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Abstract

The Ziggurat algorithm is a well-established rejection-sampling method designed for
the efficient generation of pseudo-random numbers from unimodal distributions, partic-
ularly the standard normal. In this work, we extend and adapt the Ziggurat algorithm
to enable the tail-adaptive generation of random numbers from the gamma-order gener-
alized normal distribution —a flexible family characterized by a tail-shaping parameter
that governs transitions between light, Gaussian, and heavy-tailed regimes. The result-
ing algorithm retains the computational speed of the original Ziggurat algorithm while
supporting both univariate and multivariate implementations. This extension is espe-
cially relevant in simulation-intensive contexts, such as Bayesian modeling, quantitative
finance, and machine learning. We provide the mathematical foundation, reproducible
implementation details, and extensive benchmarking results that validate the method’s
efficiency and accuracy. A multivariate extension based on radial decomposition is also
introduced, demonstrating the feasibility of generating random variables from symmet-
ric multivariate distributions in practice. To illustrate the practical utility of the pro-
posed algorithm, we present a comprehensive Monte Carlo simulation study evaluating
performance across various shape and scale configurations. Additionally, we apply the
method to real-world data from biomedical signal processing, highlighting its robustness
and adaptability to empirical settings where tail behavior plays a crucial role.
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1. INTRODUCTION

The generation of pseudo-random variables is a foundational task in computational statis-
tics, underpinning Monte Carlo methods, stochastic simulations, and probabilistic model-
ing. Among the numerous methods available, the Ziggurat algorithm has established itself
as a fast and exact technique for generating samples from unimodal distributions, par-
ticularly the standard normal. Its layered rejection sampling design enables exceptional
computational efficiency, which is essential for large-scale simulation studies and high-
dimensional applications.

In recent years, there has been increasing demand for flexible families of distributions
capable of capturing both light and heavy-tailed behaviors in real data. One such class
is the gamma-order generalized normal (gamma-GN) distribution, which generalizes the
normal model through a tail-shaping parameter that modulates kurtosis while preserving
symmetry. Despite its flexibility, efficient sampling from this family —especially in its
multivariate form— remains an open computational challenge.

The importance of generating random variables efficiently is both computational and
methodological. Random variable generation is essential for simulation-based inference,
robust testing, and model validation [1, 2]. Matrix-analytic methods underpin multivariate
constructions [3], and modern Monte Carlo frameworks draw upon nonlinear experimental
design principles [4].

Characteristic-function methodologies and multiscale dependence diagnostics [5, 6], as
well as robust high-dimensional inference in multivariate normal settings [7], and tradi-
tional tests for bivariate independence and normality [8], depend critically on realistic sim-
ulators to assess test sensitivity. Likewise, generative methods are essential for evaluating
robust multivariate tests, as found in recent studies on alpha-stable and high-dimensional
normal mean testing [9]. Recent work has also emphasized the relevance of simulation-based
regression frameworks applied to bounded and skewed outcomes [10], and the modeling
of complex data structures [11]. Furthermore, specific challenges in approximating distri-
butions derived from products of random variables, such as the normal-normal product,
demand refined simulation tools [12].

In that context, generalized normal models with tunable tails present ideal tools for
assessing method performance under controlled complexity. Indeed, traditional techniques
such as bilinear expansions and polynomial orthogonal decompositions remain central to
symmetric multivariate sampling [13, 14], and special functions —like the Lambert W—
play growing roles in generating tail-adaptive distributions [15]. These developments em-
phasize the need for reproducible and flexible generation methods.

The gamma-GN distribution is a Kotz-type family introduced in [16] in the context of
Euclidean logarithmic Sobolev inequalities and further analyzed in [17, 18, 19, 20]. Owing
to a single shape parameter, it smoothly transitions across light-tailed, Gaussian, and
heavy-tailed regimes —an adaptability that has proven valuable in information-theoretic
applications [18, 21, 22]. Despite its theoretical appeal, efficient simulation procedures for
this family remain scarce.

