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Abstract

The linear regression model is commonly used for measuring the impact of covariates
over an outcome of interest, which is typically measured through the regression coeffi-
cients of the model. However, the presence of missing outcomes can seriously affect this
interpretation because we have no idea about the potential impact of the covariates on
those units with missing outcomes. Here, we illustrate the consequences of the missing
outcomes as the interpretation of the regression coefficients in the impact of the selection
factors on the performance in the university.

Keywords: Bounded coefficients · Identification bounds · Ignorability · Missing at
random · Partial identification

Mathematics Subject Classification: Primary 62J05 · Secondary 62D10.

1. Introduction

Linear regression is one of the main tools to analyze the impact of k covariates or predictors
xi (here xi includes the intercept) on a dependent variable or output yi. The basic model is
typically written as follows:

yi = x>i β + εi, εi
iid∼ N (0, σ2) i = 1, . . . , n;

or equivalently

Y = Xβ + ε, ε ∼ N (0, σ2I), (1.1)

where Y and ε are n× 1 vectors and X a n× k matrix whose rows are x>i . The purpose of
linear regression is to report the regression coefficients of each covariate on the output.
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Thus, the regression coefficients β are accordingly named the parameters of interest (along
with the variance σ2). These parameters are understood as the effect of the covariates over
the outcome and its variability such that the mean of the distribution of (Y | X) is explained
by X. In order to make inferences about these parameters in Equation (1.1) a distributional
assumption is considered for the error term. As shown in the equation, the most common
one is a normal distribution.

In empirical research a typical issue is given when some of the outputs are missing, but
not the covariates. Some examples where this issue is present are the following:

(1) For selecting applicants for enlistment in the American military, the Armed Services
Vocational Aptitud Test (ASVAB) is used (Department of Defense, 1984). The test
looks for classify those applicants that will do well in Air Force technical training
in the school. Thus, although the test scores are known for all the applicants, the
performance in Air Force technical training in the school is known for the selected
applicants only. Other examples in personal selection context can be found in Camp-
bell and Knapp (2001). Figure 1 illustrates this issue in the context of university
selection where the outcome at the university, the Graded Point Average - GPA for
instance, is observed only in selected applicants.

Test score GPA

Applicants

Selected applicants

Non−selected applicants

Observed

Non−Observed

Figure 1. Selection process scheme.

This problem is well-known as the selection problem (also known as the problem
of range restriction) and it arises when the data generation process does not fully
reveal the behavior of the outcome on the support of the predictors (Manski, 1993).

(2) The Current Population Survey (CPS) is used as a source for learning about the
labour force for the population of the United States (full information about this
survey can be found in https://www.census.gov/programs-surveys/cps.html). It col-
lects, among other variables, the household income in the United States. However,
one issue is that some interviewed do not provide information about the income re-
sponse (Manski, 2007). One type of analysis is related to measure the impact of some
covariates over the income (for instance, annual veteran status, school enrollment,
contingent employment, worker displacement, and job tenure, among other topics).
Nevertheless, although many respondents provide information about the covariates,
the income is not fully observed for them. Other important issue in this type of sur-
vey are people that do not provide information about the other variables and people
that it considered in the sample, do not answer the questionnaire. These types of
issues are not treated in this note.

https://www.census.gov/programs-surveys/cps.html
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From a statistical perspective, it is possible to use some techniques to handle the missing
outcome data problem. A common approach to deal with this situation is eliminating from
the sample the unit samples that have missing values. This means that the data for those
without the outcome variable are deleted from the database. For instance, Geiser and Studley
(2002) conducted a study to assess the impact of SAT scores, X, on the University of
California freshman grades, Y . The authors state that only the full observed data is used for
the study. When the selection problem arises, also is usually used a technique for correcting
the effect of the missingness of the outcome by making some distributional assumptions
about them (see for instance Muthén and Hsu, 1993; Lee and Mendoza, 2022; Hsu, 1995;
Zimmermann et al., 2017).

