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Abstract

In this paper, we discuss estimating the normal population parameters using moving
ranked set sampling (MRSS) scheme. We derive new estimators and obtain confidence
intervals for these parameters. Also, we conduct a simulation study to asses the perfor-
mance and efficiency of the proposed estimators compared with their competitors based
on simple random samples (SRS). Results indicate that the proposed population mean
estimators are more efficient than those obtained using SRS. A grassland biodiversity
example in central Europe is used to illustrate the usefulness of the proposed method
in the field of Ecology.

Keywords: Ranked set sampling · Moving ranked set sampling · Confidence interval
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1. Introduction

Order statistics in general and ranked set sampling introduced by McIntyre (1952) in partic-
ular played vital role in several areas of applications including engineering, pharmaceutical,
agriculture as well as ecology. As an illustration, ecologists defined species diversity as the
number of different species in a given area in ecosystems which is considered as a ba-
sic measure of biodiversity or biological diversity. Ecosystems with high species diversity
gain greater resilience; consequently they will be able to recover more readily from natural
stresses and disasters such as drought and human-induced habitat degradation, see Gas-
ton and Spicer (2004). Calculating the number of species in a given ecological community
requires counting all species living in that community which is a time-consuming and hard
to achieve process in addition to the considerable effort required. Nonetheless, it would be
relatively easy to estimate the number of species in the whole community via ranking small
sets of samples (say plots) that represent the community on the basis of visual inspection
of species occurrence. Patil (1995) concluded that such approaches provide a great obser-
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vation economy that can be achieved assuming the ability to identify a large number of
sample units in the whole community under consideration.

The idea of sampling observations based on ranked data was initially proposed by McIn-
tyre (1952) in his practical experiment to estimate the mean pasture and forage yields. This
approach was explored and dubbed as ranked set sampling (RSS) by Halls and Dell (1966).
In the last five decades, researchers investigated extensively the significant role of RSS
and explored several theoretical aspects and application ideas, see Takahasi and Wakimoto
(1968), Dell and Clutter (1972), Martin et al. (1980), Patil (1995), Alodat et al. (2009a),
Alodat et al. (2009b) and Al-Rawwash et al. (2010). Detailed and comprehensive literature
review of the RSS history can be found in Kaur et al. (1996) and Patil et al. (1999).

McIntyre (1952) proposed selecting an RSS of size m by drawing m independent random
samples each of size m from the population of interest. Accordingly, the ith order statistic
of the ith sample can be detected visually or by any crude method and the selected unit
can be chosen for actual quantification. RSS is considered a very useful technique when we
rely on ranking units through visual inspection which leads to a negligible cost compared
with actual quantification.

In comparison with an SRS of the same size, it is known that RSS provides more rep-
resentative sample from the target population and can produce more efficient estimators
than those obtained using SRS (Chen (2000)). Nevertheless, the efficiency of estimators
obtained via the RSS scheme is affected by the set size and the ranking error. In fact, the
larger the set size, the greater the efficiency of the estimators and the larger the set size the
greater the possibility of making errors through visual ranking, see Alodat and Al-Saleh
(2001); Al-Saleh and Al-Omari (2002).

In order to improve the efficiency of RSS and diminish the potential ranking error effect
without the need for increasing the set size, several modifications of RSS have been devel-
oped based on sampling extreme values. For example, Samawi et al. (1996) investigated the
extreme ranked set sampling (ERSS) in which the smallest and largest order statistics are
quantified. Another modification of the RSS scheme was proposed by Alodat and Al-Saleh
(2001) to estimate the location parameter of the location family as follows:

(1) Select m− 1 simple random samples of sizes 2, 3, . . . ,m, respectively.
(2) For the jth sample, j = 2, 3, . . . , m and using visual inspection or any other cheap

method, identify and then quantify the jth order statistic.
(3) Repeat steps 1, 2 and quantify the 1st order statistic from the jth sample.
(4) Repeat steps (1-3) n times to obtain a larger sample of size 2n(m− 1) for fixed m.

