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Abstract

This paper introduces a method for the classiÞcation of electroencephalogram (EEG)
data combining Fourier analysis, support vector machine (SVM) and a weighting sys-
tem, called WFF-SVM, that provides high correct classiÞcation rates (accuracy) using
a small training data set. Basically, an SVM classiÞer is calculated for each frequency in
the periodogram and a proposed weighting system, based on the error rate of each SVM
classiÞer, is used to obtain a Þnal decision value. Also, it is shown that principal com-
ponent analysis can be used to identify the best group of EEG channels to apply to the
classiÞcation method, improving the correct classiÞcation rate. Two applications with
real data are presented. The Þrst application uses a public data set of epileptic patients
and compares the proposed method with other methods presented in the literature.
In this case, the correct classiÞcation rate obtained was 100%. The second application
consists of EEG data collected from a subject submitted to 10 visual stimuli and the
correct classiÞcation rate obtained was 95.31%. The classiÞer WFF-SVM combines mul-
tiple existing techniques, each one of them widely used in time series and dimensionality
reduction problems. Our paper combines standard signal processing techniques to obtain
high classiÞcation rates of EEG data.

Keywords: Epilepsy data áPeriodogram áPrincipal components analysisáSimple
moving averagesáSupervised learning.

Mathematics Subject ClassiÞcation: Primary 62H25 áSecondary 68Q32.

1. Introduction

Machine learning (ML) techniques have been gaining prominence due to real-world prob-
lems as well as large databases. Basically, one can divide ML methods into two classes,
supervised learning and unsupervised learning. In unsupervised learning, the method has
to recognize the groups by existing standards with a certain criterion. This type of learning
tries to gain some understanding of the process that generated the data, e.g., the K-means
method applied in DNA gene expression and Internet newsgroups (Ding and He, 2004),

! Corresponding author. Email: jhon_dbz@yahoo.com.br

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c" Chilean Statistical Society Ð Sociedad Chilena de Estad«õstica

http://www.soche.cl/chjs

jhon_dbz@yahoo.com.br


4 Carvalho et al.

clustering with hill-climbing optimization method applied to bee species (Friedman and
Rubin, 1967), botanical data (Rubin, 1967) and in clustering of plants, wines and heart
diseases (Souza et al., 2017). In supervised learning, groups (or classes) are known a priori
and it is necessary to provide examples for method training. These methods are often
used in classiÞcation and regression problems, e.g., logistic regression in the prediction
of a Þnancial crisis in Latin American companies (Giampaoli et al., 2016), in the fault
diagnosis in chemical processes using Fisher discriminant analysis (Chiang et al., 2000),
SVM classiÞcation in validation of cancer tissue samples (Furey et al., 2000). However, our
interest is in the classiÞcation of electroencephalography signals.

An EEG are recordings of the electrical potentials produced by the brain (Bronzino,
1999; Buzsaki, 2006). Basically, the digital EEG is a time series containing information of
the electrical activity generated by the brain. EEG has vast application in areas such as
epilepsy detection (Andrzejak et al., 2001), emotion regulation using neurofeedback (Ruiz
et al., 2014), a! ective neuroscience (Sitaram et al., 2011), and brain computer interface
(K¬ubler et al., 2001; Wolpaw et al., 2002). For an e" cient classiÞcation of EEG, an al-
gorithm should address two main problems: feature extraction and classiÞcation method.
Several methods have been used to extract features of EEG data, such as discrete wavelet
transforms (DWT) ( Jahankhani et al., 2006; Subasi, 2007; Subasi and Gursoy, 2010),
amplitude values (Kaper et al., 2004), clustering techniques (Li and Wen, 2011), autore-
gressive and adaptive autoregressive parameters (Penny et al., 2000; Pfurtscheller et al.,
1998), wavelet packet decomposition and extracted eigenvalues from the resultant wavelet
coe" cients using principal component analysis (PCA) (Acharya et al., 2012), continu-
ous wavelet transform (CWT), higher order spectra (Acharya et al., 2013), approximate
entropy and DWT ( Ocak, 2009), analytic time-frequency ßexible wavelet transform and
fractal dimension (Sharma et al., 2017).

In order to classify a set of extracted features, several pattern recognition methods have
been used, such as artiÞcial neural network (Guo et al., 2009; Jahankhani et al., 2006;
Nigam and Graupe, 2004; Subasi, 2007), mixture of expert model (Subasi, 2007), linear
discriminant analysis (Subasi and Gursoy, 2010), SVM ( Chandaka et al., 2009; Subasi and
Gursoy, 2010), decision trees (Polat and G¬unes, 2007), least squares SVM (Li and Wen,
2011; ¬Ubeyli, 2010) and hidden markov models (Chiappa and Bengio, 2004). For a more
complete review refer toLotte et al. (2007).