Another practice for tackling the missing outcome data problem is assuming that when
the covariates are known, the outcome is mean independent of observing the outcome or
not (Manski, 1989). More precisely, suppose that the covariates, x, are used to define classes
(for instance, sex, race, among others); thus mean independent assumption asserts that
E(Y | X = x, the outcome is observed) = E(Y | X = x, the outcome is not observed).(1.2)

This fact allows for making imputations of the missing outcomes by using the conditional
mean of the respondents in the same class. This technique is known as conditional imputation
(Little and Rubin, 2002). In other literature, this assumption is also known as ignorability
or mean missing at random (for technical details see Manski, 2007; Imbens, 2000; Hirano
and Imbens, 2004; Rosenmbaum and Rubin, 1983).

A full discussion about imputation techniques of missing values, as well as Maximum Like-
lihood Expectation-Maximization Imputation, Multiple Imputation, Hot Deck Imputation,
among others, can be found in Carpenter and Kenward (2012); Chema (2014); Rubin (2009);
Van Buuren (2012). Imputation methods are procedures that allows for dealing with the
missing data problem by making some distributional assumptions. However, we never know
how the missing data mechanism is. For a discussion about the impact of using these types
of assumption see for instance Alarcón-Bustamante (2022, 2023); Davern et al. (2004); Kam-
bourov and Manovskii (2013); Manski (2007, 2016); San Mart́ın and Alarcón-Bustamante
(2022).

As it can be appreciated, the missing outcome problem can be reduced to make assump-
tions about its distribution. The different ways to deal with the missing outcomes will
conduct different estimations of the regression coefficients. Thus, conclusions about them
can be seriously affected. In this context, different authors have tackled this problem with
different procedures by considering some distributional assumptions or missing data mech-
anisms (see for instance Crambes and Henchiri, 2019; Veras et al., 2020). Our interest is
to know the impact of missing outcomes on estimating the regression coefficients, but the
problem is to find correct and useful restrictions for the missing outcomes (Manski, 1989). In
this note, we illustrate the impact of the presence of missing outcomes in the estimation of
the regression coefficients by using weaker assumptions as the above-mentioned ones; thus,
instead of reporting a point estimation of the regression coefficients, we provide an interval
containing information about the parameter of interest (Tamer, 2010). Thus, the interval
contains all the plausible solutions consistent with the assumptions the researcher considers
credible (Manski, 1989). In particular, based on the interval defined for the conditional ex-
pectation of the outcome for each possible value x (see details in Section 2.1), we propose
to use the results of Stoye (2007) to obtain a region for the regression coefficients when a
multiple linear regression model is considered.

In this study, we illustrate the results by analyzing the effect of selection factors over the
performance of enrolled applicants in the Chilean university admission process. The GPA in
the first year of the university is considered as the outcome. This quantity is not observed
in the non-enrolled applicants but selection factors scores are observed for all of them and
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the enrolled ones. In this case, it is clear that the selection factors are important in the
selection process because they are used in the following way: better scores in the selection
test, it is supposed a better performance (GPA in our case) at the university. Note that, the
missing values of the GPA are related to the reason of why they are missing: scores lower
than a cut-off is obtained. In consequence, the primary assumption of missing at random is
not achieved - the value of the missing variable is not related to the reason why it is missing
(Little and Rubin, 2002). In this context, thinking about an ignorability assumption for
learning about the conditional mean of the GPA is implausible. Thus, we use assumptions
based on the context of the problem to find the mentioned interval.

