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Abstract

Bootstrap-based inference is investigated for non-nested hypothesis testing in beta re-
gression models with small samples. Specifically, the J and MJ tests are considered,
which assess whether one model outperforms its non-nested alternatives by augmenting
it with predictors from competing specifications. Their standard bootstrap and fast dou-
ble bootstrap versions are examined. Monte Carlo simulations reveal that conventional
asymptotic tests su↵er from size distortions in finite samples. The fast double bootstrap
versions of the J and MJ tests yield more accurate inference while requiring minimal
additional computational cost. The theoretical results are supported by an empirical ap-
plication that illustrates the practical value of the proposed methods for model selection
in beta regression.
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1. Introduction

Two regression models are considered non-nested when neither can be derived from the
other by imposing linear restrictions on their parameters. In such cases, likelihood ratio
(LR) tests —suitable for nested model comparisons— are not applicable, and alternative
procedures must be employed. A prominent solution in the context of linear models is
the J test introduced in [1], which constructs an encompassing model that contains all
candidate specifications as special cases. The J test evaluates whether including regressors
from an alternative model improves the fit of the model under consideration. Under the
null hypothesis, the test statistic is asymptotically chi-square (�2) distributed.
Despite its widespread use, the J test has important limitations. Its asymptotic justifi-

cation may yield considerable size distortions in small samples, a concern emphasized by
several authors [2, 3]. Furthermore, when multiple competing models are considered, se-
quential application of the J test increases the risk of inflated type I errors due to repeated
testing. To address this limitation, the MJ test, a minimum-statistic-based approach that
tests the joint null hypothesis that no model outperforms the others, was proposed in [4].
This strategy enables simultaneous comparison of several non-nested models and reduces
the cumulative error associated with multiple pairwise tests.
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The extension of these tests to beta regressions introduces additional challenges. Beta
regression is a flexible class of models suited for continuous responses restricted to the stan-
dard unit interval, with widespread applications in economics, medicine, ecology, and other
fields. Its specification includes separate submodels for the mean and precision parameters,
which allows modeling heteroskedasticity and varying dispersion [5, 6]. In applied research,
analysts often face the need to compare non-nested beta regression models di↵ering not
only in included covariates but also in their choice of link functions or in the structure
of the precision submodel. As such, non-nested comparisons in this context are common
and nontrivial. The J and MJ testing frameworks were extended to beta regressions in
[7], where it is demonstrated that bootstrap implementations can improve performance in
small samples. Related developments were also proposed for broader generalized additive
models for location, scale and shape, as discussed in [8] using results from [9].
Importantly, many empirical studies using beta regression are based on relatively small

sample sizes —particularly in economics and the social sciences— making reliable inference
di�cult. In such cases, bootstrap methods are not only useful but often necessary to achieve
reasonable finite-sample accuracy. However, conventional bootstrap methods still fall short
in some scenarios. A full double bootstrap o↵ers improved performance but at the cost of
a computational burden that is often prohibitive.
Several studies have explored the fast double bootstrap (FDB) method and its appli-

cations. The FDB method was employed in [10] for bias correction. A higher-order iter-
ative framework was developed in [11] to enhance the method, and the performance of
FDB-based LR tests in beta regression models under nested hypotheses was assessed [12].
Additional applications are discussed in [13, 14, 15, 16]. The present study contributes to
this literature by introducing novel FDB implementations of the J and MJ tests, designed
to enhance inferential accuracy while maintaining computational e�ciency.
Specifically, this article contributes to the literature by introducing FDB versions of the

J and MJ tests tailored for beta regression models. The FDB method, originally proposed
in [17], provides size improvements comparable to the full double bootstrap while requiring
far fewer resampling steps. Its e↵ectiveness was demonstrated in [18] for linear regressions
and later in [12] in the context of nested beta regression models.
We advance this research by adapting the FDB method to non-nested hypothesis testing

in beta regressions. Our proposed tests are particularly useful in applied settings where
competing models di↵er in link functions, covariates, or precision structures. Through
Monte Carlo simulations, we show that the FDB versions o↵er improvements in finite-
sample accuracy compared to their asymptotic and standard bootstrap counterparts. These
gains, while sometimes marginal relative to the standard bootstrap, come at a low com-
putational cost —requiring only a single second-level resample per bootstrap replication.
Such improvements are especially valuable in empirical applications where the bootstrap
p-value is close to the significance threshold and small refinements in accuracy can mean-
ingfully influence model selection decisions. The proposed tests therefore fill an important
methodological gap, providing practitioners with a more reliable and computationally fea-
sible tool for model comparison in beta regressions, particularly in small-sample contexts
where traditional approaches often exhibit substantial size distortions.
We present an application to model the proportion of income spent on food as a func-

tion of household income and the number of people in the household. In this context,
we identify a model that outperforms commonly used specifications by employing non-
nested hypothesis testing combined with the FDB method. This application illustrates
the practical value of the proposed bootstrap framework for empirical model selection. By
enabling more reliable inference in the comparison of competing, non-nested specifications,
the method contributes to more accurate conclusions in applied research —particularly in
settings where standard model selection tools may lack power or exhibit size distortions.
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The rest of the article is organized as follows. Section 2 reviews the structure of beta
regression models. In Section 3, we present the J and MJ tests adapted for beta regressions.
In Section 4, the FDB method is introduced and its implementation is outlined in our set-
ting. Section 5 reports the results of Monte Carlo simulations comparing the performance
of various test versions. In Section 6, we illustrate the practical advantages of the proposed
methods through an empirical application. In Section 7, our conclusions are stated.

