0.273)

EPL(↵, �, ✓) 0.916 0.730 0.300 0.025 510.425 0.106 0.149 0.857
(0.595) (0.235) (0.279)

BE(a, b, �) 0.812 0.412 0.179 0.023 508.465 0.098 0.122 0.705
(0.137) (0.290) (0.131)

ENH(�, ↵, �) 0.732 1.675 0.032 0.019 507.850 0.106 0.104 0.632
(0.137) (0.143) (0.032)

HEE(�, k, �) 0.433 5.086 0.071 0.023 506.460 0.078 0.094 0.550
(0.193) (0.147) (0.011)

EW(c, ↵, �) 1.387 0.519 0.016 0.403 508.050 0.107 0.105 0.642
(0.587) (0.308) (0.036)

MOL(↵, �) 0.216 0.090 0.044 522.571 0.175 0.582 4.148
(0.128) (0.023)

PL(�, ✓) 0.700 0.339 0.026 508.444 0.105 0.154 0.877
(0.057) (0.056)

EL(↵, ✓) 0.509 0.104 0.021 509.349 0.117 0.135 0.833
(0.077) (0.015)

L(✓) 0.153 0.044 530.424 0.241 0.819 7.424
(0.013)

rate. The estimates of the parameters of the fitted distributions are listed in Table 4. We
note that the HEL model has the lowest ASAE, AIC, KS, CM and AD values, which
indicate that it provides the most accurate fit to the data. Furthermore, the ESF and
estimated SF and PP plots shown in Figures 6(a) and 6(b) also suggest a close fit to the
data distribution.
A likelihood ratio test can be utilized to compare a distribution having additional pa-

rameters with some of its sub-models. Accordingly, we made use of the likelihood ratio
test to assess the improvement in fit that the HEL distribution produces with respect to
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Figure 4. Empirical SF and estimated HEL SF (a) and PP plot (b) for the flood data.
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Figure 5. Boxplot (a) and TTT plot (b) for the precipitation data.
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Figure 6. Empirical SF and estimated HEL SF (a) and PP plot (b) for the precipitation data.
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Table 4. ML estimates, SEs (in parentheses) and goodness-of-fit measures for the precipitation data.

Distribution Estimates ASAE AIC KS CM AD

HEL(✓, ↵, �) 17.443 3.081 0.022 0.019 1165.064 0.077 0.077 0.490
(9.276) (1.069) (0.003)

BL(a, b, ✓) 2.776 1.117 0.020 0.022 1169.396 0.085 0.144 0.809
(0.622) (0.577) (0.007)

EPL(↵, �, ✓) 1.530 1.318 0.003 0.024 1168.717 0.097 0.150 0.862
(0.225) (0.025) (0.004)

BE(a, b, �) 4.433 1.448 0.012 0.029 1172.022 0.092 0.263 1.412
(0.685) (0.535) (0.003)

ENH(�, ↵, �) 4.183 1.694 0.006 0.024 1168.620 0.095 0.146 0.837
(0.687) (0.217) (0.001)

HEE(�, k, �) 1.535 1.860 0.008 0.137 1241.535 0.276 2.569 13.078
(0.299) (0.847) (0.001)

EW(c, ↵, �) 1.411 2.907 98.866 0.433 1168.586 0.093 0.142 0.821
(0.334) (1.519) (29.851)

MOL(↵, �) 10.455 0.029 0.032 1171.003 0.103 0.184 1.330
(4.118) (0.003)

PL(�, ✓) 0.014 16.182 1.433 4820.512 0.999 34.999 1631.130
(0.007) (2.037)

EL(↵, ✓) 2.871 0.022 0.022 1167.600 0.084 0.146 0.818
(0.501) (0.002)

L(✓) 0.014 0.584 1199.216 1.187 0.519 6.508
(0.001)

the Lindley and MOL distributions. It is known that, under the null hypothesis,

�2 log

✓
likelihood under the null hypothesis

likelihood in the whole parameter space

◆
⇠ �2(d),

where, asymptotically, �2(d) follows a chi-square distribution having d degrees of freedom,
d being equal to the number of additional parameters in the extended model. Using this
result and standard statistical tables, we can obtain critical values for the test statistic.
Table 5 includes the likelihood ratio statistics and corresponding p-values for the two data
sets. Given the values of these statistics and their associated p-values, we reject the null
hypotheses for both data sets and conclude that the HEL model provides a significantly
better representation of the distribution of these data than the Lindley or MOL distribu-
tions. The 95% bootstrap confidence intervals obtained for the parameters ✓, ↵ and � are
given in Table 6.