Boosting the efficiency of the estimator as we increase the set size is considered an advan-
tage of the ranking scheme proposed by Alodat and Al-Saleh (2001). Besides the ranking
error possibly made by the experimenter will be minimized since spotting the minimum
or the maximum of a random sample is easier than spotting other order statistics. This
method was adopted later by Al-Saleh and Al-Hadrami (2003) and was referred to as the
Moving Ranked Set Sampling (MRSS). They studied the maximum likelihood estimators
of the symmetric and location families.

The main goal of this work is divided into three folds. First of all, we intend to perform
a statistical inference for the normal population where the random sample is obtained via
the MRSS scheme. Secondly, we propose new estimators and confidence intervals for the
normal distribution parameters and finally we illustrate our method to make inference re-
garding grassland biodiversity. The rest of the article is organized as follows. In Section
2, we introduce the general setup and the framework of the MRSS scheme. In Section 3,
we discuss the statistical properties of the parameters estimators of the normal population
using MRSS. Also, we conduct simulation studies to investigate the efficiency of the pro-
posed estimators and the effect of ranking errors on the estimation process. In section 4,
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we derive the confidence intervals of the parameters based on MRSS. As an illustration, we
apply our estimation approach using the grassland biodiversity data in Section 5. Finally,
we present our findings and conclusions in Section 6.

2. General Setup

To put the theoretical setup, let
{
X1

j1, X1
j2, . . . , X1

jj

}
and

{
X2

j1, X2
j2, . . . , X2

jj

}
,

j = 2, 3, . . . , m be a collection of 2(m−1) random samples obtained from a normal distri-
bution with mean µ and variance σ2. Define Y1j = min

{
X1

j1, X1
j2, . . . , X1

jj

}
and Y2j =

max
{
X2

j1, X2
j2, . . . , X2

jj

}
to be the sample observations collected using the MRSS

scheme. Note that the distribution functions of Y1j and Y2j are given as

F1j (y; µ, σ) = 1−
[
1− Φ

(y−µ
σ

)]j
,

= 1− Φj
(µ−y

σ

)
,

and

F2j (y; µ, σ) = Φj

(
y − µ

σ

)
,

respectively, where ϕ(x) denotes the probability density function and Φ(x) denotes the
cumulative distribution function of the standard normal distribution. The corresponding
probability density functions are

f1j (y;µ, σ) =
j

σ
Φj−1

(
µ− y

σ

)
ϕ(

y − µ

σ
),

and

f2j (y;µ, σ) =
j

σ
Φj−1

(
y − µ

σ

)
ϕ(

y − µ

σ
),

respectively. It is easy to show that

E (Y1j) =

∫ ∞

−∞
yf1j (y; µ, σ) dy = µ+ σAj ,

E (Y2j) =

∫ ∞

−∞
yf2j (y; µ, σ) dy = µ+ σBj ,

where Aj =
∫∞
−∞ yf1j (y; ; 0, 1) dy and Bj =

∫∞
−∞ yf2j (y; ; 0, 1) dy. The classical order

statistics theory clearly shows that −Y 1j and Y2j have the same distribution when µ = 0.
This allows us to conclude that Bj = −Aj for all j = 2, 3, . . . ,m, see Arnold et al. (1992).
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3. Estimation of µ and σ based on MRSS

Suppose that {Yij , i = 1, 2 and j = 2, 3, . . . ,m} is the selected MRSS from the target
population, then the sample mean is an unbiased estimator of µ and it can be written as

µ̂MRSS =
1

2(m− 1)

m∑
j=2

(Y1j + Y2j),

while the variance of µ̂MRSS is

V ar (µ̂MRSS) =
σ2

2(m− 1)2

m∑
j=2

Dj ,

where

Dj =

∫ ∞

−∞
y2f2j (y; 0, 1) dy −

(∫ ∞

−∞
yf2j (y; 0, 1) dy

)2

.

The estimator µ̂MRSS of the population mean is proposed by Alodat and Al-Saleh (2001).
It can be shown easily that Dj ≤1 (Arnold et al. (1992)) which implies that

V ar (µ̂MRSS) =
σ2

2(m− 1)2

m∑
j=2

Dj ≤
σ2

2(m− 1)
(1)

On the other hand, an unbiased estimator of µ based on a SRS, say X1, . . . , X2(m−1), is
given by

µ̂SRS =
1

2(m− 1)

2(m−1)∑
j=1

Xj ,

with the following variance

V ar (µ̂SRS) =
σ2

2(m− 1)
.