2. The beta regression model

The class of beta regression models introduced in [5] is widely employed for modeling con-
tinuous response variables that assume values strictly within the open unit interval (0, 1)
—such as rates and proportions. Let Y be a random variable following a beta distribution
with mean µ 2 (0, 1) and precision parameter � > 0, denoted by Y ⇠ Beta(µ,�), under
the parametrization proposed in [5]. Its probability density function is given by

f(y;µ,�) =
�(�)

�(µ�)�((1� µ)�)
yµ��1(1� y)(1�µ)��1, 0 < y < 1, 0 < µ < 1,� > 0,

where � is the gamma function. Under this parametrization, the expectation and variance
of Y are E(Y ) = µ and Var(Y ) = µ(1�µ)/(1+�), respectively. The precision parameter �
governs the dispersion of the distribution: higher values of � correspond to lower variance,
conditional on µ.
Consider a sequence of n independent random variables Y1, . . . , Yn, where each Yt follows

a beta distribution with mean µt and precision �t. The varying precision beta regression
model takes the form given by

Yt ⇠ Beta(µt,�t), g(µt) =
kX

i=1

xti�i = x
>
t � = ⌘t, h(�t) =

mX

j=1

ztj�j = z
>
t � = �t,

where � 2 Rk and � 2 Rm are vectors of unknown parameters, xt = (xt1, . . . , xtk)> and
zt = (zt1, . . . , ztm)> are vectors of fixed covariates (k +m < n), ⌘t and �t are linear pre-
dictors, and g: (0, 1) ! R and h: R+ ! R are strictly monotonic and twice di↵erentiable
link functions.
Parameter estimation is carried out via the maximum likelihood method. The corre-

sponding log-likelihood function is given by

`(�,�) =
nX

t=1

[ log(�(�t))� log(�(µt�t))

� log(�((1� µt)�t)) + (µt�t � 1) log(yt) + ((1� µt)�t � 1) log(1� yt)].

The score functions for � and � are given by

U�(�,�) = X
>
V T (y⇤ � µ

⇤), U�(�,�) = Z
>
Ha,

where X is an n ⇥ k matrix and Z is an n ⇥ m matrix whose tth rows are x
>
t and

z
>
t , respectively. The matrices T , H, and V are diagonal with entries given by T =

diag {1/g0(µ1), . . . , 1/g0(µn)} ,H = diag {1/h0(�1), . . . , 1/h0(�n)} ,V = diag {�1, . . . ,�n} ,
where primes denote derivatives. The vectors y⇤ = (y⇤1, . . . , y

⇤
n)

> and µ
⇤ = (µ⇤

1, . . . , µ
⇤
n)

>,
with y⇤t = log(yt/(1 � yt)) and µ⇤

t =  (µt�t) �  ((1 � µt)�t), where  is the digamma
function, defined as  (w) = d log(�(w))/dw. The vector a = (a1, . . . , an)> has entries
given by at = @`t(µt,�t)/@�t, where `t(µt,�t) denotes the contribution of observation t to
the log-likelihood function.
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The maximum likelihood estimator of (�>,�>)>, denoted (b�>, b�>)>, is obtained by
solving the system of equations given by U�(�,�) = 0 and U�(�,�) = 0. As these equa-

tions generally do not admit closed-form solutions, the parameter estimates (b�
>
, b�>)> are

obtained numerically by maximizing the log-likelihood function. E�cient algorithms such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method are typically em-
ployed for this task; see [19, 20] for further details.
Asymptotic normality of the maximum likelihood estimator is well established under

standard regularity conditions, such as independent observations, di↵erentiable and one-to-
one link functions, and a nonsingular Fisher information matrix; see, for instance, [21] for a
general treatment in the context of generalized linear models. While analogous results have
not been formally derived for beta regression models with varying precision, we assume
that similar conditions hold. Under this assumption, we have approximately

✓b�
b�

◆
⇠ Normalk+m

✓✓
�

�

◆
,K�1

◆
,

where K
�1 is the inverse of the Fisher information matrix, which has the block structure

K
�1 = K

�1(�,�) =

✓
K

��
K

��

K
��

K
��

◆
,

with components given by

K
�� =

⇣
X

>
V WX �X

>
CTHZ(Z>

DZ)�1
Z

>
HTC

>
X

⌘�1
,

K
�� =

⇣
K

��
⌘>

= �K
��

X
>
CTHZ(Z>

DZ)�1,

K
�� = (Z>

DZ)�1[Im + (Z>
HTC

>
X)K��

X
>
CTHZ(Z>

DZ)�1].

Here, Im is the m ⇥ m identity matrix, and W , C, and D are diagonal matri-
ces whose tth diagonal elements, for t = 1, . . . , n, are given, respectively, by wt =
�t ( 0(µt�t) +  0((1� µt)�t)) 1/(g0(µt))2, ct = �t ( 0(µt�t)µt �  0((1� µt)�t)(1� µt)),
dt =  0(µt�t)µ2

t +  0((1 � µt)�t)(1 � µt)2 �  0(�t), where  0 is the trigamma function.
The inverse Fisher information matrix is used to compute standard errors for the max-
imum likelihood estimators in beta regressions. These standard errors correspond to the
square roots of the diagonal elements of K�1(b�, b�).

3. Non-nested hypothesis testing in beta regression models

Beta regression models in the class of varying precision include separate regression struc-
tures for the mean and precision parameters. Consequently, non-nested beta regression
models may di↵er in their choice of regressors or link functions in either submodel. Let us
consider the problem of testing N competing non-nested beta regression models.
For each model Mi, with i = 1, . . . , N , we write Mi: g(µi) = ⌘i = Xi�i and h(�i) =

�i = Zi�i, where µi and �i are vectors containing the mean and precision parameters,
respectively; ⌘i and �i are the linear predictors; Xi and Zi are model-specific design
matrices; and �i and �i are vectors of regression coe�cients. The links g and h, previously
defined for scalar arguments, are applied here componentwise to µi and �i.
The J test, originally proposed in [1] for linear regression models and later extended to

beta regression in [7], is suitable for testing non-nested hypotheses. Let dm(i) and dp(i) de-
note the number of models that di↵er from model Mi in the mean and precision submodels,
respectively, and define the set of candidate models as M 2 {1, . . . , N}.