The objective of this article is to develop and validate a tail-adaptive Ziggurat sampler
for the gamma-GN distribution, covering both univariate and multivariate settings. This
includes performance assessments via simulation studies and an application to real data.
We adapt the Ziggurat algorithm [23] to the gamma-GN setting. By modifying the layer
construction and tail handling, we obtain a sampler that preserves the speed of the original
method while extending its applicability to any dimension.



Chilean Journal of Statistics 81

The remainder of the article is organised as follows. Section 2 introduces the gamma-GN
distribution and presents the analytical properties that underpin the proposed sampler. In
Section 3, we detail the construction of the adapted Ziggurat algorithm for both univariate
and multivariate cases. In Section 4, simulation results are reported under diverse shape
parameters and dimensional settings. Section 5 presents the application with financial
return data. Conclusions and possible extensions and future research are presented in
Section 6.

2. METHODOLOGY

To understand the construction of an efficient generator, we first revisit the analytical
structure of the gamma-GN distribution. This section introduces the core properties of
the distribution and sets the theoretical foundation for the adapted Ziggurat algorithm.

2.1  Background and motivation

As mentioned, the gamma-GN distribution extends the traditional normal model by adding
a positive shape parameter 7. Together with the location p and the scale o (or covariance
matrix ¥ in the multivariate case) this parameter controls kurtosis and tail decay [24].
Larger values of 7 produce heavier tails, whereas v close to two reproduces the Gaussian
profile.

Efficient random-number generation from the gamma-GN distribution is challenging
because the probability density function (PDF) lacks a closed-form inverse cumulative
distribution function (CDF). Rejection sampling therefore remains the tool of choice. The
Ziggurat algorithm [23] is a particularly fast rejection scheme that pre-computes a stack
of equal-area rectangles under the target PDF; during simulation, most candidate points
are accepted without evaluating the PDF, yielding constant expected time per variable.
Although the original construction was tailored to the standard normal distribution, it can
be adapted to any symmetric, unimodal distribution, including the gamma-GN model, by
redesigning the layer recursion and the tail test.

The remainder of this section recalls the analytical form of the gamma-GN distribution
and fixes the notation used throughout the article.

2.2 The gamma-order generalized normal distribution

Let p € IN and let p € RP be a location vector, 3 € RP*P a positive-definite scale matrix,
and v > 1 a shape parameter. A random vector X follows the gamma-GN distribution,
written X ~ Normal? (u, X), if its PDF is given by

o ®) = Cyenn (- (11 ) @y ) e 1)

where

rE+1 _ 1\ PO—D/y
Q(x) = (‘T_N)TE_I(JU_N)v C’y,pzﬂ_p/2|2|_l/2 (2 i ) ) <’7 1> .
v

r(p(51) +1

The constant C,,, ensures fRP fy(x; p, X)de =1 and its finiteness for every v > 1 follows
from the properties of the gamma function invoked above.
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For p =1, ¥ = 02, we have the constant stated as

_ F(3/2) ’y—l (v=1)/~
= G N @

which yields the univariate PDF formulated as

T —p
g

A v—1
Oy (T ,0) = a\}% exp (—7

v/(v=1)
) : (3)

in agreement with [20]. The expression presented in (3) serves as the basis for the univariate
Ziggurat layers constructed in Subsection 3.1.

2.3  Smoothness

Let ¢ = (y—1)/vy and = v/(y — 1) > 1. From the univariate form of the PDF stated in
(3), we have

Ay

s p,0) = = e (—eclz = ul?)

where the constant A, is defined in (2).

PROPOSITION 1 [Degree of smoothness] Let f,(x;p,3) be the PDF stated in (1) and
B =/(v—1) as defined above. Then, we have that:

(i) For every v > 1 one has f, € C° (RP \ {u}).
(ii) At the centre z = u the behaviour depends on :
(ii.1) If B € 2IN (that is, § is a positive even integer), then f, € C°°(IRP); all derivatives
exist and are finite.
(ii.2) Otherwise, the one-sided derivatives of order m exist and are finite if and only if
m < B. Consequently f, € C™(RP) for every integer m < 3, while no derivative
of order m > (3 exists at x = u.
(iii) If v < 1, then the exponent 5 = /(v — 1) is either undefined or negative, and even
the first derivative diverges at « = u; the PDF is therefore non-differentiable there.