Comparing the variance of µ̂SRS with inequality (1) allows us to conclude that the
estimator µ̂MRSS is more efficient than µ̂SRS . Seeking a potential unbiased estimator of
the parameter σ, we note that

E (Y2j − Y1j) = σ (Bj −Aj) = 2σBj , for j = 2, 3, . . . ,m.

which implies that

E

(
Y2j − Y1j

2Bj

)
= σ.
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Consequently, we introduce the following unbiased estimator of σ

σ̂MRSS =
1

2(m− 1)

m∑
j=2

Y2j − Y1j
Bj

.

The variance of σ̂MRSS is obtained as

V ar (σ̂MRSS) =
1

4(m− 1)2

m∑
j=2

V ar (Y2j) + V ar (Y1j)

B2
j

,

=
1

2(m− 1)2

m∑
j=2

V ar (Y2j)

B2
j

,

=
σ2

2(m− 1)2

m∑
j=2

Dj

B2
j

.

Lehmann (1983) introduced an unbiased estimator of σ based on a SRS of size 2 (m− 1)
drawn from N

(
µ , σ2

)
as follows

σ̂SRS = KmS,

where Km =
Γ(m− 3

2)√
2Γ(m−1)

and S2 =
∑2(m−1)

i=1 (Xi −X)
2
. It has been reported that its variance

is given by

V ar (σ̂SRS) = σ2

(m− 3

2

)(
Γ(m− 3

2)

Γ(m− 1)

)2

−1

 .

Accordingly, the efficiencies of the MRSS estimators, µ̂MRSS and σ̂MRSS , relative to the
corresponding SRS estimators are

eff (µ̂SRS , µ̂MRSS) =
m− 1∑m
j=2Dj

and

eff (σ̂SRS , σ̂MRSS) =

2(m− 1)2
((

m− 3
2

) (Γ(m− 3

2
)

Γ(m−1)

)2
−1

)
∑m

j=2
Dj

B2
j

.

Theorem 3.1 Based on the MRSS scheme, the best linear unbiased estimators of the
normal distribution parameters µ and σ as well as their variances are

(1) µ∗
MRSS =

1

2D∗
∑m

j=2

Y1j + Y2j
Dj

.

(2) σ∗
MRSS =

1

2D∗∗
∑m

j=2

Bj (Y2j − Y1j)

Dj
.

(3) V ar (µ∗
MRSS) =

σ2

2D∗ .
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(4) V ar(σ∗
MRSS) =

σ2

2D∗∗ ,

where D∗ =
∑m

j=2

1

Dj
and D∗∗ =

∑m
j=2

B2
j

Dj
.

Proof. Assuming that the random variables X1, X2, . . . , Xn have a common mean θ and
corresponding variances σ2

1, σ2
2, . . . , σ

2
n, respectively, it is known that the best linear unbi-

ased estimator (BLUE) of θ is θ̂ =
∑n

k=1wkXk, where wk = 1/σ2
k∑n

i=1 1/σ
2
i
, k = 1, 2, . . . , n.

In our setup, we know that E
(
(12 (Y1j + Y2j)

)
= µ and V ar

(
1
2 (Y1j + Y2j)

)
= 1

2σ
2Dj

which allows us to propose the following estimator as the BLUE of µ

µ∗
MRSS =

1

2D∗

m∑
j=2

Y1j + Y2j
Dj

,

with variance

V ar (µ∗
MRSS) =

σ2

2D∗ .

Similarly, the BLUE of σ is

σ∗
MRSS =

1

2D∗∗

m∑
j=2

Bj(Y2j − Y1j)

Dj
,

with variance

V ar(σ∗
MRSS) =

σ2

2D∗∗ .

This motivates us to obtain and compare the efficiency of the estimators of µ and σ pre-
sented in Theorem 1 with some of the well known estimators. The following values are
introduced to observe the performance of the new estimators

eff (µ̂MRSS , µ∗
MRSS) =

1

(m− 1)2

 m∑
j=2

Dj

 m∑
j=2

1

Dj

 .

eff (σ̂SRS , σ
∗
MRSS) =

 m∑
j=2

B2
j

Dj

(2m− 3)

(
Γ(m− 3

2)

Γ(m− 1)

)2

− 2

 .

eff (σ̂MRSS , σ
∗
MRSS) =

1

(m− 1)2

 m∑
j=2

B2
j

Dj

 m∑
j=2

Dj

B2
j

 .