64 Lima and Cribari-Neto

To test a given candidate model Ml, with l 2 M, using the J test, one first estimates the
parameters of all competing models Mj , for each j 2 M\{l}, via the maximum likelihood
method.
Next, the dm(l) estimated predictors b⌘j from models that di↵er in the mean specification

are incorporated into the mean submodel of Ml. Similarly, the dp(l) estimated predictors b�j
from models that di↵er in the precision specification are included in the precision submodel
of Ml. The J test statistic is the LR statistic used to jointly test the exclusion of all b⌘j and
b�j from the augmented model. Note that this entails including dm(l) and dp(l) additional
covariates in the mean and precision submodels, respectively. Model Ml is rejected at
the significance level ↵ if Jl > �2

1�↵,dm(l)+dp(l)
. Intuitively, model Ml is not rejected if the

inclusion of the estimated predictors from the competing models does not improve its
fit. Otherwise, it is rejected in favor of at least one competing alternative. However, this
has a drawback: when testing a large number of non-nested models, a sequential testing
procedure is required in which each null hypothesis —asserting that the mth model is
correctly specified— is tested individually. Moreover, the J test may yield no rejections,
suggesting that all models are compatible with the data, or it may reject all competing
models at once, indicating misspecification across the board. To address this, the MJ
test was proposed in [4] to assess whether the true model is included among the set of
candidates, thereby avoiding sequential testing and reducing potential size distortions.
The MJ test is conducted by computing Ji for all i 2 M and defining the test statistic

as MJ = min{Ji: i 2 M}. The null hypothesis that the true model is included in the
candidate set is rejected if MJ > �2

1�↵,⌧i , where ⌧i denotes the degrees of freedom of the J
test corresponding to the selected model, that is, the model for which Ji = MJ.
Unlike in linear regression models, beta regression models involve two distinct submodels

—one for the mean and another for the precision. Non-nested models may di↵er in the
specification of the mean submodel, the precision submodel, or both. Consequently, the
individual J tests involved in the MJ procedure may be based on di↵erent numbers of
restrictions. This contrasts with the linear regression setting, in which such di↵erences
typically do not arise. If the null hypothesis is not rejected, the model corresponding to
the minimum Ji value is selected as the most plausible model.
In small samples, the null distributions of the J and MJ statistics may be approximated

by their asymptotic counterpart, the �2 distribution. Simulation studies have shown that
both tests often exhibit distorted rejection rates in such settings. This pattern has been
consistently reported in [2, 3, 4]. To mitigate this issue, these authors recommend using a
bootstrap version of the J test in linear regression models. In the context of beta regression,
this approach was extended in [7] by proposing bootstrap versions of both the J and MJ
tests. Simulation results demonstrate that these bootstrap-based procedures yield more
accurate finite-sample performance compared to their asymptotic counterparts.
To illustrate the use of bootstrap resampling in the context of the J and MJ tests,

let Y = (Y1, . . . , Yn)> denote a vector of independent beta-distributed random variables
and y = (y1, . . . , yn)> their observed values. Suppose there are two competing non-nested
varying precision beta regression models that di↵er in the regressors included in their
mean submodels. Let X1 and X2 denote the corresponding design matrices for the mean
submodels, and ⌘1 and ⌘2 the associated linear predictors.
Let Z and � denote the design matrix and the linear predictor, respectively, for the

precision submodel, which is assumed to be the same in both models. The models can be
written as Mi: g(µi) = ⌘i = Xi�i, h(�i) = �i = Z�i, for i = 1, 2.
The bootstrap J test for assessing model M1 is implemented using Algorithm 1, while

testing M2 is analogous, as is the case when testing more than two models. The bootstrap
MJ test, in turn, can be implemented using Algorithm 2. Throughout both algorithms and
the remainder of the article, the indicator function of the set S is denoted by 1S .
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Algorithm 1 Bootstrap J test

Initial step (original data):

Estimate models M1 and M2 via the maximum likelihood method, obtaining b�1, b�1

for M1 and b�2 for M2.
Obtain the fitted linear predictor b⌘2 = X2

b�2 from M2, and include it as a covariate
in M1.
Estimate the augmented model using the original response y, and compute the test
statistic J .
Bootstrap loop:
for b = 1 to B do

Generate a bootstrap sample y⇤
b under M1, where y⇤b,t ⇠ Beta(bµ1,t, b�1,t), with bµ1,t =

g�1(x>
1,t

b�1) and b�1,t = h�1(z>
t b�1).

Re-estimate models M1 and M2 on y
⇤
b , obtaining

b�⇤
1,b, b�⇤

1,b and
b�⇤
2,b.

Compute the fitted linear predictor b⌘⇤
2,b = X2

b�⇤
2,b.

Estimate the augmented model using y
⇤
b as the response and b⌘⇤

2,b as an additional
covariate.

Compute the bootstrap test statistic J⇤
b .

end for
Compute the bootstrap p-value as p⇤(J) = (1/B)

PB
b=1 1{J⇤

b >J}.
Reject model M1 if p⇤(J) < ↵, where ↵ is the nominal significance level.

Algorithm 2 Bootstrap MJ test

Initial step (original data):
for m = 1 to 2 do

Estimate model Mm via the maximum likelihood method and compute the test
statistic Jm.

Let b�m and b�m denote the estimated mean and precision parameter vectors.
end for
Set MJ = min{J1, J2}.
Bootstrap loop:
for b = 1 to B do

for m = 1 to 2 do
Generate a bootstrap sample y

⇤
b,m under model Mm, where y⇤b,m,t ⇠

Beta(bµm,t, b�m,t), with bµm,t = g�1(x>
m,t

b�m) and b�m,t = h�1(z>
t b�m).

Re-estimate models M1 and M2 using y
⇤
b,m and compute J⇤

b,1 and J⇤
b,2.

end for
Set MJ⇤b = min{J⇤

b,1, J
⇤
b,2}.

end for
Compute the bootstrap p-value as p⇤(MJ) = (1/B)

PB
b=1 1{MJ⇤

b>MJ}.
Reject the null hypothesis —that the true model is among the candidates tested— if
p⇤(MJ) < ↵, where ↵ is the nominal significance level.