Proof [PROPOSITION 1] We treat the univariate case (p = 1), whereas the multivariate
result follows by componentwise differentiation. Write ¢ (z;u,0) = C, exp(—clz — p|?)
and set g(z) = |v — p|®. For  # p the mth derivative of ¢ is a linear combination of
terms |z — p|?~™ exp(—c|z — u|?), hence smooth.

(i) B € 2IN. Here g is a polynomial in x— pu; composing with the analytic map u — exp(—cu)
preserves analyticity, so all derivatives of ¢, exist at x = p.

(ii) B ¢ 2IN. The factor |z — u|?~™ is finite at © = u precisely when 8 —m > 0, that is,
m < . For m > [ it diverges, so the corresponding derivatives do not exist.
(iii) v < 1. Here the exponent 3 = ~/(y — 1) is either undefined (y = 1) or negative

(v < 1). In both cases, the first derivative contains the factor |z — p|#~! with a negative
exponent, which diverges at x = u; hence the PDF is not differentiable there. [ |
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2.4  PDF concavity and optimal radius

In the univariate case (p = 1), write
fy(@ip,0) = Cyexp(—clz — pl?)

where ¢ = (v —1)/vyand f = v/(y — 1) > 1. Let y = |x— p| and note that sign(x —p) = £1
for x # p. Differentiating twice, we obtain

2
@fv(w; s o) = fy(x;pu,0)Hy (y),

where H, (y) = (28%y* 7% — cB(8 — 1)y"72).
Next, we analyze the concave central region of f,. Since f, > 0, the sign of f” is
determined by H,(y). By factoring, we have

H,(y) = cBy”2(cBy” — (6 - 1)).
Hence, f”(z) < 0 if and only if y® < (8 —1)/(cB). However, since ¢ = 1, it follows that
|z —p| <ryo, = (8- 1)Y= (y - 1)/,
Therefore, we define the diameter of the concave region of f, as
q(7) = 2ry0 = 20(y = )T > (4)

whereas outside this interval the PDF is convex (f”(z) > 0).
The maximum of ¢(+y) is obtained as follows. Differentiating log(g(y)) yields

d —y —log(vy — 1)
—-log(q(v)) = :
The unique root in v > 1 satisfies v + log(y — 1) = 0, or equivalently, (y — 1) exp(y) = 1.
Using the Lambert function, we obtain yopy = 1+ W (exp(—1)) ~ 1.27846 and, substituting
it into the expression given in (4), we reach

q (Yopt) =~ 2.64230.

REMARK 1 [log(fy)]. From the expression given by

2

d
oz loa(fy (@i 0)) = —eB(B = Dlw —pl’2 <0, y>1,

it follows that log( f.) is strictly concave on R\{p}. If 5 > 2, concavity extends continuously
to x = p. Then, the optimal radius discussed above refers to the concavity of the PDF f,
itself, not of its logarithm.
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2.5 Ezxplicit verification for p =1

Letting z = |z — p|/o and vo = (v — 1) /(> 0), the second derivative of f, can be written
as

d? C _ _
@) = —Fexp (=70210) (28221072 = 50 (1 = 0) 2110 72).

Imposing d? fy/ dx? < 0 recovers precisely |z —pu| < r o, with r, as given above, confirming
the results obtained through elementary algebra.
If X ~ Normali(u, 0?) and Z = (X — p)/co, the CDF of Z is defined as

T sion(z _ 1\ O-D/y
F,(z) = % + v sign(z) Erf, /-1 ((“) M) ;o (5)

2 (v =)/ (v/(v = 1)) g
where Erf is the generalised error function [25] expressed as

I(a+1) /"”
——= | exp(—tY)dt, a>0.
VT Jo

The equation stated in (5) later serves as a reference for the quantile checks in Section 4.

Erf,(z) =

2.6 Kotz representation

The expression presented in (5) completes the brief review needed for the numerical work
that follows. Extensive analyses of the gamma-GN distribution can be found in [16, 17, 26].
Throughout this article we restrict attention to v > 1. Then, the PDF is well defined and
smooth, whereas for v < 1 it either degenerates or fails to integrate to one.

