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Abstract

We propose a versatile class of multiplicative generalized linear longitudinal mixed
models (GLLMM) with additive dispersion components, based on explicit modelling
of the covariance structure. The class incorporates a longitudinal structure into the
random effects models and retains a marginal as well as a conditional interpretation.
The estimation procedure is based on a computationally efficient quasi-score method
for the regression parameters combined with a REML-like bias-corrected Pearson
estimating function for the dispersion and correlation parameters. This avoids the
multidimensional integral of the conventional GLMM likelihood and allows an extension
of the robust empirical sandwich estimator for use with both association and regression
parameters. The method is applied to a set of otholit data, used for age determination
of fish.
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1. Introduction

In the conventional approach to analysis of non-normal correlated data, a distinction is
made between generalized estimating equations (GEE) for longitudinal data (Liang and
Zeger, 1986) and generalized linear mixed models (GLMM) with random effects (Schall,
1991; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993). With certain exceptions
(e.g. McCulloch and Searle, 2001; Diggle et al., 2002; Fitzmaurice et al., 2004; Pinheiro
and Bates, 2000), the literature is similarly divided into two separate strands. For example
Ziegler et al. (1998) and Hall (2001) summarized the first decade of developments for
GEE, whereas more recent contributions include for example Hardin and Hilbe (2003),
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Wang and Carey (2004), Coull et al. (2006) and Wang and Hanfelt (2007). For GLMM, we
refer to Jiang et al. (2007), Molenberghs et al. (2010) and references therein, along with
monographs such as Verbeke and Molenberghs (2000) and Lee et al. (2006).

The GEE and GLMM models differ conceptually and computationally, as reflected in the
conventional distinction between marginal and conditional models. In practice, however,
one is often faced with a combination of longitudinal and random effects, where neither
type of model, on its own, is adequate. There is hence a need for a versatile class of general-
ized linear longitudinal mixed models (GLLMM), preserving the computational efficiency
of GEE, while avoiding the problems associated with the multidimensional integral defin-
ing the likelihood in conventional GLMM approaches such as Schall (1991), Breslow and
Clayton (1993) and Wolfinger and O’Connell (1993).

In the present paper, we introduce a versatile and computationally efficient class of
GLLMM models with a multiplicative random effects structure and a corresponding ad-
ditive decomposition of the variance into dispersion components, thereby retaining much
of the simplicity of classical linear mixed models, while retaining a marginal as well as a
conditional interpretation. A serial correlation structure is employed within clusters, but
unlike the state space models of Jørgensen et al. (1996, 1999) and Jørgensen and Song
(2006), where the latent process is non-stationary, our approach is based on a stationary
latent process defined by means of a linear filter, see also Jowaheer and Sutradhar (2002),
Jørgensen and Song (2007) and Hall et al. (2008).

The models are defined hierarchically via conditional Tweedie distributions, much like
the multiplicative mixed effects models of Ma and Jørgensen (2007) and Ma et al. (2009),
thereby facilitating moment calculations by avoiding the use of additive random terms in
the linear predictor of the model. The Tweedie family provides a flexible class of models for
both positive continuous data, count data and positive continuous data with a point mass
at zero (Jørgensen, 1997, Ch. 4). This is useful for simulation purposes, although we shall
mainly use the Tweedie models as a vehicle for obtaining explicit moment calculations.

The estimation procedure for the models is based on a quasi-score method for the re-
gression parameters, combined with bias-corrected Pearson estimating functions, which
yield REML-style estimators for the association (dispersion and correlation) parameters,
following earlier work by Jørgensen and Knudsen (2004), McCullagh and Tibshirani (1990)
and Hall (2001). The method may be considered a so-called GEE2 variant (Liang et al.,
1992; Balemi and Lee, 2009), while allowing the use of a working correlation structure and
extending the robust empirical sandwich estimator for calculating the asymptotic variance
for both regression and association parameters. The estimating equations are solved by an
efficient Newton scoring method.

We introduce the new GLLMM model and derive its covariance structure in Section
2. This is followed by a discussion of parameter estimation in Section 3, including bias
correction for association parameter estimates, and the empirical sandwich estimator. In
Section 4 we present a simulation study, where we investigate aspects of robustness, and
in particular the effects of misspecification of the distribution at observation level. of the
method and consider the effect of the bias correction. In Section 5 we apply the method to
a set of otholit data, which carry information about the age and growth patterns of fish.
This is followed by a discussion of our results in Section 6.

2. Model specification

2.1 Definition

We now introduce our new class of GLLMM models, followed by a discussion of their
covariance structure in Section 2.2, which is crucial for the interpretation and estimation of
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the models (Section 3). The models are based on the class of Tweedie exponential dispersion
models (Jørgensen, 1997, Ch. 4). A Tweedie variable Y ∼ Twr

(
µ, σ2

)
with mean µ,

dispersion parameter σ2 and power parameter r ∈ (−∞, 0]∪ [1,∞) is characterized among
all exponential dispersion models by the power form of its variance function, var(Y ) = σ2µr

(Jørgensen, 1997, Ch. 3). Special cases include the normal (r = 0), Poisson (r = 1 and
σ2 = 1) and gamma (r = 2) families. The case 1 < r < 2 corresponds to compound Poisson
distributions, which are non-negative and continuous, except for a positive probability at
zero. The case r < 0 corresponds to skew distributions with support R.

The models are built in a three-level hierarchy, with a base level accounting for the
cluster random effects. The middle layer implements the longitudinal structure by means
of a latent process, constructed as a linear filter of independent Tweedie variables. The
response variables constitutes the top level of the model. For ease of presentation we
consider a balanced design with T equidistant observation times common to a set of I
independent clusters. The models are readily adapted to ragged structures.