4. Fast double bootstrap J and MJ tests

Although the bootstrap versions of the J and MJ tests generally perform well, they can still
exhibit size distortions in certain scenarios, as shown in the Monte Carlo studies presented
in [4, 7]. To address this issue, an FDB scheme was proposed in [18] for using with the
J test in linear regression models, demonstrating its superior performance relative to the
standard bootstrap method.
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The FDB method, introduced in [17], o↵ers a computationally e�cient alternative to
the conventional double bootstrap. While the standard approach requires generating C
second-level pseudo-samples for each first-level pseudo-sample, the FDB method reduces
this burden by drawing only one second-level bootstrap sample per first-level sample.
The FDB method proceeds as follows. Under the null hypothesis, generate B first-

level bootstrap samples and compute the test statistic for each pseudo-sample; that is,
generate y

⇤
b and compute b⌧⇤b = ⌧(y⇤

b), for b = 1, . . . , B. Then, for each y
⇤
b , generate a

single second-level bootstrap sample y
⇤⇤
b (imposing the null hypothesis), and compute

b⌧⇤⇤b = ⌧(y⇤⇤
b ). The FDB p-value is given by p⇤⇤(⌧) = (1/B)

PB
b=1 1{b⌧⇤

b >
bQ⇤⇤
B (1�p⇤(⌧))}, where

p⇤(⌧) = (1/B)
PB

b=1 1{⌧⇤
b >b⌧} is the first-level bootstrap p-value, and bQ⇤⇤

B (1� p⇤(⌧)) is the
(1�p⇤(⌧)) quantile of the second-level test statistics b⌧⇤⇤1 , . . . , b⌧⇤⇤B . Under suitable regularity
conditions, in [22], it was showed that the FDB p-value is asymptotically equivalent to that
of the standard double bootstrap.
Building on the model framework above stated Mi: g(µi) = ⌘i = Xi�i and h(�i) =

�i = Z�i, we propose FDB variants of the J and MJ tests, outlined in Algorithms 3 and 4,
respectively. These procedures can be readily adapted to accommodate alternative model
specifications, including changes in the set of regressors or in the choice of link functions.

Algorithm 3 Fast double bootstrap J test

Initial step (original data):

Estimate models M1 and M2 via the maximum likelihood method, obtaining b�1, b�1

for M1, and b�2 for M2.

Compute the fitted predictor b⌘2 = X2
b�2, and include it as a covariate in M1.

Estimate the augmented model using the original response y, and compute the test

statistic J .

Bootstrap loop:

for b = 1 to B do

(i) First-level sample:

Generate y
⇤
b under model M1, where y⇤b,t ⇠ Beta(bµ1,t, b�1,t), where bµ1,t =

g�1(x>
1,t

b�1), b�1,t = h�1(z>
t b�1).

Re-estimate models M1 and M2 using y
⇤
b , obtaining

b�⇤
1,b, b�⇤

1,b,
b�⇤
2,b.

Compute b⌘⇤
2,b = X2

b�⇤
2,b.

Estimate the augmented model using y
⇤
b as the response and b⌘⇤2,b as an additional

covariate and compute the bootstrap test statistic J⇤
b .

(ii) Second-level sample (FDB):

Generate y⇤⇤
b under the re-estimated modelM1 , where y⇤⇤b,t ⇠ Beta(bµ⇤

1,t, b�⇤1,t), where
bµ⇤
1,t = g�1(x>

t
b�⇤
1,b),

b�⇤1,t = h�1(z>
t b�⇤

1,b).

Re-estimate the augmented model using y
⇤⇤
b , and compute the second-level test

statistic J⇤⇤
b .

end for

Compute the first-level bootstrap p-value as p⇤(J) = (1/B)
PB

b=1 1{J⇤
b >J}.

Obtain the (1� p⇤(J)) quantile of {J⇤⇤
1 , . . . , J⇤⇤

B }, denoted bQ⇤⇤
B (1� p⇤(J)).

Calculate the FDB p-value as p⇤⇤F (J) = (1/B)
PB

b=1 1{J⇤
b >

bQ⇤⇤
B (1�p⇤(J))}.

Reject model M1 if p⇤⇤F (J) < ↵, where ↵ denotes the nominal significance level.
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Algorithm 4 Fast double bootstrap MJ test

Initial step (original data):
for m = 1 to 2 do

Estimate model Mm via the maximum likelihood method, obtaining b�m and b�m,
which are the maximum likelihood estimates of the mean and precision parameters.

Compute the test statistic Jm.
end for
Set MJ = min{J1, J2}.
Bootstrap loop:
for b = 1 to B do

(i) First-level samples:
for m = 1 to 2 do

Generate y
⇤
b,m under model Mm, where y⇤b,m,t ⇠ Beta(bµm,t, b�m,t), with bµm,t =

g�1(x>
m,t

b�m), b�m,t = h�1(z>
t b�m).

Re-estimate models M1 and M2 using y
⇤
b,m and compute J⇤

b,1 and J⇤
b,2.

end for
Set MJ⇤b = min{J⇤

b,1, J
⇤
b,2}.

(ii) Second-level samples (FDB):
for m = 1 to 2 do

Generate y
⇤⇤
b,m under the re-estimated model Mm, where y⇤⇤b,m,t ⇠

Beta(bµ⇤
m,t, b�⇤m,t), with bµ⇤

m,t = g�1(x>
t
b�⇤
m,b),

b�⇤m,t = h�1(z>
t b�⇤

m,b).
Re-estimate models M1 and M2 on y

⇤⇤
b,m and compute J⇤⇤

b,1 and J⇤⇤
b,2.

end for
Set MJ⇤⇤b = min{J⇤⇤

b,1, J
⇤⇤
b,2}.

end for
Compute the first-level bootstrap p-value as p⇤(MJ) = (1/B)

PB
b=1 1{MJ⇤

b>MJ}.

Obtain the (1� p⇤(MJ)) quantile of {MJ⇤⇤1 , . . . ,MJ⇤⇤B }, denoted bQ⇤⇤
B (1� p⇤(MJ)).

Calculate the FDB p-value as p⇤⇤F (MJ) = (1/B)
PB

b=1 1{MJ⇤
b> bQ⇤⇤

B (1�p⇤(MJ))}.