2. Material and Methods

2.1 Methodology

We know that the regression coefficients must be estimated from a regression model, namely
E(Y | X = x). In this note we consider a linear regression. However, due to the presence
of missing outcomes, this regression is affected and consequently the estimation of the co-
efficients too. In order to better understand the anatomy of the problem, let us denote the
random variable Z = 1 if the outcome is observed and Z = 0 if the outcome is not observed.
By using the law of total probability (Kolmogorov, 1950) the regression function evaluated
at X = x decomposes as

E(Y | X = x) = E(Y | X = x, Z = 0)P (Z = 0 | X = x)
+E(Y | X = x, Z = 1)P (Z = 1 | X = x), (2.3)

where E(Y | X = x, Z = z) is the expectation of Y conditional on X = x and Z = z;
P (Z = z | X = x) for z ∈ {0, 1} is the distribution of Z conditional on X = x. In what
follows, we will denote P (Z = 0 | x) = m(x). Note that, E(Y | X = x, Z = 0) is impossible
to be estimated from the data, because it depends on non-observed outcomes. In the words
of Koopmans (1949), the consequence of this non-observability is that the conditional mean,
E(Y | X = x) is not identified.

As was mentioned before, currently used procedures for dealing with the problem of
missing outcomes are related to finding restrictions to identify this conditional mean. In
fact, deleting those unit samples with missing outcomes is analogous to imposing that there
are no missing outcomes in the sample, i.e., it is assumed that P (Z = 0 | X = x) = 0. Using
this fact, Equation (2.3) is reduced to

E(Y | X = x) = E(Y | X = x, Z = 1),

and then E(Y | X = x) can be identified through the available information. Consequently,
the regression coefficients can be estimated through the coefficients of the observed re-
gression. The same conclusion can be obtained when the identification restriction given
in Equation (1.2) is used. Under these approaches, the regression can be point identified
(Manski, 1993); thus the coefficients of it can be point estimated.

Following the ideas of Manski (1989), if Y0 and Y1 are the minimum and maximum at-
tainable value of the outcome, although E(Y | X = x, Z = 0) is impossible to be estimated,
we can assure that Y0 ≤ E(Y | X = x, Z = 0) and E(Y | X = x, Z = 0) ≤ Y1. Thus, from
Equation (2.3) it follows that

E(Y | X = x) ≤ E(Y | X = x) ≤ E(Y | X = x), (2.4)
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where

E(Y | X = x) = E(Y | X = x, Z = 1)(1−m(x)) + Y0m(x)
E(Y | X = x) = E(Y | X = x, Z = 1)(1−m(x)) + Y1m(x)

This interval is understood as all the possible values of the mean of the outcome - con-
ditional on X = x - which are consistent with the observed data and the missing data
generation process.

Note that the previous interval gives us information about the regression, but not for the
coefficients that govern it. By considering Equation (2.4), Stoye (2007) proposed intervals
for the regression coefficients, which we will apply in the linear regression model context: if
the conditional mean E(Y | X = x) is bounded by

(
E(Y | X = x);E(Y | X = x)

)
— as

in Equation (2.4), for instance — then the interval that contains any linear combination of
the regression parameters, namely cβ, with c ∈ Rk, is given by

c
[ ∫

x>xdFx
]−1 ∫

x>g(x)dFx ≤ cβ ≤ c
[ ∫

x>xdFx
]−1 ∫

x>g(x)dFx, (2.5)

where Fx is the distribution function of X = x; g(x), and g(x) are defined such that

• if c
( ∫

x>xdFx
)−1

x> > 0, then g(x) = E(Y | X = x), and g(x) = E(Y | X = x);

• if c
( ∫

x>xdFx
)−1

x> ≤ 0, then g(x) = E(Y | x), and g(x) = E(Y | X = x).

Considering this result, if the interest is computing the interval for βj , with j ∈ {1, . . . , k},
it is enough to consider c as the j-th canonical vector of Rk. It is important to highlight that
in this study we used the empirical distribution of both X and the conditional distribution
of the outcome given the covariates.