Base level

At base level we use independent Tweedie distributed multiplicative random effects with
mean 1 and dispersion parameter σ2,

Zi ∼ Twr1

(
1, σ2

)
. (2.1)

Here we require that r1 ≥ 2 in order to make Zi strictly positive, ruling out Tweedie
distributions with 1 ≤ r1 < 2, which allow zero values. The restriction r1 ≥ 2 is hence
crucial for simulation studies based on the Tweedie distribution, but not for the estimation,
as we shall see below. The case r1 = 0, corresponding to normal cluster effects, is applicable
for normal response variables and is briefly outlined below. In view of the multiplicative
form of the model (cf. (2.3)), the logarithmic values log Zi play a role similar to that of
the additive mean 0 normal random effects in conventional mixed effects models.

Middle level

The middle layer accommodates serial correlation between observations within a cluster
by means of a weakly stationary latent process based on Tweedie noise,

Zit | Zi = zi ∼ ziTwr2

(
α−1

+ , αr2
+ ω2z−1

i

)
(2.2)

= Twr2

(
α−1

+ zi , αr2
+ ω2z1−r2

i

)
, (2.3)

where ω2 > 0, the Zit are assumed conditionally independent given the cluster variables
Zi, and again r2 ≥ 2. Here α+ =

∑∞
k=0 αk < ∞ with α0 = 1 and αk ∈ [0, 1) for k > 0.

The form (2.2) confirms the multiplicative nature of the model, whereas (2.3) follows from
the scale transformation property of Tweedie distributions(Jørgensen, 1997, Ch. 4). The
particular powers used in (2.2) serve to make the variance (2.7) below scale linearly in the
dispersion parameters.

The longitudinal structure of the model is obtained via a conditionally weakly stationary
latent process Qit, defined by the linear filter

Qit =
∞∑

s=0

αsZi t−s . (2.4)

By way of construction the latent process Qit has mean 1.
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Top level

At the observation level we assume that the observed variables Yit are conditionally
independent given Qi•, with conditional Tweedie distribution

Yit | Qi• = qi• ∼ Twr3

(
µitqit, ρ2q1−r3

it

)
, (2.5)

where µit > 0 and r3 ≥ 1. Here the • notation denotes the vector obtained by letting the
corresponding index run, so that Y i• = (Yi1, . . . , YiT )> and so on. By choosing different
values of r3 from 1 and up, we can accommodate a range of different response distributions,
as explained above.

By definition of the Tweedie variance function, the conditional mean and variance of
(2.5) are linear, so that E (Yit | Qi•) = qitµit and var (Yit | Qi•) = qitρ

2µr3
it , which in turn

implies that This property is essential for the derivation of the covariance structure and
the estimating functions below. In the Poisson case (r3 = 1) it is convenient to let the
dispersion parameter ρ2 > 0 accommodate potential over- or under-dispersion.

The marginal means µit may depend on covariates µit = µit (xit; β), where β denotes a
vector of regression parameters. For non-negative data with positive means, the log link
is a suitable choice, providing a natural interpretation of the regression parameters. Fur-
thermore the log link, along with the multiplicative structure, imply an additive structure
for the linear predictor: linear predictor:

ηit = log (µitqit) = x>itβ + log qit. (2.6)

allowing easy comparison with conventional generalized linear mixed models. In the small-
dispersion limit (σ2 and ω2 small), the term log Qit is asymptotically normal with mean
zero (Jørgensen, 1997, Ch. 4), which highlights the parallels on the log scale between our
model and conventional generalized linear mixed models. There is, however, no problem
in using other types of link functions.

A variant of the model, applicable to normal response variables, assumes normal zero
mean random cluster effects, Zi ∼ N(0, σ2), replacing (2.1). The noise process (2.3) is then
assumed to be Gaussian, Zit | Zi = zi ∼ N(zi, ω

2), while maintaining the filter (2.4) as
above. At the response level (2.5) is replaced by an additive structure with identity link
function, Yit | Qi• = qi• ∼ N(µit + qit, ρ

2). Since the conditional means are again linear,
the corresponding covariance structure is easily derived.

2.2 Covariance structure

An important advantage of the model is that the marginal covariance matrix of the obser-
vation vector Y •• is available on closed form, thereby facilitating the estimating function
approach to estimation and inference (cf. Section 3). Details of the derivation may be
found in Appendix A.

The covariance between two given observations within the ith cluster is:

cov (Yit, Yit′) = σ2µitµit′ + ω2µitµit′

∞∑

s=0

αsαs+|t−t′| + δt′
t ρ

2µr3
it ,

where δi′
i is the Kronecker delta, being 1 for i = i′ and zero otherwise. This covariance does

not depend on r1 and r2. This lends a certain degree of robustness to the estimation method
(cf. Section 3), due to the fact that the estimation relies on second-moment assumptions
only.
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We now derive a matrix expression for the covariance matrix var (Y ••). First we consider
the latent process correlation matrix, K (α), with tt′th entry

∑∞
s=0 αsαs+|t−t′|. Next let

1T denote the T -vector of 1s. In matrix notation, the variance-covariance matrix of the
response vector for the ith cluster may then be expressed as

var (Y i•) = µi•µ
>
i• ¯

{
σ2 1T1>T + ω2 K (α)

}
+ ρ2 diag (µr3

i•)

= σ2 µi•µ
>
i• + ω2 diag (µi•) K (α) diag (µi•) + ρ2 diag (µr3

i•) , (2.7)

say, where ¯ denotes the Hadamard (elementwise) product (Magnus and Neudecker, 1999,
p. 45). When working under second-moment assumptions, the restrictions r1, r2 ≥ 2 from
above hence do not come into play.