Recently several algorithms have been developed to classify EEG in a variety of applica-
tions, such as inZhang et al. (2016), which proposed a linear Bayesian discriminant with
a Laplace prior, named sparse Bayesian method by exploiting a Laplace prior. A major
advantage of this method is that it estimates automatically all the parameters of the clas-
siÞer, without the need to use cross-validation. However, we point out that any Bayesian
procedure needs a suitable prior distribution and although the Laplace distribution has
been suggested it is conceivable that for a particular application a better prior distribution
can be found. Wang et al. (2016) introduces a new approach that utilizes spatiotempo-
ral feature extraction with multivariate linear regression (MLR) to learn discriminative
of steady-state visual evoked potentials (SSVEP) features, for improving the detection
accuracy. SSVEP are signals that are natural responses to visual stimulation at speciÞc
frequencies. MLR is implemented on dimensionality reduced EEG training data and a con-
structed label matrix to Þnd optimally discriminative subspaces.Jiao et al. (2017) proposed
a method that is an extension of multiset canonical correlation analysis (MsetCCA), called
multilayer correlation maximization (MCM) model for further improving SSVEP recog-
nition accuracy. MCM combines advantages of both Canonical Correlation Analysis and
MsetCCA by carrying out three layers of correlation maximization processes.Zhang et al.
(2018) introduced a new method, called multi-kernel extreme learning machine (MKELM)
to EEG classiÞcation. Basically, this method transforms the EEG through the common
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spatial pattern (CSP) and inserts a kernel function in the extreme learning machine (ELM).
The MKELM provides a way to circumvent calculation of the hidden layer outputs and
inherently encode it in a kernel matrix.

The proposed WFF-SVM is a classiÞer based on the SVM and the Fourier transform,
providing the periodogram as feature extraction. In addition, it uses a weighting system
based on the error rate. Thus, we call this classiÞer weighted Fourier frequencies and SVM,
WFF-SVM for short. The WFF-SVM classiÞer di ! ers from the other methods because it
requires just one data transformation (Fourier), which leads to a good capacity to discrim-
inate among groups. The PCA is used to identify the most active regions of the brain,
providing the use of fewer electrodes and reducing the complexity of the data, since some
electrodes pick up only noises, whereas the other methods ended up losing information
by reducing the dimension based on the application of CSP or PCA. In relation to the
Fourier transform, we observed that analyzing the signals in the frequency domain (peri-
odogram), as shown in Figure1, allows us to discriminate the signals for some frequencies.
Our classiÞer takes into account the most distinct frequencies for classiÞcation through
the weighting system. However, we point out that the choice of the kernel function is not
unique, but for our applications the results are virtually the same by considering di! erent
kernels, suggesting a robust procedure.

Visual stimuli are commonly used to understand di! erent components, such as color,
texture, motion, objects, readability (text versus nontext), and others (Thomas and Vinod,
2017). Moreover, visual stimuli are also used in biometric authentication (Zuquete et al.,
2010), emotion classiÞcation (Wang et al., 2014), person identiÞcation (Das et al., 2009),
and others. We tested our classiÞcation method using real-world EEG data of two main
applications: epilepsy and vision. The Þrst application (described in Subsection4.1) uses
a publicly available data set described inAndrzejak et al. (2001), already used in previous
works on EEG classiÞcation, and it allows a direct comparison of our classiÞcation method
to other methods presented in the literature. In this application, the proposed method
achieved a correct classiÞcation rate of 100.00% under a relatively simple model, showing
that the proposed method performs well compared to other methods in the literature. The
second application (described in Subsection4.2) uses a data set collected in an experiment
conducted at the University of Texas at El Paso in which the EEG data are acquired while
the subject is submitted to visual stimuli. The proposed method showed a high correct
classiÞcation rate of 95.31% using only three signals from each class in the training phase.

This paper is organized as follows. Section2 provides a brief review of the SVM classiÞer
relevant for our work and presents the periodogram, which is used for feature extraction.
Section 3 presents our classiÞcation method integrating Fourier data analysis, SVM and
a weighting system. Section4 reports the performance of our method using real-world
data of two applications and compares it with concurrent methods found in the literature.
Section 5 provides some discussions, conclusions and recommendations for future work.

2. Background

In this section, the methods used in the WFF-SVM classiÞer are described. The Þrst
method is the SVM and it includes three main blocks: the basic classiÞer, parameters
estimation and SVM with nonlinear functions. The other methods are the Fourier analysis,
periodogram, and the technique of simple moving averages.