Reject the null hypothesis (that the true model is among those tested) if p⇤⇤F (MJ) < ↵,
where ↵ denotes the nominal significance level.

5. Simulation evidence

This section presents Monte Carlo simulation results evaluating the finite-sample perfor-
mance of the J and MJ tests, along with their bootstrap-based versions, in small samples.
The simulations are based on 10,000 Monte Carlo replications.
Tests were conducted at nominal significance levels ↵ = 10%, 5%, and 1%, using 1,000

bootstrap replications. Covariate values were generated as independent draws from the
standard uniform distribution. We consider three sample sizes, n = 20, 30, 40, with µ 2
(0.29, 0.95) and a constant degree of heterogeneity across all designs, measured by the ratio
between the maximum and minimum values of the precision parameter �t.
Six di↵erent scenarios are examined, in which the competing models di↵er either in their

set of regressors or in the link functions adopted for the mean and/or precision submodels.
All simulations were conducted using the matrix programming language Ox [23]. The
numerical maximizations of the beta regression log-likelihood function were carried out
using the BFGS nonlinear optimization algorithm with analytical first derivatives. The
starting values for the parameters �1, . . . ,�k were chosen following the approach proposed
in [5], originally developed for beta regression models with fixed precision. The initial
value for �1 was obtained by applying the link function h to the fixed precision starting
value suggested by those authors, and the remaining precision parameters, �2, . . . , �m, were
initialized at zero.
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At the outset, we consider a scenario in which two competing models di↵er in the re-
gressors of the mean submodel. The models are specified as

M1: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3, M2: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �4xt4,

log(�t) = �1 + �2xt2, log(�t) = �1 + �2xt2.

Table 1 reports the null rejection rates of the tests. The results indicate that, for all
tests, rejection rates tend to converge to the nominal significance levels as the sample size
increases. The bootstrap-based versions of the J and MJ tests consistently outperform
their asymptotic counterparts, which tend to over-reject.
For example, when n = 20 and ↵ = 5%, the null rejection rate of the asymptotic MJ test

is 8.66%, while the rates for the bootstrap MJ⇤ and the FDB MJ⇤⇤ tests are 4.53% and
4.59%, respectively. Notably, in most cases, the FDB test exhibits better control of Type I
error than the standard bootstrap test, yielding rejection rates closer to the nominal level.

Table 1 Null rejection rates (%) when the models di↵er in the mean submodel regressors.

↵ 10% 5% 1%
n 20 30 40 20 30 40 20 30 40

J 14.91 12.29 11.05 8.72 6.59 5.99 2.78 1.86 1.55
J⇤ 8.62 8.44 8.73 4.46 4.29 4.22 0.93 0.94 1.07
J⇤⇤ 8.74 8.61 8.74 4.50 4.42 4.26 0.94 1.06 1.11
MJ 14.88 12.29 11.05 8.66 6.58 5.99 2.73 1.86 1.55
MJ⇤ 8.73 8.47 8.74 4.53 4.33 4.22 0.97 0.94 1.07
MJ⇤⇤ 8.75 8.61 8.72 4.59 4.40 4.24 0.97 1.05 1.11

The second scenario considers models that di↵er in the regressors of the precision sub-
model. The competing models are

M1: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3, M2: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3,

log(�t) = �1 + �2xt2, log(�t) = �1 + �3xt3.

The results in Table 2 indicate that the J⇤ and J⇤⇤ tests perform similarly, with the
standard bootstrap version J⇤ yielding rejection rates slightly closer to the nominal signif-
icance levels in most cases. In contrast, MJ⇤⇤ consistently outperforms MJ⇤. For example,
when n = 20 and ↵ = 10%, the null rejection rates of the MJ⇤⇤ and MJ⇤ tests are 8.38%
and 7.22%, respectively.

Table 2 Null rejection rates (%) when the models di↵er in the precision submodel regressors.

↵ 10% 5% 1%
n 20 30 40 20 30 40 20 30 40

J 17.79 13.80 12.63 10.87 7.45 7.18 3.63 2.04 1.57
J⇤ 11.38 10.18 10.34 6.08 5.08 5.45 1.45 1.10 1.06
J⇤⇤ 11.39 10.14 10.34 6.26 5.06 5.53 1.53 1.16 1.09
MJ 6.26 5.37 5.48 3.00 2.31 2.53 0.59 0.42 0.37
MJ⇤ 7.22 7.87 8.52 3.26 3.20 3.86 0.52 0.39 0.58
MJ⇤⇤ 8.38 8.53 8.86 3.76 3.53 3.96 0.62 0.58 0.71
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In the third scenario, we consider two models that di↵er in the regressors of both the
mean and precision submodels. The competing models are

M1: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3, M2: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �4xt4,

log(�t) = �1 + �2xt2, log(�t) = �1 + �3xt3.

The results reported in Table 3 indicate that, except when n = 20 and ↵ = 1%, the
FDB versions of the J and MJ tests outperform their standard bootstrap counterparts.
For example, when n = 20 and ↵ = 5%, the null rejection rates of the J⇤ and MJ⇤ tests
are 4.75% and 4.85%, respectively, compared to 4.93% and 4.97% for the J⇤⇤ and MJ⇤⇤

tests.

Table 3 Null rejection rates (%) when the models di↵er in the mean and precision submodels regressors.

↵ 10% 5% 1%

n 20 30 40 20 30 40 20 30 40

J 20.16 14.86 13.20 12.96 8.51 7.39 4.69 2.26 1.97

J⇤ 9.58 9.12 9.38 4.75 4.35 4.79 1.28 0.91 0.93

J⇤⇤ 9.83 9.23 9.54 4.93 4.40 4.96 1.37 1.00 1.04

MJ 20.10 14.85 13.20 12.89 8.49 7.39 4.61 2.25 1.97

MJ⇤ 9.59 9.14 9.38 4.85 4.35 4.81 1.25 0.92 0.93

MJ⇤⇤ 9.85 9.21 9.55 4.97 4.41 4.98 1.33 1.00 1.02

For the fourth scenario, we consider the case in which the two competing models di↵er
in their mean link functions. The models are given by

M1: � log(� logµt) = �1 + �2xt2 + �3xt3, M2: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3,

log(�t) = �1 + �2xt2, log(�t) = �1 + �2xt2.