Similar to conventional linear mixed models, we find that the covariance (2.7) has been
decomposed into components of dispersion corresponding to the different sources of vari-
ation. The three covariance terms of (2.7) correspond to variation between clusters, co-
variances within cluster and observation error, and these three matrices are of dense,
block-diagonal (one block for each i) and diagonal form, respectively. The multiplicative
construction of the model hence translates into an additive covariance structure.

The models accommodated by our approach hence extend the range of possible serial
correlation patterns achievable compared with the conventional GEE correlation struc-
tures usually considered. Particular covariance structures may be obtained by imposing
restrictions on the linear filter parameter vector α or the dispersion parameters. Table 1
lists some of the more common covariance structures and the corresponding parameter
restrictions. Appendix B details K (α) and its derivatives for ma(p)-type and ar(1)-type
processes.

Table 1. Some standard covariance structures. The ma(p)-type and ar(p)-type refer to the latent process correlation
structure conditionally on the cluster random effects. The GLMM type refers to a random intercept model.

Covariance structure Parameter restrictions
Independent ω2 = σ2 = 0.
Exchangeable ω2 = ρ2 = 0 and αs = 0 for s > 0.
ma(p)-type αs = 0 for s > p.
ar(p)-type For p = 1 αs = αs. For p > 1 the αs are given by the Yule-Walker

equations.
GLMM ω2 = 0 and αs = 0 for s > 0.

3. Estimation

3.1 General issues

The set of parameters θ to be estimated is naturally partitioned into regression and asso-
ciation parameters, θ =

(
β>, γ>

)>
, where the regression parameters β usually are those

of interest whereas the association parameters γ, containing dispersion and correlation
parameters, are often considered nuisance parameters. For estimation of the parameters
we use a set of corresponding estimating functions denoted ψ =

(
ψ>

β , ψ>
γ

)>
. These are

explained in more detail in Section 3.4 and 3.5. A bias correction for ψγ is given in Section
3.6.

The regression parameters are estimated by means of the quasi-score function defined
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by

ψβ =
I∑

i=1

D>
i C−1

i {Y i − E (Y i)} , (3.8)

where Di = ∇βE (Y i) = ∂E (Y i) /∂β> and Ci = var (Y i). Although (3.8) is similar to
the well known estimating function for the regression parameters from the conventional
GEE framework (Liang and Zeger, 1986), it corresponds to using the model covariance
matrix (2.7) rather than the working covariance matrix. The conventional GEE working
covariance matrix is built around the working correlation matrix R(α) so that

var (Y i) = φA
1/2
i (µi) R (α) A

1/2
i (µi) , (3.9)

where φ is a dispersion parameter, Ai (µi) = diag {v (µi•)} and v (·) is the variance func-
tion. In contrast, we emphasize the decomposition of the variance into components of
dispersion and associate the process correlation matrix K(α) with an appropriate level in
the hierarchy.

We use Pearson estimating functions for the association parameters γ = (γ1, . . . , γN )>,
which may optionally include r3. The entire vector of functions is denoted ψγ =
(ψγ1 , . . . , ψγN

)>, where N = 3 + M or N = 4 + M for r3 being considered known or
an element of γ respectively and M = dim (α). The nth component is given by

ψγn
(β,γ) =

I∑

i=1

tr
{

W in

(
rir

>
i −Ci

)}
,

where ri = Y i − E (Y i) and W in are suitable weights. This form emphasizes the model
covariance matrix in contrast to the more conventional expressions of the Pearson esti-
mating function (Jørgensen and Knudsen, 2004). As discussed by Jørgensen and Knudsen
(2004), the use of Pearson estimating functions for the association parameters constitutes
an extended form of residual maximum likelihood estimation. We also note at this point
that since estimation is based on second-moment assumptions, and since the covariance
structure (2.7) does not depend on the power parameters r1 and r2 from equations (2.1)
and (2.1), these two parameters do not enter the estimation procedure.

3.2 Sensitivity

Cox and Reid (1987) studied parameter orthogonality in the likelihood framework corre-
sponding to block diagonality of the Fisher information matrix. Jørgensen and Knudsen
(2004) studied the corresponding property of nuisance parameter insensitivity in an esti-
mating equation context, by means of the sensitivity matrix, defined by Sθ = E {∇θψ(θ)}.
The sensitivity matrix may be partitioned into blocks corresponding to

(
ψ>

β ,ψ>
γ

)>
and(

β>, γ>
)

as follows:

Sθ =
[

Sβ (θ) Sβγ (θ)
Sγβ (θ) Sγ (θ)

]
=

[
E

{∇βψβ(β, γ)
}

E
{∇γψβ(β, γ)

}
E

{∇βψγ(β,γ)
}

E
{∇γψγ(β, γ)

}
]

.

Nuisance parameter insensitivity (for short denoted γ-insensitivity) is defined by the upper
right-hand block Sβγ (θ) being zero. First of all this implies efficiency stable estimation
of β, meaning that the estimation of γ does not affect the asymptotic variance of β̂; see
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Section 3.7. Second, it simplifies the Newton scoring algorithm (Jørgensen and Knudsen,
2004) as detailed below. Third, it implies that β̂γ varies only slowly with γ, where β̂γ is
the estimate of β for γ known. While nuisance parameter insensitivity does not ensure
asymptotic independence of β̂ and γ̂, it does ease the computation of the asymptotic
variance of β̂.

Following Jørgensen and Knudsen (2004) it is easily seen that ψβ is γ-insensitive. In
fact, from (3.8) we see that ψβ depends on γ only via C−1

i and hence ∇γψβ (β, γ) has
zero mean, i.e. Sβγ (θ) = 0.