2.1 Support vector machine

The SVM is a pattern recognition technique that has been widely used in problems
like regression and classiÞcation (Hastie et al., 2008; Hornik et al. , 2006; Theodoridis



6 Carvalho et al.

and Koutroumbas, 2008; Vapnik, 1996). In classiÞcation problems the SVM technique
separates two classes (sayW1 and W! 1) by a hyperplane ! ! , x " + ! 0 = 0, where
!á, á" is the inner product, x , ! # RD and ! 0 # R, corresponding to the decision function

f (x ) = sign( ! ! , x " + ! 0). (1)

The optimal hyperplane is deÞned as the one maximizing the margin of separation between
classes. Note that the optimal hyperplane does not necessarily guarantee a complete sepa-
ration of points from the two classes. This hyperplane can be constructed using Lagrange
multipliers and then solving a constrained convex optimization problem.

Consider a set of training samplesx i with i = 1 , 2, . . . , N , then the primal optimization
problem along with the soft margin method (Cortes and Vapnik, 1995) is given by

min
! , ! 0 , " i

1
2

$! $2 + c
N!

i =1

" i , (2)

subject to
"

yi (! ! , x i " + ! 0) % 1 & "i ,
" i % 0, for i = 1 , . . . , N,

where the constant c is previously chosen and determines the inßuence of the two terms
in the minimization problem. The variables "i are known as slack variables measuring the
proportional amount of predictions that fall on the wrong side of the margin, and yi is an
indicator variable deÞned by

yi =
"

+1 , if x i # W1,
&1, if x i # W! 1.

Using Lagrange multipliers (Hastie et al., 2008), one can obtain the Wolfe dual function
given by

L D =
N!

i =1

#i &
1
2

N!

i =1

N!

k=1

#i #kyi yk !x i , x k". (3)

The solution is obtained by maximizing L D , a simple convex optimization problem which
must satisfy the conditions 0 ' #i ' c and

# N
i =1 #i yi = 0 .

One can also generalize the SVM technique using a non-linear discriminant (unlike the
hyperplane). In this case, a mapping is used in a larger number of dimensions. It can
be shown (Theodoridis and Koutroumbas, 2008) that this mapping in a larger number of
dimensions can be implemented without increasing the computational demand by replacing
the inner product !x i , x k" in Equation ( 3) by a kernel K (x i , x k) to compute the inner
product in a higher dimensional space. In this study, we consider two popularly used
kernels:

¥ Gaussian kernel:K 1(x i , x j ) = exp
$

&$||x i & x j ||2
%

;

¥ Polynomial kernel: K 2(x i , x j ) = !x i , x j "d;

where$ and d are kernel width and polynomial degree, respectively. Note whend = 1, the
polynomial kernel is called linear kernel.
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2.2 Fourier analysis

Fourier frequency analysis is a very important tool in signal processing and the peri-
odogram is one of its subproducts (Fuller, 1996). The periodogram shows how the co-
variance of a time series is distributed in frequency. Any stationary time series can be
represented as a sum of sines and cosines (Fuller, 1996), that is, a discrete stationary time
series{ X t } , where t = 1 , . . . , n, (n being odd) can be represented by

X t =
a0

2
+

"n/ 2#!

j =1

ak cos(%kt) + bk sin(%kt),

where (n/ 2) is the largest integer less than or equal ton/ 2, ak and bk are parameters to
be estimated. Also, the Fourier frequencies are deÞned by

%k =
2&k
n

, k = 0 , . . . ,
&n

2

'
.

The periodogram can be deÞned as the sequence{ Jk} , where

Jk =
n
2

(
a2

k + b2
k

)
, (4)

and the sum of squares removed by cos(%kt) and sin(%kt) is

Jk =
2
n

*

+

,
n!

t=1

X t cos(%kt)

- 2

+

,
n!

t=1

X t sin(%kt)

- 2
.

/ .

Thus, the value of the periodogram at frequency%k is the contribution from this frequency
to the sum of squares of{ X t } or, equivalently, its energy.

Some periodograms shown in this paper are smoothed using a moving average technique
(Brockwell and Davis, 2002). Considering { Jk} a sequence of points in the periodogram,
for some# # IN, we deÞne the smoothing by

J #
k =

1
#

#!

j =1

Jk+ j ! 1, k = 0 , 1, . . . ,
&n

2

'
+ 1 & #, (5)

whereJ #
k is the average of# terms in sequence starting at the pointJk , meaning that each

point J #
k is the average contribution of # frequencies for the total energy of the series.