Table 5. Likelihood ratio statistics and their p-values.

Hypothesis Flood data Precipitation data

H0: ↵=1 (MOL) 21.377 (< 0.000) 7.939 (0.005)
H1: ↵ 6= 1 (HEL)

H0: ↵=✓=1 (L) 31.229 (< 0.000) 38.151 (<0.000)
H1: ↵ 6= 1, ✓ 6= 1 (HEL)
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Table 6. 95% bootstrap confidence intervals for the parameters ✓, ↵ and �.

Data set ✓ ↵ �

Flood data (0.039, 0.225) (3.036, 10.429) (0.087, 0.146)
Precipitation data (8.243, 20.463) (1.378, 5.027) (0.018, 0.031)

Next, we present the concepts of return period, mean deviation about a return level
and the rth moment of the order statistics. For a given a data set, the return period can
be estimated by bT = 1/F̄ (x), where F̄ (x) = 1 � F (x) and F (x) denote the CDF of the
distribution. The estimated return periods (bT ) correspond to the return levels (xT ) for
each of these two data sets. They are reported in Table 7 and have been computed as
T = 1/F̄ (xT ), where F̄ (·) is as given in Equation (4). The mean deviation about a return
level which is the mean of the distances of the values from their return level is given by
⌘ = 2xTF (xT )� xT � µ+ 2

R1
xT

x f(x) dx, where f(·) and F (·) denote the HEL PDF and
CDF. Table 7 provides the mean deviations about certain values of the return levels (x̄T )
for both the flood and precipitation data sets.

Table 7. Estimated return periods ( bT ) and mean deviations about the return levels (⌘).

Flood data Precipitation data

xT bT ⌘ xT bT ⌘

140 499147.836 127.800 410 315.215 265.623
100 8350.571 87.802 375.5 160.422 435.000
50 62.48360 38.135 315.5 50.389 172.849
30 10.375 19.949 260 17.693 121.247
10 2.265 9.337 210 7.093 80.513

In order to be able to plan for future emergencies in connection with various hydrological
events, it is useful to ascertain some distributional results on certain of the order statistics.
To that end, we determine the rth moment, for r = 1, 2, 3, 4, of some order statistics for
each data sets under the HEL model wherein the parameters are replaced by their ML
estimates. Those moments are included in Table 8 for each data set.

Table 8. Some numerical values of E(Xr
i:n) for the indicated data set.

Flood data Precipitation data
i r E(Xr

i:72) i r E(Xr
i:128)

1 1 0.097 1 1 21.409
2 0.019 2 585.869
3 0.006 3 18628.800
4 0.002 4 658641.210

20 1 2.868 15 1 77.111
2 8.962 2 5989.380
3 30.433 3 468486.450
4 111.999 4 3.689⇥ 104

60 1 22.898 30 1 98.427
2 543.677 2 9719.320
3 12726.600 3 962824.794
4 308653.083 4 9.568⇥ 107
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6. Concluding Remarks

We introduced a three-parameter extension of the Lindley distribution refereed to as the
Harris extended Lindley (HEL) distribution, which is obtained by applying the Harris
extended method to the Lindley distribution. The proposed model has two shape param-
eters and one scale parameter. It includes as sub-models the Marshall-Olkin Lindley and
Lindley distributions. The HEL PDF can be decreasing or unimodal. Moreover, the HEL
HR can be increasing, decreasing, unimodal (upside-down bathtub) or bathtub-shaped.
We gave explicit expressions for the ordinary and incomplete moments, mean deviations,
Bonferroni and Lorenz curves and order statistics associated with the proposed distribu-
tion. The estimation of the model parameters was successfully carried out by making use
of the maximum likelihood method. In conclusion, the HEL distribution provides a very
flexible model for fitting the wide spectrum of positive data sets arising in engineering, sur-
vival analysis, hydrology, economics, biology as well as numerous other fields of scientific
investigation. All the calculations were performed with the symbolic computing software
Mathematica, the code being available from the authors upon request.
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