The gamma-GN distribution belongs to the Kotz family of elliptical distributions. In
general, a Kotz PDF has the form stated as

fKotzm,T,S(u,E) = K(ma T S)|E|_1/2Qm_1 exp(—?“QS), r>0,s>0,2m+p—-2>0, (6)

where

(2m+p—2)/(2s)
K(m,rs) = sU'(p/2)r

= — )2 Yz — ).
= A (@mip -2 - @Tw E @)

Comparing the PDF presented in (6) with the PDF stated in (1) shows that

fy(w;p, %) = TKotzr, (-1 20 2r- 1) (1,2

whereas the ordinary Gaussian PDF corresponds t0 fkota, , ., (
on Kotz-type distributions.

Accordingly, every structural property of Kotz distributions —elliptical contours, affine
equivariance, existence of moments under suitable parameter combinations— carries over
to the gamma-GN distribution and is not repeated here.

Tables 1-4 report CDF values for selected shape parameters. Table 1 refers to the uni-
variate distribution AV} (0, 1), whereas Tables 2-4 concern the bivariate case NZ(0, %) un-
der three covariance structures: identity covariance (uncorrelated components), positive
correlation 0.5 and negative correlation —0.7. All values were obtained with the routine
adaptIntegrate of the cubature package of the R software [28].

u,x); see [27] for background
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Table 1 CDF values F,(z) at different points z, for X ~ Normal (0, 1).

¥ Fyz<-3) Fy(z<-2) Fy(z<-1) Fy(xz<0) Fy(z<1) F,(z <2) F,(x<3)
1.01 <10~ <10~ 0.0197 0.5000 0.9803 > 0.999999 > 0.999999
1.80 0.0005 0.0167 0.1538 0.5000 0.8462 0.9833 0.9995
2.00 0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987
2.20 0.0025 0.0277 0.1622 0.5000 0.8378 0.9723 0.9975
4.00 0.0112 0.0480 0.1742 0.5000 0.8258 0.9520 0.9888
50.00 0.0238 0.0663 0.1833 0.5000 0.8167 0.9337 0.9762

Table 2 CDF values F,(z,y) at different points (z,y), with identity covariance (3 = I).

¥ Fy(z,y < -3) Fy(z,y < -2) Fy(z,y < —-1) Fy(z,y<0) Fy(z,y <1) Fy(z,y <2) Fy(z,y<3)

1.01 <106 <1076 <10-6 0.2500 0.9903 > 0.999999 > 0.999999
1.80  7.6970x10~8 1.7200x10~%  2.0475x1072 0.2500 0.7260 0.9696 0.9992
2.00 1.8222x106 5.1757x10~%  2.5171x10~2 0.2500 0.7079 0.9550 0.9973
2.20 1.0408x1075 > 0.999999x10~3 2.9000x10~2 0.2500 0.6940 0.9422 0.9946
4.00  5.6669x10~* 5.8483x1073 4.6135x10~2 0.2500 0.6406 0.8810 0.9689
50.00 3.6822x10~3 1.5558x1072  6.4202x1072 0.2500 0.5924 0.8151 0.9226

1 0.5
Table 3 CDF values F,(z,y) at different points (z,y), with ¥ = [0 1 :| .

¥ Fy(@,y < =3) Fy(z,y<=2) Fy(z,y <—1) Fy(z,y<0) Py(z,y<1) Fy(z,y<2) Fy(z,y<3)