Let X i, 1 and X i, 2 # RP$ C EEG samples of two classes from thei -trial with C and P
being the number of channels and samples, respectively. The application of the Fourier
transform will be in each column (channel) of X i, 1 and X i, 2 from the i -trial, building a
vector

J #
$,k = ( J #

$,k i,g
)%, (6)

with i = 1 , . . . , Ng, Ng being the number of trials belonging to classg (g = 1 , 2) and
' = 1 , . . . , C. These vectors together with the vector of labelsy = ( y1, y2, . . . , yN 1 + N 2 )%

are the inputs of the classiÞer WFF-SVM.
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3. New Method for EEG Classification

The classiÞcation of EEG data is a di" cult task, with the analysis disturbed because most
of the EEG channels may not be relevant to the classiÞcation at hand. Usually, traditional
classiÞcation techniques alone do not provide good results when applied to EEG data.
Therefore, it is important to construct a new method able to distinguish important brain
regions and to capture the essential information contained in the data.

3.1 Motivation

The Fourier analysis, especially the periodogram, can reveal hidden patterns in signals.
Figure 1 has a set of 4 plots, all of which represent the signals generated by two di! erent
stimuli and captured by a channel of the EEG data (red for W1 class and black forW! 1
class) for a visual stimuli study (see Section4.2). The top-left graph represents the super-
imposed plots of the original EEG signals. Note that it is di" cult to visually distinguish
two di ! erent classes in the time-domain plots presented in this graph. The top-right and
bottom-left graphs represent the periodogram and the smoothed periodogram (J 4

k in Equa-
tion ( 5)) of the signals, respectively. Now, it is easier to notice hidden patterns revealed
by the periodograms of the data.

The plots indicate that the periodograms ofW1 have higher values at central frequencies
than the periodograms ofW! 1. In fact, the bottom-right graph in Figure 1 shows a possible
discriminant (the dashed line) for these periodograms. Note that the periodograms ofW1
always have values above this hypothetical discrimination line for the central frequencies of
the periodogram. However, it should be noted that this type of pattern does not occur for
all the channels nor in all regions of the brain. It is necessary to use methods that identify
both the relevant channels and the relevant frequencies in a set of periodograms, so that
in an application, such as epilepsy detection of signals can be automatically classiÞed into
one of the expected classes.

3.2 Calculating the discriminant

The graphs in Figure1 are revealing. It is easy to discriminate the periodograms for certain
frequencies, but this separation is not so clear for other frequencies. It is noticeable that
each frequency has its own importance and, therefore, could be evaluated individually and
not as a whole. Thus, this paper describes a method in which a di! erent discriminant is
calculated for each frequency using the SVM classiÞer.

Considering the set of training J #
$,k of Equation (6) and the label vector y with C chan-

nels,' = 1 , 2, . . . , C and a set ofF frequencies,k = 0 , 1, . . . , F (k-th point of the smoothed
periodogram and F = (n/ 2) ), deÞne SVM$,k [j #

$,k ] as the discriminant function generated
by SVM, given by Equation (1), that classiÞes a new valuej #

$,k of the periodogram for a
test signal into one of two classes,W1 or W! 1, according to

SVM$,k [j #
$,k ] =

"
+1 , if j #

$,k is classiÞed inW1,
&1, if j #

$,k is classiÞed inW! 1.
(7)

Then, each discriminant will classify a new signal between two classes depending on
whether the periodogram has higher or lower value at a particular frequency. Figure2
shows an example of these discriminants. Note that each discriminant function SVM$,k [.]
could present a di! erent decision. Thus, in order to unify these decisions, the next two
sections present a weighting system that generates a single answer to the decision problem.



Chilean Journal of Statistics 9

0 50 100 150

!
20

!
10

0
10

20

Time(ms)

A
m

pl
itu

de
(m

V
)

0 20 40 60 80

0
20

0
40

0
60

0
80

0
10

00

k

S
pe

ct
ru

m

k

S
pe

ct
ru

m

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

k

S
pe

ct
ru

m

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

Figure 1. Representations of a set of signals generated by two stimuli. Each line is a signal from the W1 class
(red/lighter lines) or W" 1 class (black/darker lines). Top-left: original signals. Top-right: periodogram of the signals.
Bottom-left: smoothed periodogram of the signals. Bottom-right: smoothed periodogram of the signals with a possible
naive discriminant (dashed line). These data are obtained at the Multi-Sensing-Processing and Learning Laboratory
(MSPL) at the University of Texas at El Paso (UTEP).
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Figure 2. Some discriminating points (dashed line) for some Fourier frequencies %k for classes W1 and W" 1. Red
(lighter lines) represents class W1 and black (darker lines) represents class W" 1.

3.3 Weighting system

Now, we have several discriminant functions, one for each EEG channel and each point in
frequency, with discriminant functions producing di! erent decisions. However, it is clear
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that there are some discriminants more reliable than others and this reliability is de-
termined by the incorrect classiÞcation rate (or error rate) on the training phase of the
classiÞcation problem. For example, if for some channel' and frequencyk the discriminant
function SVM $,k [.] provides a low error rate on the training phase, then it is considered
more reliable than another discriminant function with a higher error rate. Having this in
mind, we introduce a weighting system based on the error rate for each discriminant.