In the rest of the paper we write Sβ for Sβ (θ) etc, whenever the meaning is unam-
biguous. The remaining blocks of Sθ are detailed along with the estimating functions in
Sections 3.4 and 3.5

3.3 Algorithm

Calculation of the parameter estimates is achieved by means of the Newton scoring algo-
rithm (Jørgensen et al., 1996) in which we update the previous value of θ by

θ∗ = θ − S−1
θ ψ (θ) .

By the regularity of ψ along with the γ-insensitivity of ψβ, it follows by simple matrix
manipulations that we may express the inverse of Sθ in blocks as follows:

S−1
θ =

[
S−1

β 0
−S−1

γ SγβS−1
β S−1

γ

]
. (3.10)

The algorithm therefore splits into a β step

β∗ = β − S−1
β ψβ (θ) (3.11)

and a γ step

γ∗ = γ + S−1
γ SγβS−1

β ψβ (θ)− S−1
γ ψγ (θ)

= γ − S−1
γ

{
ψγ (θ)− SγβS−1

β ψβ (θ)
}

. (3.12)

Following Jørgensen and Knudsen (2004) we insert β∗ from (3.11) into equation (3.12).
Since equation (3.11) can be rewritten as −S−1

β (θ) ψβ (θ) = β∗ − β, this makes
S−1

β (θ∗)ψβ (θ∗) = 0, where θ∗ indicates β∗ is being used. Consequently the modified
γ step becomes

γ∗ = γ − S−1
γ ψγ (θ∗) . (3.13)

Analogously we use the most recent estimate of γ when updating β in (3.11). This is
however of less importance, due to the slow variation of β̂γ with γ. Jørgensen and Knudsen
(2004) coined the scheme of alternating between (3.11) and (3.13) the chaser algorithm,
with reference to the asymmetric interdependence between β∗ and γ∗.
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3.4 Regression parameters β

Following Ma (1999), Ma et al. (2003) and Ma and Jørgensen (2007) we use the best linear
unbiased predictor for predicting the random effects. The best linear unbiased predictor
of a random variable Q given the observed data Y is defined by (Henderson, 1975; Ma,
1999)

Q̂ = E (Q) + cov (Q, Y ) var (Y )−1 {Y − E (Y )} . (3.14)

The model specification using Tweedie distributions allows for derivation of the joint score
function u (θ;Y ,Q) (Ma and Jørgensen, 2007). We define unbiased estimating functions
ψβ by substituting the random effects by their respective best linear unbiased predictors,
i.e.

ψβ (θ; Y ) = u
(
θ; Y , Q̂

)
.

Since u is on the form AQ + BY , for suitable matrices A and B (Ma and Jørgensen,
2007), it follows from (3.14) and the linearity of E (·) and cov (·, Y ) that the best linear
unbiased predictor of u (θ;Y , Q) is AQ̂+BY . And since u is linear in both the observed
and the latent variables, Y and Q, we find that ψβ is the best linear unbiased predictor
of the score function u given the data. By (3.14) we therefore arrive at the conventional
GEE from expression (3.8)

ψβ = E (u) + cov (u, Y ) C−1 {Y − E (Y )} =
I∑

i=1

D>
i C−1

i {Y i − E (Y i)} . (3.15)

Here we have used the independence between clusters, along with the following Bartlett-
type identity

D = ∇βE (Y ) = E (Y · u) = cov (Y , u) .

From (3.8) we furthermore obtain the sensitivity Sβ = E
(∇βψβ

)
and variability V β =

var
(
ψβ

)
as

Sβ = −D>C−1D, V β = D>C−1D. (3.16)

The identity V β = −Sβ is characteristic for quasi-score functions. We therefore conclude
that ψβ is optimal within the class of linear estimating functions in the sense of Crowder
(1987). This also follows from (3.15) as the best linear unbiased predictor is optimal among
all linear predictors.

3.5 Association parameters γ

Our approach is akin to that of Ma and Jørgensen (2007), but deviates by allowing for
correlation structures within clusters. Furthermore Ma and Jørgensen used a closed form
ad-hoc estimator for the association parameters Our estimation of γ is based on Pearson
estimating functions, following the path of Hall and Severini (1998) and Jørgensen and
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Knudsen (2004). For the γn component it is defined by

ψγn
(β, γ) =

I∑

i=1

{
r>i W inri − tr (W inCi)

}

=
I∑

i=1

{
tr

(
W inrir

>
i

)
− tr (W inCi)

}

=
I∑

i=1

tr
{

W in

(
rir

>
i −Ci

)}
, (3.17)

where ri = Y i−E (Y i) and W in are suitable weights. By linearity of E (·) and tr(·) these
estimating functions are clearly unbiased since E

(
rir

>
i

)
= Ci.

In the conventional GEE framework, the Pearson estimating function for the association
parameters relies on a working correlation matrix used for defining var (Y i) as shown in
(3.9). In contrast, we emphasize the decomposition of the variance into components of
dispersion and associate the process correlation matrix K (α) with an appropriate level
in the hierarchy.

For W in we use the weights proposed by Hall and Severini (1998),

W in = −∂C−1
i

∂γn
= C−1

i

∂Ci

∂γn
C−1

i .

In the Gaussian case these weights lead to the score function for the association parameters,
and in general the weights are hence optimal in the small-dispersion limit Jørgensen (1987),
in which dispersion models are asymptotically normal.

From (3.17) we may derive the θm-sensitivity of ψγn
, namely

E

(
∂

∂θm
ψγn

)
= E

[
∂

∂θm

I∑

i=1

tr
{

W in

(
rir

>
i −Ci

)}]

=
I∑

i=1

tr
[
W inE

{
∂

∂θm

(
rir

>
i −Ci

)}]

= −
I∑

i=1

tr
(

W in
∂Ci

∂θm

)
.