1.01 <106 <10-6 <106 0.3333 0.9903 > 0.999999 > 0.999999
1.80  1.2926x10~° 2.1000x10~3 5.5100x10~2 0.3333 0.7607 0.9716 0.9992
2.00 8.1890x1075 4.0529x1073 6.2514x10~2 0.3333 0.7452 0.9586 0.9974
2.20  2.3731x10~% 6.1000x1073  6.8400x10~2 0.3333 0.7334 0.9472 0.9948
4.00 3.2232x1073  1.9215x1072 9.2844x10~2 0.3333 0.6873 0.8944 0.9716
50.00 1.2131x1072 3.8229x1072 1.1694x10~! 0.3333 0.6452 0.8378 0.9310
. . . 1 -0.7
Table 4 CDF values F,(z,y) at different points (z,y), with ¥ = o7 1 :|
v Fy(z,y <-=3) Fy(z,y<-2) Fy(z,y<-1) Fy(z,y<0) Fy(z,y<1) Fy(z,y<2) Fy(z,y<3)
1.01 <1076 <106 <1076 0.1266 0.9903 > 0.999999 > 0.999999
1.80 7.0994x10~23 3.5685x10~11 2.1211x10~* 0.1266 0.7058 0.9694 0.9992
2.00 4.3573x10~16  7.3063x107° 5.1238x10~% 0.1266 0.6832 0.9545 0.9973
2.20 3.2404x10713  1.2000x10~7 8.8405x10~4 0.1266 0.6659 0.9411 0.9946
4.00 3.1796x10~7 4.8684x107% 3.9000x10~3 0.1266 0.5983 0.8752 0.9684
50.00 4.3856x10~5 6.4679x10~% 9.3000x10~3 0.1266 0.5375 0.8002 0.9190

Tables 2-4 correspond, respectively, to the identity covariance matrix ¥ = I, to a
positively correlated case with p = 0.5, and to a negatively correlated case with p = —0.7.

For the univariate case (Table 1) symmetry implies P(X < 0) = 0.5 for every 7. With
3 = Iy, we obtain P(X < 0,Y < 0) = 0.25, the probability of one quadrant under a
radially symmetric PDF. Note that the components are uncorrelated but —except for v =
2— not independent. Positive correlation (p = 0.5) increases that joint probability, whereas
negative correlation (p = —0.7) decreases it, illustrating the impact of the covariance
structure. Tail behaviour is governed by -, where values near two mimic the Gaussian
profile; v < 2 yields lighter tails, while v > 2 produces progressively heavier tails.
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2.7 Affine equivariance and mazimum-likelihood estimation

The gamma-GN distribution is closed under affine transformations [19] such expressed in
the following theorem.

THEOREM 1 [Affine equivariance|] Let X ~ Normal?(p,¥) and A € R?*? have full row
rank. Then, we have AX + b ~ Normal?(Au + b, ATAT).

With + known and p treated as fixed, the likelihood equations of [17] give

2(y=1)

. RS _
52 = (nz 1X; — [0 1))
=1

Extending to the case (i, 02, ) all unknown simply adds one scalar equation for ~.

2.8 Inverse mapping f(x) =y

The Ziggurat construction requires the inverse relation between PDF height y and ab-
scissa x; we derive this in the univariate setting immediately below.

THEOREM 2 [Inverse relation f,(z) = y] Let X ~ Normal,ly(,u,aQ) with v > 1 and PDF
stated as ¢~(z;p,0) given in (3). For any height y such that 0 < y < ¢,(p; p,0) the
corresponding abscissae satisfy

(v=1)/~
x:uj:a<—ﬁy’_yllog <ya)\ﬁ>> ,
y

where

_ 1’*(3/2) ,7_1 (v=1)/~
A”‘r«v—l)/wn( 5 > |

Proof [THEOREM 2] Starting from ¢.(z;u,0) = y and isolating the exponential term

gives exp(—((y — 1)/9)|(z — p) /o [/ O~} = yo/7/\,. Taking logarithms, multiplying by
—v/(7 — 1) and raising to the power (y — 1)/~ yields

() ()
7 B gl

Symmetry of the PDF about p provides the two signed solutions displayed. [ |

3. ZIGGURAT SAMPLING ALGORITHM

This section presents the adapted Ziggurat algorithm, designed specifically for the gamma-
GN distribution. We describe in detail the modifications introduced to support light- to
heavy-tailed regimes, and how the construction extends naturally to the multivariate case.