The weight for channel ' and frequencyk is deÞned as

# $,k = [1 & 2 ámin(Error Rate , 0.5)]ö&! ,k , (8)

where Error Rate # [0, 1] and ö( $,k % 1 is a constant given by

ö( $,k =
SSTotal

SSTreatment
, (9)

where SSTotal =
# nc

i =1
# N i

j =1 (J #
i,j & J )2 and SSTreatment =

# nc

i =1
# N i

j =1 (J i. & J )2, with nc

representing the number of classes (in this case we havenc = 2), Ni is the number of
frequencies of the smoothed periodogram of the i-th class,J #

i,j is the j-th smoothed peri-
odogram of the i-th class,J i. is the arithmetic mean of the i-th class andJ is the mean
of all smoothed periodograms. The basic concept of our truncated weighting system is to
allocate 0 to the ones that have at least a 50% error rate, since min{ 0, 0.5} = 0 implies
zero weight. This is so because, based on our experience, it does not make sense to consider
classiÞers that provide over 50% error rate. On the other hand, the weighting system is
an increasing function as the error rate tends to zero, achieving its maximum value when
the error rate is zero. Finally, the power ö( $,k is used to penalize the classiÞers that have
an error rate between 0 and 50%.

There are several advantages in the use of the exponent ö( $,k in Equation ( 9) for the
weighting system. It only involves sums, is easy to implement, does not involve optimiza-
tion, has computational cost almost zero, it uses the data for calculation, it measures the
distance between the groups taking into account the variability between and within the
groups, and each frequency will have its own weight for SVM.

It is very important to use this kind of information to classify EEG data because much of
the data contain non-relevant information of non-activated brain regions such as artifacts
in EEG or noise. The next section will show how to use these weights to produce a single
decision between one of the two classesW1 or W! 1 for new signals.

The implementation of the WFF-SVM method is presented in Algorithm 1. In Figure
3 we display a ßowchart of the SVM framework that summarizes all the steps proposed.
This classiÞer is denominated weighted Fourier and support vector machine (WFF-SVM).

Algorithm 1 Training WFF-SVM algorithm.

1: Let X 1,i # RP$ C and X 2,i # RP$ C denote EEG samples of two classes recorded from
the i -th trial. Choose the SVM kernel, the value of c and # smoothing parameter of
Equation (5);
2: Apply the Fourier transform of Equation ( 4) in each column (channel) ofX i, 1 and
X i, 2 from the i -trial and use the moving average technique of Equation (5);
3: Use the SVM in the smoothed periodograms in step 2, totalizingC * F models;
4: Calculate the training error rate to each model in step 3 and the respective weight of
Equation (8).
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Figure 3. Flowchart for the training and classiÞcation phase of a new signal.

3.4 Test phase for practical application

On the test phase for a practical application, we have a new set of signals (one signal per
channel) to be classiÞed as classW1 or W! 1. This is done in two di! erent ways (which will
be compared later in this paper) using the discriminant function of Equation (7) associated
with the weight of Equation ( 8).

The proposed classiÞcation method comprises the following main steps: Þrst, consider a
new stimulus X # RP$ C and for each channel' (' = 1 , . . . , C) calculate the periodogram
{ J #

$,k } . Then, for each channel' and frequencyk of the periodogram use the discriminant
function SVM $,k [J #

$,k ] given by Equation (7) to obtain a particular decision (+1 or -1).
Finally, using the weights, two decision methods are devised to classify the EEG signals.

In the Þrst decision method, which we label asD1, each decision SVM$,k [J #
$,k ] is weighted

by # $,k and each channel has its own decision weighting as in

D1 = sign

0
C!

$=1

sign

0
F!

k=0

# $,k * SVM$,k [J #
$,k ]

11

. (10)

In the second decision method, which we label asD2, each channel has its own decision
weighting SVM$,k [J #

$,k ] by # $,k , and the Þnal decision is a pool between channels. Thus,
we deÞne

D2 = sign

2
3334

3335

C!

$=1

F#

k=0
SVM$,k [J #

$,k ] * # l,k

F#

k=0
# $,k

6
3337

3338

. (11)

Basically, this decision system takes into account the performance of the channel in the
training phase, because if there is a considerable disagreement regarding the classiÞers in
a given channel, the contribution of this channel to the Þnal classiÞcation will not have a
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great inßuence. Then, for both decision methods, we apply the criteria

Decision =

2
4

5

W1, if D j = +1 ,
W! 1, if D j = &1,
None, if D j = 0 ,

(12)

for j = 1 , 2. The implementation of the classiÞcation of a new signal is presented in
Algorithm 2.

Algorithm 2 ClassiÞcation of a new signal in WFF-SVM algorithm.