A numerical evaluation of the previous efficiencies are obtained using Mathematica Software
and the results are illustrated in Table 1. It is important to point out that we drop the
case m = 2 in Table 1 because of the invalidity of the variance of σ̂SRS when m = 2, see
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Lehmann (1983). In order to investigate the performance of the proposed estimators, we
evaluate the efficiencies for different values of m as reported in Table 1. The results reveal
the following

(1) The MRSS estimators are more efficient than those obtained via SRS scheme.
(2) The efficiencies of the MRSS estimators increase as the set size increases.
(3) The performance of the classical MRSS estimator of µ is comparable to the BLUE

values.
(4) The BLUE estimator of σ is better than the classical MRSS estimator when m > 3

and better than the SRS counterpart when m > 4.

Table 1. Efficiencies of the parameters estimators of µ and σ using different methods

m (µ̂SRS vs µ̂MRSS) (µ̂MRSS vs µ∗
MRSS) (σ̂MRSS vs σ∗

MRSS) (σ̂SRS vs σ∗
MRSS)

3 1.61144 1.00979 0.81648 0.622311
4 1.73128 1.01817 1.01758 0.815275
5 1.83458 1.02514 1.18223 1.02184
6 1.92586 1.03094 1.32012 1.22971
7 2.00794 1.0358 1.43770 1.43502
8 2.08271 1.03991 1.53948 1.63627
9 2.15151 1.04342 1.62867 1.83285
10 2.21531 1.04644 1.70765 2.02458

To shed more light on the estimators µ∗
MRSS and σ∗

MRSS , we compare the performance
of these estimators with the corresponding Maximum Likelihood Estimators (MLE). To
this end, we write the likelihood function of (µ, σ) as

L (µ, σ) =

m∏
j=2

(
j

σ

)2

Φj−1

(
µ− Y1j

σ

)
ϕ

(
Y1j − µ

σ

)
× Φj−1

(
Y2j − µ

σ

)
× ϕ

(
Y2j − µ

σ

)

and the log likelihood function is

L∗ (µ, σ) = c− 2 (m− 1) log σ +

m∑
j=2

(j − 1) log

(
Φ

(
µ− Y 1j

σ

)
+Φ

(
Y2j − µ

σ

))
−

1

2σ2

m∑
j=2

(
(Y2j − µ)2 + (Y1j − µ)2

)
,

where c is a constant. The MLE of (µ, σ) are the solution of the system ∂
∂µL

∗ (µ, σ) = 0

and ∂
∂σL

∗ (µ, σ) = 0, provided that the Hessian matrix at these solutions is negative. It is
clear that the MLE of (µ, σ) has no closed form, thus numerical methods such as Newton-
Raphson algorithm must be introduced to obtain these MLEs. For comparison purposes, we
investigate the performance of the BLUE and the MLE estimators of (µ, σ) using the MRSS
scheme where µ̂MRSS, MLE and σ̂MRSS, MLE denote the MLE of µ and σ, respectively.

Table 2 shows the efficiencies of the BLUE estimators of µ and σ compared to their MLE
counterparts for different values of µ, σ and m. Results allow us to conclude the following:

(1) The MLE estimators are better than the BLUE in general.
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Table 2. Efficiencies of µ̂MRSS, MLE against µ∗
MRSS (line 1) and σ̂MRSS, MLE against σ∗

MRSS (line 2) for different
values of m, µ and σ.