3.1  Univariate construction

We first give the univariate algorithm. The multivariate sampler is obtained using the
standard radial decomposition of elliptical distributions, which yields a Kotz-type version
of the gamma-GN distribution with elliptical contours rather than independent marginals.
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Concretely, generate an independent direction U ~ Normal,(0,I), a radial variable R
with PDF given by h(r) oc rP~'exp(—cr?), and set X = p + ZV2(RU/||U||). Thus, all
that is required is a reliable generator for the one-dimensional case described below.

Fix an even number of rectangles N (N = 256 is used in [23] and we keep that value
throughout). Let 2 x be the positive tail cut-off chosen so that F,(zxy) ~ 0.9999; any one-
dimensional root finder applied to F (z)—0.9999 is adequate. Define the common rectangle
area A =N fy(zN)+ f:co;j fy(x)dz, which is the area of every layer. Set yn = fy(zn). For
1 =N —1,...,1, compute recursively using the expression stated as

Yi = Yir1 + A/Tivy1, x = fv_l(yi) (via Theorem 2), (7)

where f.° ! denotes the inverse of the univariate PDF restricted to the interval [0, 00).

The base rectangle has width o = 0 and height y;. As a practical consistency check,
one may verify that A ~ x1(y1 — y2), which should hold to machine precision when the
precomputed table is correct.

3.2 Sampling procedure

With the layer table given by ((z;,v;)), for ¢ = 0,..., N, pre-computed as described in
Subsection 3.1, the generation of a single pseudo-random variable proceeds as follows.

Choose an index 4 uniformly from {1,...,N — 1} and draw U; ~ Uniform(0,1); set
z=U 1T5.

e Immediate acceptance: if x < x;41, accept = (assign a random sign) without further
tests.
e Wedge test: otherwise draw Uz ~ Uniform(0,1) and accept = if Ua(y; — yiy1) < fy(z) —

Yit1-
e Tail: if i = N — 1, jump to the specialised tail routine (Subsection 3.3).

REMARK 2. Some observations are the following:

(i) The equation stated in (7) is the original formula presented in [23], obtained by
equating the area of rectangle i (z;41y;) to A and eliminating y;.

(ii) All pre-computed quantities depend on « only through f, and its inverse. Thus, a
new table is needed only when ~ changes, whereas p and o are incorporated later by
affine equivariance.

(iii) A table of (z;,y;) for several representative values of +y is supplied in the supplemen-
tary R script.

Figure 1 shows the layer structure for N = 10 for visual clarity. In practice, N > 256
keeps the rejection rate below 2% for every v > 1.

1.0

0.8} X1
rg 0.6 X2
: .
= 0.4} Xa

\l Xs
0.2} N e
~—1x
— ] Xs
] X9
0 1 2 3 4 5 6

Figure 1 Ziggurat algorithm with layered rectangles (N = 10).
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3.3 TAIL SAMPLER

Let fy(z) = A\ exp(—cz?), with ¢ = (y —1)/y and 8 = v/(y — 1) > 1, be the standard
v-GN PDF, and write

St = [ (0= (575 ) T0/8 e,

where I'(a, z) is the upper incomplete gamma function. For z > zx the conditional CDF
of the tail defined as

S(x) ) I (1/8,ca?)

Glz)=PX<z|X>zy)=1- =1-———~ x>uzxpN,
() = H{ | ) S(zn) T(1/8,cay)
is strictly increasing and maps [z, 00) onto [0,1).
For exact inversion, draw U ~ Uniform(0, 1) and set
= (T8, (1= D)1/, cxi) V7, (8)

where I'"(a, -) denotes the inverse of z — I'(a, z) with respect to its second argument. Be-
cause I'(a, z) is monotone in z, the inversion can be carried out by one-dimensional Newton
iteration; the update zp41 = 2x — ['(a, 2¢) — y/(—22 ' exp(—z;)) converges quadratically
from any positive starting value (e = 1/ < 1 here). The equation presented in (8) is exact
for every 8 > 1 and no further acceptance step is required. Lastly, assign a random sign
to = to exploit symmetry.

REMARK 3. When an analytic inverse of I'(a, z) is unavailable (all 5 # 1), the cost of two
or three Newton steps is negligible compared with evaluating f,, and the overall expected
time per variable remains constant.