1: Let X new # RP$ C denote EEG sample of a new recorded;
2: Apply the Fourier transform of Equation ( 4) in each column (channel) ofX new and
use the moving average technique of Equation (5);
3: Apply the C * F SVM models calculated by Algorithm 1 in the smoothed peri-
odograms of step 2, totalizingC * F of values of Equation (7);
4: Use the C * F values calculated in the step 3 and use the decision weighting of
Equations (10) or (11).

The following sections present two applications with real EEG data. First the proposed
method is compared to other methods proposed in the literature, then we use it with a
new data set.

4. Applications and Results

This section presents two applications of our classiÞcation method. The Þrst application
uses a publicly available data set described inAndrzejak et al. (2001) which is used in
several papers and is very useful to compare the proposed classiÞcation method with other
methods. The second application uses a data set collected in an experiment conducted by
the MSPL at UTEP. The classiÞer is implemented in theRsoftware and to have access to
the respective code, visithttps://carvalhomysearches.weebly.com ; seeR (2018).

4.1 Epilepsy data classification

The epilepsy data consists of Þve distinct sets each containing 100 single-channel EEG
segments (Andrzejak et al., 2001). Two of these sets, denoted A and B, are obtained from
EEG recordings from Þve healthy volunteers in an awake state with eyes open and eyes
closed, respectively. Sets C, D, and E originated from an EEG archive of pre-surgical
diagnosis. Segments in set D are recorded from within the epileptogenic zone, and those in
set C from the hippocampal formation of the opposite hemisphere of the brain. While sets
C and D contained only activity measured during seizure free intervals, set E only contained
seizure activity (for more details about these data sets seeAndrzejak et al. (2001)). As in
previous studies (Nigam and Graupe, 2004; Subasi, 2007; Subasi and Gursoy, 2010), we
used only two datasets (A and E) to test the classiÞer.

Both sets A and E have 100 signals each, one signal for each channel and each signal
corresponding to 4097 samples. To perform the classiÞcation it is cut out the beginning and
the end of the signals and subsampled them into 20 signals (components) of 200 samples
each. Then, for each set A and E, we randomly selected 10 of the corresponding 20 signals
to use in the training phase. In the test phase we repeated this same subsampling process
to all the signals in both sets A and E. Thus, it is generated 2000 signals to use in the test
phase.

https://carvalhomysearches.weebly.com
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Many authors also proposed methods for the classiÞcation of EEG data using data sets
A and E to test their classiÞers. Table1 has a summary of the overall results and also the
result with the application of the proposed method, named WFF-SVM. In WFF-SVM is
used the linear kernel,c = 1, # = 5 and D2 as described in Equations (2), (5) and (11),
respectively.

According to Zhang et al. (2018), the MKELM is more e " cient than the following meth-
ods: multilayer perceptron with a single hidden layer; the conventional SVM; SVM with
Gaussian and polynomial kernel; multi-kernel SVM using both Gaussian and polynomial
kernels; the conventional ELM; ELM with Gaussian kernel; ELM with polynomial kernel,
and Þnally, the multi-kernel ELM using both Gaussian and polynomial kernels. Therefore,
we also considered in the comparison the new classiÞer proposed byZhang et al. (2018),
called MKELM, in both applications.

Table 1. Comparison of results for epilepsy data.

Reference % Accuracy Method

Subasi (2007) 94.50 ME
93.20 MLPNN

Subasi and Gursoy(2010)
98.75 DWT, PCA and SVM
99.50 DWT, ICA and SVM
100.00 DWT, LDA and SVM

Jahankhani et al. (2006) 98.00 NN
Guo et al. (2009) 95.00 RWE and NN

Nigam and Graupe (2004) 97.20 NN
Polat and G¬unes(2007) 98.72 TRF

Li and Wen (2011) 99.90 LS-SVM
Chandaka et al. (2009) 95.96 SVM

¬Ubeyli (2010) 99.56 LS-SVM
Zhang et al. (2018) 100.00 MKELM
Proposed method 100.00 WFF-SVM

where ME is mixed of experts; MLPNN is multi-layer perceptron neural network; DWT is discrete wavelet transform;
LDA is linear discriminant analysis; ICA is independent component analysis; NN is neural networks; RWE is relative
wavelet energy; LS-SVM is least square support vector machine; MKELM is multi-kernel extreme learning machine
using both Gaussian and polynomial kernels with CSP feature.

Note that the proposed method is as e" cient as (or more e" cient than) the other
methods. A possible reason for this improvement is the weighting system capturing the
most important regions for classiÞcation, strengthening the process.