Here we have used that the derivatives of ri do not depend on data so E
{
(∂ri/∂θm) r>i

}
=

E
{
ri

(
∂r>i /∂θm

)}
= 0 and (∂W in/∂θm) E

(
rir

>
i −Ci

)
= 0.

The nmth entries of the blocks Sγ and Sγβ are

{Sγ}nm = −
I∑

i=1

tr
(

C−1
i

∂Ci

∂γn
C−1

i

∂Ci

∂γm

)
(3.18)
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and similarly

{Sγβ}nm = −
I∑

i=1

tr
(

C−1
i

∂Ci

∂γn
C−1

i

∂Ci

∂βm

)
(3.19)

respectively.

3.6 Bias correction

The estimation of nuisance parameters may be subject to bias (McCullagh and Tibshirani,
1990; Jørgensen and Knudsen, 2004), caused by not taking into account the degrees of
freedom spent on estimating the regression parameters.

In the spirit of Godambe (1960), Heyde (1997) and Jørgensen and Knudsen (2004) we
adjust the estimating function for bias rather than the estimate. The corrected estimating
function for γn becomes

ψ̆γn
(β, γ) = ψγn

(β, γ) + bγn
(β,γ)

=
I∑

i=1

tr
{

W in

(
rir

>
i −Ci

)}
+ tr





(
I∑

i=1

D>
i W inDi

)(
I∑

i=1

D>
i C−1

i Di

)−1




=
I∑

i=1

tr
{

W in

(
rir

>
i −Ci

)}
− tr

(
J

(γn)
β J−1

β

)
,

where J
(γn)
β = ∂Jβ/∂γn. The Godambe information Jβ, see Section 3.7, plays a role in the

estimating equation context analogous to that of the Fisher information in the likelihood
framework, with J−1

β being the asymptotic variance of β̂. The penalty term bγn
(β,γ)

therefore represents the γ-dependency of Jβ, weighted by the precision of the estimate β̂.

In this way it corrects for the effect upon ψγn

(
β̂γ , γ

)
of using β̂γ .

We note that bγn
(β,γ) = ∂ log

∣∣∣J−1
β

∣∣∣ /∂γn, which may be a more convenient form in
some applications.

Since bγn
(β, γ) does not depend on the data, we obtain the γ- and β-sensitivity of

ψ̆γ (β,γ) by amending Sγ and Sγβ respectively, with the γ- and β-derivatives, of the
penalty term, respectively. For the nmth entries we obtain

∂

∂γm
bγn

(β, γ) = tr
(
J

(γn)
β J−1

β J
(γm)
β J−1

β − J
(γn,γm)
β J−1

β

)
(3.20)

and

∂

∂βm
bγn

(β, γ) = tr
(
J

(γn)
β J−1

β J
(βm)
β J−1

β − J
(γn,βm)
β J−1

β

)
. (3.21)

The derivatives of Jβ are listed in Appendix C.
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3.7 Godambe information Jθ

For joint inference on θ =
(
β>, γ>

)>
we use the asymptotic property, valid under mild

regularity conditions

θ̂ ∼ N
(
θ, J−1

θ

)
,

where J−1
θ = S−1

θ V θS−>θ , the inverse Godambe information or the sandwich formula.
The structure of the ”bread” S−1

θ in the sandwich formula is (3.10), with blocks listed in
(3.16), (3.18) and (3.19). The lower blocks, associated with γ are however amended with
terms for bias correction as given by (3.20) and (3.21).

The ”meat” part V θ is the variability of ψθ and may be structured analogously

V θ =
[

V β V βγ

V γβ V γ

]
, (3.22)

where, by symmetry, V βγ = V >
γβ.

Using (3.10) and (3.22), J−1
θ may be written as

J−1
θ =

[
S−1

β 0
−S−1

γ SγβS−1
β S−1

γ

][
V β V βγ

V γβ V γ

] [
S−1

β −S−1
γ S>γβS−1

β

0 S−1
γ

]

=


 S−1

β V βS−1
β S−1

β

(
−V βS−1

β S>γβ + V >
γβ

)
S−1

γ

S−1
γ

(
−SγβS−1

β V β + V γβ

)
S−1

β S−1
γ (L + V γ) S−1

γ


 , (3.23)

where L = SγβS−1
β

(
V βS−1

β S>γβ − V >
γβ

)
− V γβS−1

β S>γβ.

The upper left-hand block of J−1
θ shows that the the asymptotic variance of β̂ is unaf-

fected by the simultaneous estimation of γ; a consequenc of the γ-insensitivity discussed
above. On the other hand, the quantity L in the lower right-hnad block represents the
inflation of the asymptotic variance of γ̂ caused by the simultaneous estimation of β.
By (3.16) Sβ = −V β and therefore the upper right-hand block of (3.23) reduces to
S−1

β

(
S>γβ + V >

γβ

)
S−1

γ . If Sγβ + V γβ = 0 then Sθ = −V θ and ψ would have been a
quasi score. In this sense the matrix S>γβ + V >

γβ measures how much ψγ deviates from
being a quasi-score function.

Except for V β, the blocks of (3.23) rely on 3rd and 4th moments. This seems
less tractable for practical use. We may therefore employ empirical variabilities of

ψ̆ =
(
ψ>

β , ψ̆γ
>)>

, defined by V̂ θ,Emp = 1
I

∑
i ψ̆i(θ̂)ψ̆i(θ̂)> instead. A variant utilizes

Sβ = −V β and considers only the empirical variability of ψ̆γ defined by V̂ γ,Emp =
1
I

∑
i ψ̆γ,i(θ̂)ψ̆γ,i(θ̂)>.