4. SIMULATION STUDY

We now assess the performance of the proposed sampler through a Monte Carlo simulation
study. Various scenarios are explored to validate accuracy, speed, and adaptability across
shape and scale configurations, both in univariate and multivariate settings.

4.1 FExperimental setup

We illustrate the sampler with n = 1000 draws for several shape parameters.
All experiments use ¢ = 0 and o> = 1. The implementation, including all sim-
ulation scripts, precomputed tables, and plotting routines, is openly available at
github.com/UlrichEschcol /Generate_ RN_GND

This resource ensures full reproducibility of all results reported in this article.

4.2  Benchmark: Gaussian case

Figure 2 shows a histogram and an empirical quantile versus theoretical quantile (QQ)
plot for v = 2. The Kolmogorov-Smirnov test yields D = 0.0244 and p = 0.59, so the
generated sample is statistically indistinguishable from the standard normal distribution
at the 5% level.
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Distribution of Generated GND Samples (y=2) Q-Q line of Generated GND Samples (y=2)
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Figure 2 Histogram (left) and QQ plot (right) for v = 2; n = 1000.

4.3 Effect of the shape parameter

Figure 3 compares empirical PDFs for v € (1.01,2,4,50). When ~ is just above one the
distribution is nearly flat around the centre; as - increases the profile progresses from
Gaussian to distinctly heavy-tailed, with v = 50 displaying a sharp peak and pronounced
tails. In every panel the theoretical PDF (solid red) overlays the kernel estimate (dashed
blue) with excellent agreement, confirming that the sampler adapts smoothly to the full
range of tail behaviours.
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Figure 3 Empirical PDFs for v = 1.01, 2,4, 50; n = 1000 each.
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4.4  Summary and extension

As v moves from values just above one to very large numbers the gamma-GN distribution
evolves from an almost uniform plateau, through the Gaussian shape at v = 2, to an in-
creasingly peaked and heavy-tailed profile. The Ziggurat sampler reproduces these changes
faithfully, with theoretical curves tracking empirical histograms for every case inspected.

4.5 Bivariate extension

Figures 4-7 visualise the same progression for the bivariate distribution with

105
2_(0.5 1)'

Small v yields a broad flat ridge; v = 2 gives the familiar Gaussian mound; and v = 50
concentrates mass tightly around the origin with heavy elliptical tails.

Density

[\

2@

o

0%

S

Figure 4 PDF surface for v = 1.01 and p = 0.5.

The influence of the correlation coefficient is shown in Figures 8-9. For fixed v = 4,
weak correlation (p = 0.1) produces a nearly circular contour, whereas strong positive
correlation (p = 0.8) stretches the PDF along the main diagonal.

These experiments confirm that + controls spread and tail weight, while ¥ governs

orientation and dependence, demonstrating the versatility of the gamma-GN family for
multivariate modelling tasks.
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Figure 5 PDF surface for v = 2 and p = 0.5.
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Figure 6 PDF surface for y =4 and p = 0.5.
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Figure 7 PDF surface for v = 50 and p = 0.5.

Figure 8 v =4, p=0.1.
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Figure 9 v =4, p=0.8.

5. APPLICATION TO REAL-WORLD DATA

In this section, to demonstrate the practical relevance of our method, we apply it to a real-
world dataset from biomedical signal processing. This example illustrates how tail-adaptive
simulation can benefit empirical modeling and analysis.

5.1 Data description

To illustrate the practical value of the sampler, we model daily log-returns (on trading days)
of four international stocks: Eletrobras (Brazil), Toyota (Japan), Saipem (Italy), and Terna
(Italy), using the gamma-GN distribution. Adjusted closing prices were downloaded from
Yahoo Finance for the period 1 January 2022 to 31 May 2025, and log-returns
were computed as 1, = log(P;/P;—1), where P, denotes the adjusted closing price on day ¢
and the logarithm is natural.

5.2  Parameter estimation

For each series we computed the maximum-likelihood estimates (f,0,7) by numerically
maximising the log-likelihood function based on the PDF given in (3). Convergence
was achieved via the Broyden-Fletcher-Goldfarb-Shanno algorithm with multiple start-
ing points; standard errors are reported in the supplementary material.