Despite the greater e" ciency of the proposed method, it can be noted that all methods
are very e" cient for this problem. The main reason for this result is that it is relatively easy
to classify the epilepsy data; in fact, neurologists can visually distinguish the EEG patterns
of epileptic patients and non-epileptics patients. For this reason, the following example
presents a more complex application that uses EEG data collected in an experiment based
on visual stimuli with a set of tasks to classify.

4.2 Classification of visual stimuli

In the visual stimuli application, the objective is to calculate the discriminant function so
that, given a new visual stimulus event, our classiÞcation method is capable of identifying
the slide presented to the subject from the EEG data recordings only. To do this, the
proposed method is used after a selection of activated channels using PCA.

Experimental Design The data set used in this application is acquired at the MSPL
at UTEP. The EEG data are recorded from a volunteer test subject using a Biosemi
EEG acquisition system with 128 channels. The acquisition system recorded EEG signals
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corresponding to 10 di! erent visual stimuli, each one presented multiple times in random
order and during a regular interval of time. The visual stimuli used correspond to the
slides shown in Figure4. Each stimulus is shown on a computer monitor screen 4 times
(in random order) with a Þve seconds break between each slide, corresponding to a blank
screen. An audible tone alerted the subject each time a new slide is about to be displayed.
Thus, the EEG data set of the second experiment comprised of 4 EEG signals for each one
of the 10 visual stimuli, acquired by 128 channels.

Figure 4. Ten visual stimuli shown to the test subject during EEG signal acquisition.

Using PCA for source localization The PCA is used to explain the variance-covariance
structure of a set of variables by a smaller set of variables formed by linear combinations
of the original ones (Johnson and Wichern, 2007). Generally, in databases that contain
strongly correlated variables (as in EEG data) the PCA is very useful to reduce the dimen-
sionality of the problem. In PCA, the Þrst principal component is the linear combination
with the highest possible variance. This means, in the case of EEG data, that the most
important channels for the composition of the Þrst principal component are the channels
that capture signals with higher variance (the channels corresponding to the activated
brain regions) as described invon Borries et al. (2013). Figure 5 shows contours obtained
for the Þrst principal component when PCA is applied to EEG signals from 128 channels
of the visual stimuli experiment. One can observe that most of the variability in this ex-
periment is present in the channels located on the brainÕs frontal lobe. The next sections
show that, in fact, this region is the most important for classiÞcation and the other regions
basically do not bring relevant information to the classiÞcation problem at hand. Actually,
our results show that the correct classiÞcation rate increases when the signals from those
regions are not included in classiÞcation.

Data analysis First, we train the classiÞer. Since the proposed method is a binary classi-
Þer and we have 10 apparently di! erent visual stimuli, the classiÞcation process is imple-
ment sequentially by pairs of visual stimuli. Moreover, as many images are very similar,
the classiÞcation is performed only with abstract images against images with arithmetic
operations, making a total of 16 discriminants (or 16 pairs). Cross-validation is used to ap-
proximate the correct classiÞcation rate of this method, as follows: for each pair of images
analyzed, the Þrst repetition of each image (independent of the others) is excluded in the
training phase to be used in the testing phase. Then, the second repetition of each image
(independent of the others) is excluded in the training phase to be used in the testing
phase, and so on. Thus, 4* 16* 2 = 128 signals are used in the test phase. Note that the
signals used in the test phase are not used to build the discriminant, resulting in a reliable
analysis. The Þrst test is done using the periodogram with the conÞgurations# = 1 and
4, linear kernel and usingc = 1. Note in Table 2, the classiÞcation rates for each con-
Þguration. There is an increase of around 10% for all conÞgurations when the smoothed
periodogram (# = 4) is used, indicating that smoothing is a good option to improve the
classiÞcation rate. Furthermore,D1 method is better than the D2, but not having a very
large di! erence between the rates. Figure6 shows a contour plot of the accuracy of each
brain region. It should be noted that the EEG signals located at the brainÕs frontal lobe



Chilean Journal of Statistics 15

had the best correct classiÞcation rates. The similarity between Figures5 and 6 is remark-
able, indicating that the regions identiÞed using PCA actually correspond to the regions
of higher correct classiÞcation rates. Therefore, one might think that the non-activated
regions contain non-relevant information that actually disturbs the classiÞcation. Thus,
the cross-validation process is repeated using 53 channels with the highest hit rates, where
most are from the front of the brain, with parameters c = 1 , 10, 100. The results presented
in Table 3 indicate that the correct classiÞcation rates increase when using the smoothed
periodograms and specially when selecting only the most relevant channels. Therefore, it
appears to be extremely important, in a classiÞcation analysis of EEG data, to remove
from the analysis the channels that appear basically to capture non-relevant information.
However, the cost value does not seem to inßuence much on the results and the classiÞca-
tion rates are very similar for all values of c, so, for the analyzes that will be done from
now on, will be usedc = 1.