Table 4 reports the null rejection rates of the tests. The results indicate that the MJ test
outperforms the J test, and that the bootstrap-based versions provide improved perfor-
mance over their asymptotic counterparts. Notably, the FDB tests generally outperform
the standard bootstrap tests. For example, when n = 20 and ↵ = 10%, the null rejection
rate of the MJ⇤ test is 10.32%, whereas that of the MJ⇤⇤ test is 10.04%.

Table 4 Null rejection rates (%) when the models di↵er in the mean submodel link function.

↵ 10% 5% 1%

n 20 30 40 20 30 40 20 30 40

J 16.15 13.89 12.47 9.67 7.86 6.74 3.01 1.98 1.59

J⇤ 9.95 10.15 9.98 5.26 4.90 4.87 1.10 1.19 1.15

J⇤⇤ 9.93 10.24 10.03 5.20 4.98 5.04 1.08 1.21 1.17

MJ 11.55 9.31 8.60 6.64 4.92 4.30 1.93 1.18 0.99

MJ⇤ 10.32 10.21 10.60 5.42 5.02 5.21 1.07 1.07 1.07

MJ⇤⇤ 10.04 10.00 10.46 5.27 5.00 5.15 1.00 1.14 1.24



70 Lima and Cribari-Neto

We now consider the case in which the two competing models di↵er in the precision link
function. The models are specified as

M1: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3, M2: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3,

p
�t = �1 + �2xt2, log(�t) = �1 + �2xt2.

The results in Table 5 indicate that the J⇤ test generally outperforms J⇤⇤, whereas for
the MJ tests, the FDB version MJ⇤⇤ tends to perform better than the standard bootstrap
version MJ⇤. For instance, when n = 30 and ↵ = 10%, the null rejection rates of MJ⇤ and
MJ⇤⇤ are 10.78% and 10.34%, respectively.

Table 5 Null rejection rates (%) when the models di↵er in the precision submodel link function.

↵ 10% 5% 1%
n 20 30 40 20 30 40 20 30 40

J 19.18 15.06 13.12 11.92 8.45 7.28 3.70 2.22 1.65
J⇤ 10.76 10.25 9.88 5.38 5.29 5.12 1.06 1.04 0.98
J⇤⇤ 10.80 10.15 9.92 5.54 5.34 5.18 1.10 1.11 1.02
MJ 16.84 12.96 11.45 10.14 6.18 2.58 2.90 1.76 1.32
MJ⇤ 11.38 10.78 10.25 5.88 5.41 5.24 1.22 1.13 1.05
MJ⇤⇤ 10.88 10.34 10.12 5.60 5.34 5.15 1.32 1.19 1.08

Lastly, we examine the scenario in which the two models di↵er in both the mean and
precision link functions. The competing models are stated as

M1: � log(� log(µt)) = �1 + �2xt2 + �3xt3, M2: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3,

p
�t = �1 + �2xt2, log(�t) = �1 + �2xt2.

The results in Table 6 show that, in most cases, the J⇤ test outperforms J⇤⇤, whereas
MJ⇤⇤ performs better than MJ⇤. For example, when n = 20 and ↵ = 10%, the null rejection
rates of J⇤, J⇤⇤, MJ⇤, and MJ⇤⇤ are 10.19%, 10.23%, 10.46%, and 10.15%, respectively.

Table 6 Null rejection rates (%) when the models di↵er in the mean and precision submodels link functions.

↵ 10% 5% 1%
n 20 30 40 20 30 40 20 30 40

J 21.10 15.65 13.72 13.22 8.99 7.79 4.53 2.70 2.00
J⇤ 10.19 9.59 9.89 5.30 5.10 4.88 1.11 1.18 1.06
J⇤⇤ 10.23 9.77 9.75 5.47 5.16 5.05 1.18 1.32 1.04
MJ 16.82 12.21 10.40 9.96 6.85 5.95 3.12 1.89 1.33
MJ⇤ 10.46 10.20 9.98 5.45 5.06 5.24 1.12 1.20 1.11
MJ⇤⇤ 10.15 9.89 9.89 5.40 5.08 5.06 1.12 1.19 1.09

Overall, the Monte Carlo results show that the J and MJ tests based on the FDB exhibit
substantially smaller size distortions than their non-bootstrap counterparts across the
scenarios considered. While the improvements over the standard bootstrap versions of the
tests are generally modest, they are not negligible. These additional gains in accuracy come
at a very low computational cost, as the FDB procedure requires only a single replication
at the second level of resampling. This computational e�ciency makes the FDB approach
particularly attractive in practice, especially in situations where the bootstrap p-value lies
close to the nominal significance level. In such cases, the improved accuracy of FDB-based
inference may influence empirical conclusions and enhance the reliability of hypothesis
testing in small samples.



Chilean Journal of Statistics 71

6. Empirical application

In this section, we present an empirical application aimed at modeling the proportion of
income spent on food as a function of household income and the number of people in the
household. Parameter estimates for the beta regression models are obtained by numeri-
cally maximizing the corresponding log-likelihood functions using the BFGS optimization
algorithm with analytical first derivatives, implemented in the Ox programming language.
The starting values for the model parameters were chosen as described in the previous sec-
tion. Specifically, the approach proposed in [5] was used to initialize the mean submodel
parameters, while the initial value for the intercept in the precision submodel was obtained
by applying the link function h to the fixed-precision starting value suggested by those
authors, with the remaining precision parameters set to zero.
The R computing environment [24] was used exclusively to perform model specification

tests (RESET tests) and to generate residual empirical quantile versus theoretical quantile
(QQ) plots with simulated envelopes. These plots are based on the standardized weighted
residual 2 proposed in [25], using 500 replications. All RESET tests were carried out at the
10% significance level. In R, parameter estimates were obtained using the betareg package
(CRAN.R-project.org/package=betareg), which provides maximum likelihood estimation
for beta regression models with fixed or varying precision.
We use the household expenditure data presented in [26] (Table 15.4), which include

information on food expenditure, income (X2), and the number of people in the household
(X3) from a U.S. city. In [5], the proportion of income spent on food (Y ) was modeled as a
function ofX2 andX3 using a beta regression model with constant precision. Subsequently,
a varying-precision model was proposed in [6], adopting a logit link for the mean submodel
and a logarithmic link for the precision submodel, specified as

log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3, log(�t) = �1 + �2xt2 + �3xt3, t = 1, . . . , 38,

where x1, x2, x3 are the observed values of X1, X2, X3, respectively.
After performing a series of nested hypothesis tests (not reported here) using the FDB

version of the LR test [12], we adopted the initial model formulated as

M1: log

✓
µt

1� µt

◆
= �1 + �2xt2 + �3xt3, log(�t) = �1 + �2xt3.