Table 5 Maximum-likelihood estimates for daily log-returns (1 January 2022 to 31 May 2025).

Eletrobras Terna Toyota  Saipem

0.0003 0.0003 0.0003 —0.0009
0.0182 0.0129 0.0202 0.0534
2.6000 3.8000  4.7000 8.0000
~ (shape-adjusted) 0.0167 0.0108 0.0159 0.0291

)=2) A T)

Q
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5.3  Results and interpretation

Figures 10(a)-10(d) superimpose the fitted gamma-GN PDF (solid red) and the Gaussian
fit with identical mean/variance (dashed black) on the kernel estimate of each empirical
distribution (blue). Eletrobras shows moderately heavy tails (7 = 2.6). Terna exhibits
mild leptokurtosis (7 = 3.8). Toyota returns are closer to Gaussian but still display excess
peakiness (7 = 4.7). Saipem is strongly leptokurtic, requiring a large shape parameter (7 =
8.0). Across all cases, the gamma-GN distribution captures both the central peak and the
tail decay better than the normal benchmark, confirming its suitability for financial-return
data that display varying degrees of kurtosis.

— ONg=23) — ol=39)

= Nomal = Normal

= ReilData — RealData

108 004 000 0.04 -0.080 -0025 0.00 0025 0.08)
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(a) Eletrobras: empirical PDF (blue), fitted normal (b) Terna: fitted gamma-GN distribution with 7 =
(dashed), fitted gamma-GN distribution (¥ = 2.6, 3.8.
red).
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c¢) Toyota: fitted gamma-GN distribution with 5 = d) Saipem: fitted gamma-GN distribution with 5§ =
4.7. 8.0.

Figure 10 Empirical PDF's and fitted gamma-GN models for selected stocks.

These findings support the flexibility of the gamma-GN family in real-data settings
where tail thickness varies markedly across assets.
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6. CONCLUSIONS

This work has developed and validated a fast, exact sampling scheme for the gamma-order
generalized normal distribution by extending the traditional Ziggurat algorithm. The ex-
tended Ziggurat algorithm enables efficient generation of random variates from light-tailed,
Gaussian, and heavy-tailed distributions through a single shape parameter, that is, gamma.
Importantly, the method preserves affine equivariance, allowing users to impose any valid
covariance structure in the multivariate setting. The proposed adaptation generalizes the
standard Ziggurat algorithm while retaining its constant expected cost per sample.

Comprehensive numerical simulations demonstrated that the algorithm is both accurate
and computationally efficient across a wide range of dimensionalities and shape parame-
ters. In addition, an application to financial return data confirmed the method’s practical
relevance and adaptability to real-world heavy-tailed datasets. The gamma-order gener-
alized normal family proved capable of capturing tail behavior more effectively than the
Gaussian counterpart, especially in the modeling of asset returns.

Despite these advantages, the current implementation relies on symmetric distributions
and does not accommodate skewed gamma-order generalized normal extensions. Further-
more, although the expected cost is constant, the rejection rate in extreme tails is sensi-
tive to the chosen cut-off threshold, which remains manually tuned in the present version.
These factors may limit performance when sampling from highly asymmetric or extremely
heavy-tailed data.

Future work will focus on three main directions. First, the development of asymmetric
versions of the gamma-order generalized normal distribution and corresponding exten-
sions of the Ziggurat algorithm will allow broader modeling capabilities. Second, auto-
matic tuning procedures for the tail cut-off parameter —perhaps using adaptive rejection
schemes or optimization heuristics— could further enhance stability and reduce the rejec-
tion rate in extreme cases. Third, extending the implementation to exploit parallel hard-
ware and modern multithreading architectures would enable massive-scale simulations for
high-dimensional applications.

The proposed algorithm, along with its precomputed tables and source code, is freely
available under an open-source license at github.com/UlrichEschcol/Generate_Z RN_GND,
ensuring reproducibilityand facilitating future extensions by the scientific community.
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