4. Simulation study

Some key properties of our method were addressed by an extensive simulation study in
which 4000 data sets were simulated for each of 64 different configurations specified by com-
binations of the following model parameters: r1, r2 ∈ {2.0, 3.0}, and r3 ∈ {1.0, 1.5, 2.0, 3.0}.
The data sets were simulated with I ∈ {5, 25} clusters, and each cluster consisting of la-
tent time series of length T ∈ {10, 50} having ar(1) correlation structure with α = 0.5.



26 R. Holst and B. Jørgensen

Given the latent variables the mean structure was modelled as log(µt) = β0 + β1xt where
x1, . . . , xT were assigned equidistant values in the range from −2.5 to 2.5 and β0 = 3.0,
β1 = 0.7. All simulated data sets were fitted with and without bias correction and both
assuming the correct value of the response index parameter r3 as well as considering it an
unknown parameter to be estimated. All parameters but ρ2 and r3 were kept fixed across
all configurations at the following values: σ2 = ω2 = 0.5. The dispersion parameter ρ2

varied with the r3 index and assumed the values 1.0, 0.5, 0.1 and 0.01 corresponding to
the values 1.0, 1.5, 2.0 and 3.0 of r3 respectively.

The simulation study focused on robustness, bias correction, efficiency and the impact
of sample size for both the regression and the association parameters albeit ψβ is a quasi
score estimating function, with well known optimality properties. Parts of the vast amount
of simulation results will be reported in the form of tables and figures, whereas other parts
will be referred to in the text.

4.1 Robustness of estimating procedure

Simulations with varying configurations of r1 and r2 were used for studying the asserted
robustness against the lack of knowledge about the Tweedie parameters driving the latent
process. Along the same lines we investigated how the model performed across an appro-
priate range of values for the r3 parameter and in particular its ability to recover the true
value when considering r3 an unknown parameter to be estimated.

Figure 1 shows the median values of the parameter estimates, for r1 = 3.0 and r2 = 2.0
across the range of r3 parameter values and the sizes of data sets considered. Similar plots
for other combinations of r1 and r2, not shown here, indicated similar patterns, although
data sets for r2 = 3.0 have larger bias for ω̂2 and ρ̂2. However, this problem is not a real
concern, since values of the Twedie power parameter as high as 3 are rare for real data
(Kendal, 2004), making such values of r2 unlikely to occur in practice.
For comparison parameter estimates are shown on the same scale across varying sample
sizes.

Our approach appears reasonably robust since it allows for treating the response model
parameter r3 as part of the parameters to be estimated, and this parameter can be esti-
mated with virtually no bias across varying specifications of the latent process. Further-
more, estimates of the parameters showed the same patterns independently of the choice
of variables driving the latent process.

The asymptotic variances of the estimates of the association parameters (3.23), enable
us to compute estimates of coverage probabilities for 95% asymptotic confidence intervals.
Table 2 gives the coverage probabilities based on bias corrected estimates.

The coverages indicate that the standard errors of the parameters are reasonably precise
for all parameters except for ω̂2 and ρ̂2, suggesting that our approach is reasonably accu-
rate. The coverages are, by convention, based on symmetric intervals. These may, however,
be less suitable for dispersion parameters estimates when sample sizes are small, due to the
asymmetric nature of the sampling distribution of these estimates. Not surprisingly, the
coverages are too high for the smaller sample sizes, indicating overestimation of their stan-

Table 2. Summary of coverages for 95 % asymptotic confidence intervals across varying configurations, based on
bias corrected estimates.

T I β0 β1 σ2 ω2 ρ2 α r3

10 5 96.35% 98.35% 94.00% 83.60% 80.35% 99.80% 96.90%
10 25 96.10% 96.50% 94.55% 90.45% 88.25% 97.75% 96.70%
50 5 95.50% 95.35% 92.55% 89.20% 89.50% 93.00% 95.25%
50 25 94.00% 94.30% 90.80% 87.55% 89.30% 90.10% 91.25%
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Figure 1. Median values of estimated model parameters for bias-corrected (•) and un-corrected (◦) estimation
compared with the true values (∗).

dard errors. From results not shown here, we observed that the estimation of r3 improved
the coverage for all parameters except for α which was unchanged.

4.2 Bias correction

The magnitude of the parameter bias correction was assessed by a duplicate analysis of the
simulated data sets, except that the second estimation was done without bias correction.
All parameters show the same pattern of almost negligible bias for all but the smallest
sample size. For the smallest sample size, given by I = 5 and T = 10, the bias correction
appears to reduce the bias for the regression parameters β0 and β1, the response dispersion
ρ2 and the response index r3. The correction seemed however to have an adverse effect for
the latent process parameters σ2, ω2 and α. With the rather short series and few clusters,
this may well be interpreted as lack of information rather than a deficiency of the model.

For the larger data sets a closer inspection of the estimations, as in Figure 2, showed an
almost consistent pattern of the bias correction pulling the estimates closer to their true
values. The bias correction improved the coverages for σ2, whereas it decreased for ω2 and
ρ2 and was unchanged for the remaining parameters.

5. Data Analysis

Knowledge about the growth of fish is important for the assessment of fish biomass. For
this purpose, many fisheries management programmes sample otoliths on a regular basis.
An otolith is a structure located in the inner ear of fish and is built by deposit of calcium
carbonate, protein and a variety of trace elements. It carries information about age and
growth patterns, by means of alternating opaque and translucent bands. When viewed in
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Figure 2. Median values of σ2 for bias-corrected (•) and un-corrected (◦) estimation compared with the true values
(horizontal line).

transmitted light, a translucent band represents a low level of deposition of proteins in the
calcium carbonate crystal structure corresponding to a period of slow growth (Mosegaard
and Titus, 1987). Sub-seasonal bands, representing daily cycles, can sometimes be identi-
fied within the annual bands (Pannella, 1971).