To investigate potential signs of model misspecification, we applied the procedure pro-
posed in [27], based on the RESET test introduced in [28]. The RESET test (statistic =
5.024, p-value = 0.025) indicates evidence of misspecification. Accordingly, we assessed
whether alternative link functions could improve model fit by testing M1 against models
with di↵erent link specifications for the mean submodel.
Table 7 presents the results of these comparisons. The findings indicate that all tested

models exhibit some degree of misspecification. At the 10% nominal significance level, all
models would be rejected. At the 5% level, only the models with logit and Cauchy links
remain plausible. However, direct comparisons show that the logit model is rejected at the
5% level by both the asymptotic (p-value = 0.018) and standard bootstrap (p-value =
0.018) versions of the J test, and at the 1% level by the FDB version (p-value = 0.009).
Although the Cauchy link model is not rejected by the standard bootstrap J test at the
5% level (p-value = 0.061), it is rejected by both the asymptotic and FDB versions (p-
value = 0.042). The MJ test reinforces these conclusions, with the FDB version providing
stronger evidence against the null hypothesis that the true model belongs to the tested
class (p-value = 0.031).

https://CRAN.R-project.org/package=betareg
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Table 7 p-values from the J and MJ tests —along with their bootstrap and FDB variants— for assessing
alternative link functions in food expenditure models.

Models J1 J⇤
1 J⇤⇤

1 J2 J⇤
2 J⇤⇤

2 MJ MJ⇤ MJ⇤⇤

logit versus log-log 0.055 0.081 0.077 0.029 0.039 0.045 0.055 0.072 0.071
logit versus Cauchy 0.018 0.018 0.009 0.042 0.061 0.042 0.042 0.044 0.031
logit versus clog-log 0.023 0.033 0.033 0.030 0.046 0.046 0.030 0.042 0.042
log-log versus Cauchy 0.016 0.026 0.023 0.064 0.075 0.056 0.064 0.043 0.029
log-log versus clog-log 0.022 0.041 0.041 0.052 0.083 0.096 0.052 0.066 0.070
clog-log versus Cauchy 0.022 0.033 0.035 0.039 0.064 0.078 0.039 0.047 0.069

For comparison, we define the Cauchy link model stated as

M2: tan(⇡(µt � 0.5)) = �1 + �2xt2 + �3xt3, log(�t) = �1 + �2xt3.

To evaluate the model fit, we considered several metrics, including the pseudo-R2
LR [29]

and its adaptation for variable precision beta regression models, R̄2
LR [30]. Additionally,

we used the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). Table 8 presents these goodness-of-fit measures for both M1 and M2, highlighting
the superior fit of M2.

Table 8 Goodness-of-fit measures, food expenditure data.

Model R2
LR R̄2

LR AIC BIC

M1 0.517 0.452 �88.370 �80.182
M2 0.538 0.475 �90.022 �81.834

However, the RESET test for M2 (statistic = 4.193, p-value = 0.041) also indicates
possible model misspecification, which may explain the rejections observed in the J⇤⇤ and
MJ⇤⇤ tests. Figure 1 presents normal probability plots for both models, showing no strong
evidence against either model, as the residuals remain within the simulated confidence
envelopes.
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Figure 1 Residual QQ plot with simulated envelopes for Models M1 (left panel) and M2 (right panel), food expen-
diture data.
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Although the model with the Cauchy link appears to provide a better fit, further re-
finement is warranted. Accordingly, we considered a more flexible specification that in-
corporates the interaction between covariates xt2 and xt3 in both the mean and precision
submodels, given by

tan
�
⇡(µt � 0.5)

�
= �1 + �2xt2 + �3xt3 + �4xt2xt3,

log(�t) = �1 + �2xt2 + �3xt3 + �4xt2xt3.

We then carried out a sequence of nested hypothesis tests (not reported here), using the
FDB version of the LR test to guide model selection. Based on the results, we adopted the
reduced model formulated as

M3: tan
�
⇡(µt � 0.5)

�
= �1 + �2xt3 + �3xt2xt3, log(�t) = �1 + �2xt3.

Note that models M2 and M3 are non-nested with respect to the regressors included in
the mean submodel. The p-values reported in Table 9 indicate that none of the versions of
the J test reject either model at the 5% significance level. Similarly, the MJ test —whether
in its standard, bootstrap, or FDB form— fails to reject the null hypothesis that one of
the two models is correctly specified.
Since J3 < J2 (J2 = 3.380 and J3 = 1.392), model M3 is selected. Additionally, the

RESET test applied to M3 (statistic = 0.543, p-value = 0.461) does not indicate model
misspecification at conventional significance levels.

Table 9 p-values from the J and MJ tests —along with their bootstrap and FDB versions— for comparing
models M2 and M3.

Models J2 J⇤
2 J⇤⇤

2 J3 J⇤
3 J⇤⇤

3 MJ MJ⇤ MJ⇤⇤

M2 and M3 0.066 0.092 0.103 0.238 0.286 0.283 0.238 0.198 0.156

Figure 2 presents the residual QQ plot with simulated envelopes for model M3. All resid-
uals lie within the simulated confidence bands, providing no evidence of model misspec-
ification or outlying observations. Furthermore, the goodness-of-fit statistics in Table 10
confirm that model M3 achieves a better fit than the competing alternatives previously
reported in Table 8.
Table 11 presents the parameter estimates and corresponding standard errors for model

M3. In addition, the variance inflation factor for this model is 2.522, indicating that mul-
ticollinearity among the regressors in the mean submodel is not a concern.