σ µ 2 3 4 5 6 7 8 9 10
0.5 -3 1.0000 0.9952 0.9781 0.9954 0.9599 0.9677 0.9625 0.9669 0.9441

0.8906 0.9512 0.9757 0.9848 0.9887 0.9903 0.9937 0.9948 0.9962
-1 0.9160 0.9850 0.9763 0.9698 0.9751 0.9821 0.9632 0.9453 0.9660

0.7154 0.8787 0.9380 0.9600 0.9718 0.9803 0.9851 0.9877 0.9890
0 0.8706 0.9761 0.9891 0.9806 0.9681 0.9642 0.9646 0.9649 0.9585

0.2902 0.6536 0.8121 0.8696 0.9216 0.9302 0.9542 0.9674 0.9774
1 0.9336 0.9724 0.9826 0.9688 0.9654 0.9691 0.9680 0.9638 0.9805

0.9514 1.0863 1.0945 1.0539 1.0518 1.0392 1.0123 1.0283 1.0165
3 1.0000 0.9959 0.9889 0.9913 0.9796 0.9537 0.9699 0.9608 0.9598

1.1088 1.0458 1.0341 1.0205 1.0117 1.0111 1.0069 1.0059 1.0054
1.0 -3 0.6565 0.8111 0.9090 0.9327 0.9550 0.9612 0.9537 0.9588 0.9633

0.8266 0.9253 0.9544 0.9668 0.9832 0.9880 0.9893 0.9939 0.9947
-1 0.6185 0.8244 0.9181 0.9468 0.9660 0.9580 0.9611 0.9765 0.9729

0.6235 0.8427 0.9061 0.9410 0.9576 0.9756 0.9779 0.9791 0.9859
0 1.0000 0.9887 0.9815 0.9667 0.9785 0.9824 0.9700 0.9422 0.9730

0.2795 0.6456 0.8015 0.8756 0.9122 0.9343 0.9525 0.9603 0.9716
1 1.0000 0.9891 0.9868 0.9969 0.9733 0.9890 0.9605 0.9600 0.9539

0.3134 0.3803 0.4977 0.5564 0.6433 0.6795 0.7260 0.7771 0.7719
3 1.0000 0.9929 0.9842 0.9818 0.9826 0.9722 0.9566 0.9399 0.9589

1.1526 1.1181 1.0631 1.0453 1.0349 1.0214 1.0152 1.0137 1.0132
3.0 -3 1.0000 0.9959 0.9818 0.9867 0.9609 0.9716 0.9713 0.9962 0.9558

0.5662 0.8308 0.9089 0.9468 0.9655 0.9702 0.9766 0.9810 0.9874
-1 1.0000 0.9980 0.9807 0.9850 0.9691 0.9895 0.9659 0.9614 0.9697

0.3858 0.7299 0.8526 0.9057 0.9267 0.9528 0.9600 0.9778 0.9786
0 1.0000 0.9915 0.9906 0.9750 0.9857 0.9692 0.9482 0.9572 0.9439

0.2758 0.6416 0.7974 0.8667 0.9073 0.9359 0.9509 0.9681 0.9726
1 1.0000 0.9909 0.9992 0.9811 0.9718 0.9672 0.9748 0.9550 0.9538

0.1784 0.4874 0.6818 0.7906 0.8573 0.9006 0.9303 0.9468 0.9549
3 1.0000 0.9977 0.9850 0.9904 0.9672 0.9759 0.9640 0.9624 0.9603

0.3077 0.4226 0.4827 0.5587 0.6372 0.7275 0.7033 0.7670 0.7927

(2) The performance of MLE and BLUE of µ are comparable for different initial values.
(3) The MLE of µ is slightly better than the BLUE as m gets large.
(4) The MLE and BLUE of σ are comparable for small initial values of σ while the

MLE gets better for large values of σ.

3.1 Effect of ranking errors

Ranking errors play vital role in the RSS procedure and may affect the obtained results
assuming that the personal judgment error is not absent. However, we cannot ignore the
ranking errors in an RSS sample where the judgment ordering of the sample units does not
match the true order. Several articles discussed the effect of ranking errors on the efficiency
of the RSS estimation approach. For example, Dell and Clutter (1972), Stokes (1977) and
Nahhas et al. (2004) proposed different models for visual ranking errors and discussed the
consequences on the estimation using RSS. In this section, we consider the model proposed
by Dell and Clutter (1972) assuming that the ith visual score for the ith observation in
RSS set is defined as Vi = Xi + τi, where τ1, τ2, ..., τn are independent and identically
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distributed as N
(
0, σ2

τ

)
independent of the Xi’s. To obtain an RSS sample with ranking

errors, according to the proposed additive model, we adopt the following steps:
1. Obtain Vi = Xi + τi, where τ1, τ2, ..., τn are independent and identically N

(
0, σ2

τ

)
.