Figure 3. A photo of an otolith with radius and band marks. The trace marks for band 18–23 are identified outside
the radius and only the span of these bands can be measured. HC: Hatch Check.

The data collected and analysed by Clausen et al. (2007) contains measurements of the
width of daily growth bands of otoliths collected from juvenile herrings (Clupea harengus)
(Figure 3). The age in days was determined, by counting bands, for each of the sampled
specimen and along with the time of sampling they were categorized as being offspring
from one of three spawner types: autumn, winter and spring. These are distinct stock
components but mix on the nursery and feeding grounds. For stock assessment purposes,
it is of interest to be able to discriminate between them. Clausen et al. (2007) used otolith
characteristics for this purpose.

We let each fish be a cluster, whereas the sequence of bands within each fish gives the
longitudinal structure. The covariance structure that simultaneously encompass the cluster
effects along with a conditional serial correlation within the latent process, are suitably
handled by our framework, whereas this is not the case for conventional GLMM and GEE
approaches. We analysed the data from Clausen et al. (2007), in order to illustrate the
application of our model to such data.

For compatibility across the collection of otoliths, the band widths are measured along
similar radii on all otoliths. If the band marks are not all clearly identifiable along this
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transect, two or more adjacent bands are aggregated and the total width of these bands
is taken (Figure 3). The count of bands between two measurement marks is then based
on intermediate band marks identified elsewhere on the otoliths. It is common practice to
use the average of such aggregated bands, in place of correct measurements; a feature also
found in the present data. To avoid successive values obtained from the same aggregation
of bands, it sufficed to sub-sample every 8th value for our analysis.

The sampled fish have different ages and therefore display differences in the lengths of
their band width series. To avoid bias caused by data selection, we truncated the sequences
of band measurements to the shortest sequence within each spawning category. Further-
more the first 10 bands were left out of the analysis, as their measurements were considered
too imprecise.

Figure 4. Width measurements at every 8th band. Thick white line indicates average measurements over otoliths.
Top row: observed, bottom row: estimated.

Two variant models were estimated: one fixing the response Tweedie parameter r3 =
2, corresponding to a gamma distribution and the other one estimating this parameter.
Judging from exploratory plots (Figure 4) of the observed width measurements the fixed
part could appropriately be modeled as 2nd order polynomials of the bands and with
potential different coefficients for the three seasons: width ∼ (band+band2)*season using
the log link.

The initial models contained nine regression parameters. Autumn was chosen as base
level for the season factor, to enable a direct comparison between autumn and winter,
as these appeared most alike among the three seasons. The models were reduced to fi-
nal models, with six regression parameters, through a succession of Wald tests and re-
estimations (Rotnitzky and Jewell, 1990). Seasonal variation is likely to induce serial cor-
relation between the bands. Based on inspection of the auto-correlation and the partial
auto-correlation function for individual otoliths, an ar(1) model was deemed appropri-
ate. Estimates for the parameters of the final models and standard errors are listed in
Table 3. Similarly to other types of generalized linear regression models these are inter-
preted as linear effects on the scale of the link function, cf. equation (2.6). The dispersion
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parameters σ2, ω2 and ρ2 divide the total variance by means of equation (2.7) into com-
ponents accounting for variance between otoliths, variance between bands within otoliths
and observational error respectively. Finally the parameter α describes the latent process
correlation between bands via the assumed ar(1) structure.

Table 3. Parameter estimates, standard errors (SE) and p-values for both fixed and estimated r3 models. aut:
autumn; win: winter; spr: spring. * The p-value for r3 applies to the hypothesis H0 : r3 = 2.

Fixed r3 = 2 Estimated r3

Parameter Est SE p-value Est SE p-value
βaut+win 0.3118 0.0292 < 0.0001 0.3113 0.0292 < 0.0001
βspr 1.1304 0.0553 < 0.0001 1.1288 0.0556 < 0.0001
βspr:band 0.0187 0.0016 < 0.0001 0.0187 0.0016 < 0.0001
βwin:band 0.0032 0.0003 < 0.0001 0.0032 0.0003 < 0.0001
β(aut+win):band2 1.9× 10−5 1.4× 10−6 < 0.0001 1.9× 10−5 1.4× 10−6 < 0.0001
βspr:band2 −0.0001 9.9× 10−6 0.0001 −0.0001 1.0× 10−5 < 0.0001
σ2 0.0040 0.1639 0.9807 0.0042 0.1627 0.9796
ω2 0.0277 2.6770 0.9918 0.0275 3.4696 0.9937
ρ2 0.0153 4.1817 0.9971 0.0115 7.0517 0.9987
α 0.8321 0.0823 < 0.0001 0.8325 6.7673 0.9021
r3 2.2700 1.7627 0.8783∗

The two regressions are estimated to be almost exactly the same, whether r3 is estimated
or assumed known. This reflects the γ-insensitivity of ψβ. From the fit we conclude that
autumn and winter differ only by the 1st order term whereas autumn and spring differ by
all three terms. The fitted curves from the fixed-r3 model are plotted in Figure 4.

The association parameter estimates were very similar for the two models, except for
having quite different standard errors. The rather large standard errors for the dispersion
parameter estimates confirm the impression from the simulations in Section 4, that the use
of empirical variabilities in the sandwich estimator (3.23) may lead to standard errors too
big to be of any practical use. This seems to be the cost of avoiding the use of higher-order
moments. The standard errors for the correlation parameter α in the fixed-r3 case appear
to be more realistic but raise dramatically when r3 is estimated. In that case the standard
error for r3 seems moderate. The α parameter applies to the scale of the sub-sampling
frequency. A back calculation to the day-to-day serial correlation, and assuming the ar(1)
model, leads to a correlation value of about 0.97.