Table 10 Goodness-of-fit measures for model M3, food expenditure data.

Model R2
LR R̄2

LR AIC BIC

M3 0.558 0.498 �91.279 �83.541

Table 11 Parameter estimates and standard errors for model M3, food expenditure data.

�1 �2 �3 �1 �2

Estimate �1.231 �0.305 �0.003 5.022 �0.324

Standard error 0.123 0.053 0.001 0.535 0.134
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Figure 2 Residual QQ plot with simulated envelopes for model M3, food expenditure data.

While the main purpose of the empirical application is to illustrate the use of non-
nested hypothesis testing and the advantages of the FDB method, the final model (M3)
also reveals interesting patterns in household food expenditure behavior. In this model,
the conditional mean of the response —that is, the proportion of income spent on food—
is linked to covariates via a Cauchy link function and includes an interaction term between
income (X2) and household size (X3). Due to the nonlinear form of the link function, the
marginal e↵ects of these covariates on µt are not constant and depend on the values of
both income and household size. This interaction implies that the influence of income on
the proportion of income spent on food is modulated by household size: for example, the
e↵ect of increasing income may be stronger or weaker depending on whether the household
is small or large. The precision submodel also indicates that variability in food expenditure
shares is associated with household size. Together, these results suggest the presence of
scale e↵ects and heterogeneous consumption behavior across di↵erent household profiles.
Based on the selected model, we can estimate the marginal e↵ect of income on the mean

proportion of income spent on food. This marginal e↵ect is @µt/@xt2 = �3xt3/
�
⇡(1 + ⌘2t )

�
,

where ⌘t = tan
�
⇡(µt � 0.5)

�
is the linear predictor in the mean submodel. This quantity

is estimated by replacing the parameters with their maximum likelihood estimates. Fig-
ure 3 displays the estimated marginal e↵ects of income as a function of income itself, for
three di↵erent household sizes: 1, 4, and 7. The estimated e↵ects are negative across all
income levels and household sizes, indicating that increases in income consistently lead to
a reduction in the expected proportion of income allocated to food.
The marginal e↵ect is closer to zero (that is, less negative) for smaller households. The

curve corresponding to single-person households lies above the others, suggesting that
increases in income have a relatively smaller impact on food expenditure in these cases. In
contrast, the curve for households with seven members lies well below the others, revealing
that the e↵ect of income is considerably stronger (more negative) in larger households.
Moreover, household size (X3) also influences the shape of the marginal e↵ect curve. For
single-person households, the curve is nearly flat, indicating that the marginal e↵ect varies
little with income. However, for household sizes 4 and 7, the curves exhibit a clear upward
trend (toward zero), suggesting that the magnitude of the negative e↵ect decreases as
income increases. This pattern implies that, for larger households, increases in income
have a stronger impact on reducing the share of income spent on food, particularly at
lower income levels.
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Figure 3 Estimated impact of income on the mean proportion of income spent on food.

7. Conclusions

In regression analysis, once the candidate models have been estimated, it is standard
practice to conduct a series of tests to assess their compatibility with the observed data.
For non-nested models —where one specification cannot be derived from another through
linear parameter restrictions— the J and MJ tests are widely regarded as e↵ective tools.
These procedures are fundamental for model comparison, o↵ering a rigorous framework
for selecting among competing non-nested alternatives. Specifically, in the context of beta
regression models, the J and MJ tests were adapted [7] to accommodate the peculiarities
of this class of models. Their work also introduced bootstrap-based versions of the tests,
providing a more robust approach in the presence of heteroskedasticity and non-normality,
which are common challenges in beta regression settings.
This study contributes to this line of research by proposing fast double bootstrap versions

of the J and MJ tests specifically tailored for beta regression models. The main motivation
behind this refinement is to enhance the precision and reliability of these tests, particularly
in small samples where conventional asymptotic methods often perform poorly.
We evaluated the performance of the fast double bootstrap tests through extensive Monte

Carlo simulations designed to assess their e↵ectiveness in non-nested hypothesis testing.
The results were compelling: compared to the standard bootstrap versions, the fast dou-
ble bootstrap test consistently produced test sizes closer to nominal significance levels.
Both the J and MJ tests su↵er from substantial size distortions in small samples, and
our findings reinforce the recommendation to adopt bootstrap-based corrections in such
contexts. Although the improvements o↵ered by the fast double bootstrap test over the
standard bootstrap are generally modest, they come at a minimal computational cost, as
only a single second-level resample is required per bootstrap replication. These marginal
gains in accuracy can be particularly valuable when the bootstrap p-value lies near the
rejection threshold, potentially influencing empirical conclusions. For this reason, we rec-
ommend the use of the fast double bootstrap test as a practical and e↵ective refinement
of bootstrap-based inference.
We also presented an empirical application focused on modeling the proportion of income

allocated to food expenditure as a function of household income and household size. In
this context, we identified a model that provided a superior fit relative to commonly used
specifications. This conclusion was supported by non-nested hypothesis testing conducted
with the fast double bootstrap test. The application e↵ectively highlighted the practical
value of the proposed methodology for empirical model selection.
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In summary, the contributions of this study lie in both the methodological develop-
ments and the practical insights it o↵ers. By enhancing the J and MJ tests with fast
double bootstrap tests, this work improves the accuracy of model comparisons in beta
regression, providing a more reliable and accessible tool for researchers and practitioners.
These advancements not only deepen our understanding of model testing but also help
ensure that the selected model better reflects the underlying data structure.
There are several promising directions for future research. For instance, it would be

worthwhile to investigate the behavior of the J and MJ tests with bootstrap resampling
in extended versions of the beta regression model, such as inflated, mixed, and dynamic
models; see, respectively, [31, 32, 33]. Another avenue is the exploration of alternative
model classes for doubly bounded response variables, such as the simplex regression model
[34].
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