2. Rank the Vi’s in an ascending order so that we may obtain V(1) ≤ V(2) ≤ · · · ≤ V(n).
Also, let X[i] denote the value of X associated with V (i).
3. The values X[1], X[2], ..., X[n] represent an RSS sample with raking errors.

To investigate the effect of ranking errors on the estimates of µ and σ obtained using
MRSS, we conduct simulation studies to compare the performance of the MLE and BLUE
of these parameters. We set the values of σ2

τ to introduce the ranking errors and allow the
values of m to vary between 2 to 10. The results given in Tables 3 and 4 show the efficiencies
of µ̂MRSS, MLE with respect to µ∗

MRSS and σ̂MRSS, MLE with respect to σ∗
MRSS , which

allows us to conclude the following:

(1) The results are decreasing in m which means that the MLE is slightly better than
the BLUE for large set sizes.

(2) The efficiency gets slightly larger when σ2
τ gets larger. It means that µ∗

MRSS provides
slightly better estimates in the presence of ranking errors.

Table 3. Efficiencies of µ̂MRSS, MLE w.r.t µ∗
MRSS for different values of m, µ and σ, under ranking errors when

στ = 0.01 (line 1) and στ = 0.50 (line 2).

m 2 3 4 5 6 7 8 9 10
(µ, σ)
(0, 1) 1 0.9879 0.9842 0.9812 0.9745 0.9812 0.9647 0.9436 0.9425

1 1.0029 1.0019 1.0058 0.9966 0.9990 1.0152 1.0227 1.0151
(-5, 2) 1 0.9978 0.9737 0.9694 0.9548 0.9716 0.9642 0.9644 0.9377

1 0.9949 0.9839 0.9835 0.9867 0.9923 0.9943 0.9726 0.9636
(5, 2) 1 0.9964 1.0045 0.9662 0.9720 0.9776 0.9876 0.9648 0.9253

1 0.9947 0.9770 0.9888 0.9906 0.9801 0.9738 0.9923 0.9817

Table 4. Efficiencies of σ̂MRSS, MLE w.r.t σ∗
MRSS for different values of m, µ and σ, under ranking errors when

στ = 0.01 (line 1) and στ = 0.50 (line 2).

m 2 3 4 5 6 7 8 9 10
(µ, σ)
(0, 1) 0.2785 0.6423 0.8143 0.8683 0.9044 0.9305 0.9510 0.9750 0.9730

0.3051 0.7150 0.9813 1.0365 1.0984 1.1113 1.1357 1.1181 1.1257
(-5, 2) 1.0806 1.1127 1.0787 1.0521 1.0425 1.0278 1.0262 1.0204 1.0143

0.7506 0.9245 0.9520 0.9810 0.9874 0.9985 0.9993 1.0022 1.0021
(5, 2) 1.1266 1.1381 1.0612 1.0376 1.0344 1.0344 1.0257 1.0177 1.0132

1.0143 1.0466 1.0272 1.0167 1.0023 0.9956 0.9885 0.9912 0.9849

4. Confidence Intervals for µ and σ

In order to construct confidence intervals for µ and σ as part of our estimation strategy
of the normal distribution parameters, we plan to introduce a pivotal quantity for each
parameter based on classical MRSS estimator as well as the BLUE approach. These ideas
will be discussed in the following two theorems
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Theorem 4.1 Assuming that we have an MRSS scheme, the 100 (1− α)% confidence
intervals for µ and σ based on pivotal quantities are given by

(1) σ̂MRSS

q1−α
2

≤ σ ≤ σ̂MRSS

qα
2

(2) µ̂MRSS ∓ σ̂MRSSu1−α

2
,

where qα denotes the 100α quantile of the random variable Q = σ̂MRSS

σ and Uα is the 100α

quantile of the random variable U = µ̂MRSS−µ
σ̂MRSS

.

Proof. (1) The pivotal quantity for σ is introduced by rewriting σ̂MRSS as follows

σ̂MRSS =
1

2 (m− 1)

m∑
j=2

Y2j − Y1j
Bj

=
1

2 (m− 1)

m∑
j=2

(
µ+ σZ2j

)
−
(
µ+ σZ1j

)
Bj

= σ,

where Z1j and Z2j have the pdf’s f1j (z; ; 0, 1) and f2j (z; ; 0, 1) , respectively and

Q =
1

2(m− 1)

m∑
j=2

(
Z2j − Z1j

Bj

)
.