Figure 5. Variability of signals through the Brain. Contours for the Þrst principal component when PCA is applied
to EEG signals from 128 channels of the visual stimuli experiment. The front of the brain presents most of the signal
variability.

Figure 6. Contour lines for the correct classiÞcation rates by channel: new method with the smoothed periodogram,
# = 4 and c = 1.
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Table 2. Accuracy for some settings of smoothing parameter in the WFF-SVM algorithm.

ClassiÞer # Method % accuracy

WFF-SVM
1

D1 75.00
D2 73.44

4
D1 87.50
D2 84.37

Table 3. Results using ! = 4 for the accuracy using some values of cost (c), number of channels and type
of decision.

Cost Channel Method % accuracy

c = 1
128

D1 87.50
D2 84.37

53
D1 92.97
D2 92.97

c = 10
128

D1 85.94
D2 85.16

53
D1 92.97
D2 92.97

c = 100
128

D1 85.95
D2 85.16

53
D1 92.97
D2 92.97

After some # variations, we obtained a classiÞcation rate of 95.31% withc = 1, # = 5,
usingD2 with 53 channels, and 73.44% to MKELM using all the channels with CSP feature.
These are the best results found in this study. The non-requirement of an extensive training
data set constitutes an important characteristic of the proposed classiÞcation method since
in real-world applications the collection of signals available to train the classiÞer can be
limited to only a few cases.

5. Discussion and Conclusions

EEG technique is employed to help in a variety of diagnosis, such as posttraumatic stress,
human emotions and epilepsy. Regarding the latter one, there is a special interest to
detect as early as possible epilepsy in order to initiate the proper treatment and mitigate
this neurological disorder e! ects. Several studies were conducted with this objective, such
as Fergus et al. (2015) who uses machine learning, whereasThodoro! et al. (2016) and
Acharya et al. (2018) have used the deep learning (DL) approach. The DL method has
been used in several problems as in image recognition (Krizhevsky et al., 2012), diagnosis
of AlzheimerÕs disease (Ortiz et al. , 2016), prediction of sale prices of real estate units
(RaÞei and Adeli, 2015) and in the estimation of concrete compressive strengthRaÞei et
al. (2017). There are examples in the literature that use SVM and DL, such as inTang
(2013), who developed an approach in DL replacing the softmax layer by a linear SVM.
Erfani et al. (2016) used a hybrid model where an unsupervised deep belief networks is
trained to extract generic underlying features, and one class SVM is trained from the
features learned by the deep belief networks. Therefore, these works show that the use of
SVM in DL is not new and suggests that in future works WFF-SVM in DL can also be
contemplated in order to search for more e" cient methods. The WFF-SVM can be used in
any type of signal, EEG, electrocardiogram, electromyogram, etc. In order to accomplish
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that, it is su " cient to represent the data as a time series or in a certain proper order.
This proposed paper in based on a broader study found inCarvalho (2016), in which
electromyogram data were also considered. Furthermore, this classiÞer can be used in
clinical application or any other application. Regarding the computational intensive aspect,
with the rapidly increasing performance of new computers, including parallel programing
and the promising quantum programming the tendency is to be feasible. The application
using epilepsy data showed that the proposed method has no better competitor among
other methods presented in the literature. This paper presents a second and more complete
application. This application using EEG data captured during an experiment involving
visual stimuli showed a number of speciÞc features for the classiÞcation of EEG data. In
particular, this application showed that the brain region identiÞed using PCA was similar
to the region where the channels had the best individual correct classiÞcation rates. In fact,
the correct classiÞcation rate increased signiÞcantly by discarding the EEG channels that
had non-relevant information. The proposed method of using smoothed periodograms and
assigning weights to the channels based on their individual error rates resulted in higher
correct classiÞcation rates than other methods reported in the literature. It should be
noted that the proposed method showed a high correct classiÞcation rate of 95.31% using
only three signals from each class in the training phase. Thus, a topic for future research is
to extend the WFF-SVM to accept more than two groups for training and classiÞcation.
In addition, it would be important to propose some sort of threshold for decision-making,
in guiding the decision Equation (12) on how far it must be from zero to have a more
objective classiÞcation.

This paper presented a new method for classiÞcation of EEG data that uses Fourier
analysis and SVM. The proposed method employs a speciÞc SVM decision value for each
frequency of the periodogram. In addition, a simple weighting system based on the perfor-
mance of the classiÞer, obtained in the training phase, is applied to the classiÞcation phase.
We used two data sets to test the performance of the proposed classiÞer. The Þrst data set
referred to EEG of an epilepsy study and the second to EEG of a visual stimulation study.
Finally, one point for improvement include the extension of our classiÞcation method to
more than two classes and to expand the performance comparison with other methods.
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