6. Discussion

As already discussed in Section 1, our main goal was to create a method that could unify
generalized linear mixed models and generalized estimating equations in a computation-
ally efficient way. We have achieved this by means of a versatile hierarchical modelling
approach using Tweedie distributions, combined with an estimating equation approach
based on second-moment assumptions. As discussed in connection with equation (2.6),
the random effects part of the proposed models resembles conventional generalized linear
mixed models, and the quasi-score function (3.8) is similar to a generalized estimating
equation. Overall, our approach has a number of advantages compared with existing
methods, such as:

(1) The models have a simple closed form expression for the covariance structure, in
contrast to conventional generalized linear mixed models, where moments are not
available in closed form.
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(2) The models have both a conditional and marginal interpretation and therefore obviate
the conventional need to distinguish between generalized estimating equations and
generalized linear mixed models.

(3) The explicit hierarchical modelling approach based on Tweedie distributions allows
easy simulation, in contrast to generalized estimating equations, which are not based
on explicit stochastic modelling.

(4) A comprehensive range of distributions for the response level are available, controlled
by the parameter r3, and this parameter need not be specified and instead can be
estimated. The estimation method does not require specification of r1 and r2, making
the method very versatile in terms of accommodating different distributional shapes
both at the observation and latent variable levels.

Our model hinges on the scale transformation properties, that characterizes the class
of Tweedie distributions. This seemingly exclude binary and categorical data to be han-
dled by the model, since their distributions are not of Tweedie type. This limitation can
however be remedied by using conditionally independent Poisson response variables, lead-
ing to beta-binomial-like or Dirichlet-multinomial-like models. The topic is of considerable
importance for both practioners as well as for theoretical statisticians and it is currently
under investigation. Another useful extension of the method would be to allow regression
modelling for the association parameters, along the lines of Davidian and Carroll (1987).
It would also be straightforward to extend the model to multiple levels of random effects,
adding further levels by repeated use of conditional Tweedie distributions.
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Appendix A

Covariance structure

From the model specification (2.1)–(2.4) we derive the marginal covariance between two
observations within the ith cluster. This is done in three steps by means of the law total
of variance. From E (Zi) = 1 and var (Zi) = σ2 we first get

cov (Zit, Zit′) = E {cov (Zit, Zit′ | Z•)}+ cov (E (Zit | Z•) , E (Zit′ | Z•))
= δt′

t E
(
ω2Zi

)
+ α−2

+ var (Zi)

= δt′
t ω2 + α−2

+ σ2,

from which we obtain

cov (Qit, Qit′) =
∞∑

s=0

∞∑

s′=0

αsαs′ cov (Zi t−s, Zi t′−s′)

= ω2
∞∑

s=0

αsαs+|t−t′| + σ2,

and finally arrive at

cov (Yit, Yi′t′) = E {cov (Yit, Yit′ | Z)}+ cov {E (Yit | Z) , E (Yi′t′ | Z)}
= δt′

t var (Yit) + µitµij′ cov (Qit, Qit′)

= δt′
t µr3

it ρ2 + µitµit′

(
ω2

j

∞∑

s=0

αsαs+|t−t′| + σ2

)

Appendix B

Process correlation matrix K (α) for ma(p) and ar(1) processes

The latent process linear filter Qit =
∑∞

s=0 αsZi t−s, induces the process correlation matrix
K (α), with tt′th entry {K (α)}tt′ =

∑∞
s=0 αsαs+|t−t′|.

An ma(p) process is given by α0 = 1 and αs = 0 for s > p and has first and second
derivative matrices with tt′th entries given by

{
∂

∂αk
K (α)

}

tt′
= αk+|t−t′|δk≤p−|t−t′| + αk−|t−t′|δk≥|t−t′|

and

{
∂2

∂αk∂αm
K(α)

}

tt′
= δt′

t δm
k + δ

|k−m|
|t−t′|

respectively. Here δt′
t , δk≤p−|t−t′| etc. are variant forms of the Kronecker delta with obvious

definitions.
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An ar(1) process is given by αs = αs; α ∈ (0, 1), from which we obtain the tt′th entry
of K (α)

{K (α)}tt′ =
∞∑

s=0

α2s+|t−t′| = α|t−t′|
∞∑

s=0

α2s =
α|t−t′|

1− α2
.

Consequently the kth sub- and super-diagonal of ∂
∂αK (α) and ∂2

∂α2 K (α) have elements

∂

∂α

(
αk

1− α2

)
=

(2− k) αk+1 + kαk−1

(1− α2)2

and

∂2

∂α2

(
αk

1− α2

)
=

(
k2 − 5k + 6

)
α(k+2) +

(−2k2 + 6k + 2
)
αk + (k − 1) kα(k−2)

(1− α2)3

respectively.

Appendix C

Derivatives of Jβ

The derivatives of Jβ involved in calculating the γ- and β- sensitivities of ψ̆γ (β,γ) are

J
(γn)
β = −

I∑

i=1

D>
i W inDi

J
(βm)
β =

I∑

i=1

D
(βm)>
i C−1

i Di + D>
i C−1

i D
(βm)
i −D>

i C−1
i C

(βm)
i C−1

i Di

J
(γn,γm)
β =

I∑

i=1

D>
i

(
W imCiWin + W inCiW im −C−1

i C
(γn,γm)
i C−1

i

)
Di

J
(γn,βm)
β = −

I∑

i=1

D
(βm)>
i W inDi + D>

i W inD
(βm)
i + D>

i W
(βm)
in Di,

where W in = − ∂
∂γn

C−1
i = C−1

i

(
∂

∂γn
Ci

)
C−1

i and D
(βm)
i = ∂

∂βm
Di etc.
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