Note that Q has a parameter-free distribution which means that the random quantity
σ̂MRSS

σ = Q represents a pivot for σ. Hence, the 100 (1− α)% confidence interval for σ is

σ̂MRSS

q1−α

2

≤ σ ≤ σ̂MRSS

qα

2

,

The quantiles of Q are obtained via simulation and the previously obtained interval will
be compared with the classical 100 (1− α)% confidence interval for σ.

(2) Similarly, to obtain a pivotal quantity for µ, we assume that

µ̂MRSS =
1

2 (m− 1)

m∑
j=2

(Y1j + Y2j) = µ+ σ∇,

where ∇= 1
2(m−1)

∑m
j=2 (Z1j + Z2j) . Eventually, we get

µ̂MRSS − µ = σ∇ (2)

and

σ̂MRSS

σ
= Q (3)

Having in mind that both ∇ and Q have parameter-free distributions, we use (2) and
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(3) to define the following pivotal quantity for µ

U =
∇
Q

=
µ̂MRSS − µ

σ̂MRSS
.

Therefore, the 100 (1− α)% confidence interval for µ is

µ̂MRSS ∓ σ̂MRSSu1−α

2
,

where u1−α

2
is the 100

(
1− α

2

)
quantile of the random variable U. Also, simulation will be

used here to obtain the quantiles of U.

Theorem 4.2 Based on the BLUE of µ and σ using the MRSS scheme, the 100 (1− α)%
confidence intervals for µ and σ are

(1) µ∗
MRSS ± σ∗

MRSS ũ1−α/2,

(2) σ∗
MRSS

q̃1−α/2
≤ σ ≤ σ∗

MRSS

q̃α/2

where q̃1−α/2 and ũ1−α/2 are the 100
(
1− α

2

)
% quantiles of Q̃ and Ũ , respectively such

that Q̃ = σ∗
MRSS

σ and Ũ = D∗∗

D∗

∑m
j=2 (Z1j+Z2j)/Dj∑m

j=2 Bj(Z2j−Z1j)/Dj
.

Proof. To outline the proof, we consider the following two expressions of µ∗
MRSS and

σ∗
MRSS

µ∗
MRSS − µ =

σ

2D∗

m∑
j=2

Z1j + Z2j

Dj
(4)

and

Q̃ =
σ∗
MRSS

σ
=

1

2D∗∗

m∑
j=2

Bj(Z2j − Z1j)

Dj
. (5)

Hence, the 100 (1− α)% confidence intervals for µ and σ are

µ∗
MRSS ± σ∗

MRSS ũ1−α/2,

and

σ∗
MRSS

q̃1−α/2
≤ σ ≤

σ∗
MRSS

q̃α/2
,

which completes the proof.
On the other hand, we may use the quantity R = µ̂MRSS−µ0

σ̂MRSS
to test the hypothesis

H0 : µ = µ0. Knowing that the distribution of R is free of µ and σ allows us to reject H0

if |R| > u1−α

2
. A similar test can be developed for testing σ based on the distribution of

Q.
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5. Application to grassland biodiversity data

The idea of RSS has been credited to McIntyre (1952) and since that time several re-
searchers followed his footsteps and rigorous ideas were proposed in disciplines such as
ecology due to the tremendous applications of RSS in that field, see Patil (1995) and Patil
et al. (1999). For example, Halls and Dell (1966) utilized the RSS technique to estimate the
weights of browse and herbage in a pine-hardwood forest of east Texas. They concluded
that RSS is more efficient than SRS. Similarly, RSS was reported to be more robust when
applied for estimating the shrub phytomass in forest stands. Further applications of RSS
can be found in Evan (1967) and Cobby et al. (1985).

Figure 1. Histogram and normal curve for the number of species data.

Table 5. Illustration of MRSS for the Grassland Biodiversity

Sets Minimum Sets Maximum
{9, 21} 9 {22, 13} 22

{15, 22, 17} 15 {16, 22, 31} 31
{18, 17, 19, 19} 17 { 23, 14, 13, 19} 23

{8, 33, 22, 33, 23} 8 {16, 22, 20, 18, 21} 22
23, 19, 20, 19, 17, 12 12 {20, 25, 30, 28, 21, 27} 30

{18, 23, 26, 24, 13, 10, 15} 10 {25, 14, 28, 33, 20, 22, 21} 33
{23, 13, 22, 13, 19, 16, 21, 24} 13 {27, 25, 27, 29, 26, 14, 25, 32} 32

In this article, we consider the data set on grassland biodiversity in central Europe
to illustrate the usefulness of our statistical method. This data set was collected based
on a biodiversity project carried out in the Thueringer Schiefergebirge/Frankenwald, a
plateau-like mountain range at the Thuringian/Bavarian border in central Germany with
a maximum height of 870 m. Average annual temperature in the area varies between 68F
and 78F and average annual precipitation varies between 950 and 1099 mm, see Perner et
al. (2005). The selected plant communities located between 11.018o and 11.638o eastern
longitudes and between 50.358o and 50.578o northern latitudes and were about one hectare.
The collected data set represents grassland biodiversity in 78 different sites. The histogram
in Figure 1 suggests a normal distribution while the normal probability plot in Figure
2 shows a Kolmogrov-Simirnov test of p-value larger than 0.15. As a result, the data
provides us with no evidence to reject the normality assumption. In this section, we apply
the MRSS procedure to the 78 collected observations and we restrict our application to
the SRS estimators and the optimal estimators µ∗

MRSS and σ∗
MRSS . Having in mind that

the population is homogeneous in all sites, we divide the first 35 observations into 7 sets of
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sizes 2, 3,. . . ,8, and the last 35 observations are divided in the same fashion. From each set
in the first group, we select the minimum while we select the maximum from the second
group (see Table 5).

Figure 2. Normal probability plot for the number of species data.

Eventually, we get the set of minima {9, 15, 17, 8, 12, 10, 13} and the set of maxima
{22, 31, 23, 22, 30, 33, 32}. We use these data to obtain estimates and confidence intervals
for µ and σ. On the other hand, we obtain a simple random sample of size 14 to produce
estimates and confidence intervals for µ and σ. The elements of the SRS are {9, 21, 15, 22,
17, 18, 17, 19, 19, 8, 33, 22, 33, 23}. The qauntiles of U, Q, Ũ and Q̃ are obtained via
simulation based on 5000 independent random samples obtained from their distributions.
The empirical quantiles of these samples are used as an approximation for the true quantiles.
The results presented in this article are in agreement with previous published results. For
example, Martin et al. (1980) found that RSS is more robust when applied for estimating
the shrub phytomass in forest stands.

Table 6. Parameters estimates and confidence intervals for Grassland Biodiversity data using SRS and MRSS.

Method µ σ
SRS Estimate 19.7143 2.028

Variance 3.67504 2.0154
95% confidence interval (15.9569, 23.4717) (5.20, 11.5559)

MRSS Estimate 20.0996 6.17573
Variance 1.25784 0.91305
95% confidence interval (17.4177, 22.7742) (4.7565, 8.9171)

6. Conclusion

In this paper, we introduced new ideas concerning the estimation strategies of the normal
distribution parameters using the MRSS scheme and we compared the results to those
obtained using SRS scheme. We explored the MRSS scheme and showed how it produces
efficient estimators for the normal population parameters. The simulation and grassland
biodiversity example reveal the effectiveness of the MRSS scheme compared to the SRS
plan. The merits of the MRSS versus SRS motivates us to use the ranking approach espe-
cially when the variable of interest is easier to rank rather than quatified. These findings
are proved to be useful in the field of ecology which is illustrated in grassland biodiver-
sity estimation example. Comparing these findings with the results reported in Alodat and
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Al-Saleh (2001), we conclude that the new estimators are more efficient. Alodat and Al-
Saleh (2001) limited their work to the location family which prevents us from conducting a
pairwise comparison with our proposed estimators of the standard deviation. The present
inference can be extended further to other families’ distributions and we may also obtain
prediction intervals concerning future characteristics from the normal distribution. More-
over, the present method can be used to collect data for the simple linear regression model
proposed in Alodat et al. (2010).
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