2.2 Data description

The university admission system in Chile considers different selection factors. Some of them
are related to the performance of applicants in high school namely, the ranking and high
school GPA (HS-GPA). Other factors are related to selection tests: two mandatory selection
tests (Mathematics and Language and Communication) and two elective ones (Sciences and
History, Geography and Social Sciences). All selection factors are in a 150-850 scale and a
unique application score is obtained from them to the application process.

The used dataset contains information about the ranking, HS-GPA scores and mandatory
admission selection test scores (Mathematics and Language) of all applicants to the School
of Biological Sciences at a Chilean university. In addition, for the applicants that were
enrolled, the GPA at the first year is also registered.

The dataset contains information about 319 applicants to the mentioned school. The
60.82% of them were not enrolled. Table 1 provides descriptive statistics for scores of each
selection factor by applicants status (enrolled - non-enrolled). The dispersion of all selection
factor scores are lower for non-enrolled applicants than for the enrolled ones. The mean of
enrolled applicants tends to be higher than non-enrolled ones for all selection factors, relation
that also happens with medians. This is clearer in Figure 2 where it can be appreciated that
in all selection factors the distribution of the scores are fairly symmetric. Regarding to
enrolled applicants, the minimum and maximum of the GPA are 2.97 and 6.51, respectively.
The distribution of the GPAs is quite symmetric with a median of 5.12 and mean of 5.07.
The standard deviation of the GPA is 0.69.
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Table 1. Summary statistics of selection factor scores by applicant status.

Enrolled Non-enrolled
Factor Min Median Mean Max SD Min Median Mean Max SD
Mathematics 543 664 663.86 822 54.19 536 623 627.74 752 42.21
Language 517 663 662.36 807 68.13 489 612 617.00 760 50.23
Ranking 564 758 747.58 850 74.67 523 685 681.89 850 72.32
HS-GPA 564 708 705.10 816 58.72 523 647 647.62 785 53.00

Figure 2. (a) Distributions of selection factor scores by applicant status. (b) Distribution of enrolled applicants GPAs.

3. Results

In order to evaluate the effect of the selection factors over the GPA, in Chile, a multiple linear
regression model is typically used. High school performance selection factors and mandatory
selection tests are observed for all applicants to the university admission system; thus, these
factors are considered in the regression model; for more details, see (Manzi et al., 2008).
The analysis is made by using only the complete available information, i.e. considering only
those enrolled applicants.

For this purpose, it is considered Y as the GPA, and the covariates as the scores in
Mathematics and Language tests in addition to the Ranking and the HS-GPA scores. The
used linear regression model is given by

E(Y | X) = β0 + β1Math + β2Language + β3Ranking + β4HS-GPA.

Due to the differences in the scale scores of both GPA and selection factors, to compute
point estimation of the regression coefficients and the bounds associated with them, we
considered their standardized values.

The computational routine was implemented in the software R, version 4.3.0 (R Core
Team, 2023) and it is available online in Alarcón-Bustamante et al. (2023). An advantage
of the procedure is that the computational cost is almost zero.

Table 2 shows the results by using the least square estimator (OLS, Rao, 1973) by using
information about the enrolled applicants only. In order to be consistent with the estimation
of the bounds for the regression coefficients, we did not assume any distribution in the
computation of these regression coefficients. Thus, confidence intervals are not shown for
this point estimation.
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Note that, almost coefficients are positive, suggesting - preliminary- a positive impact of
the selection factors over the GPA on the first year at the university. Thus, mathematics
and language test scores, as well as scores associated with the HS-GPA, are such that better
scores will be translated as better performance. This is not the case for the coefficient
associated with the Ranking of the applicant. However, its impact is relatively small (it is
near to be zero); it could be that the impact of this selection factor over the GPA is near
null.

Table 2. OLS point estimations for selection factor regression coefficients over GPA.

Factor Mathematics Language Ranking HS-GPA
Point estimation 0.6340 0.1483 -0.0991 0.2959

In Table 3 the results of the interval computed from Equation (2.5) are shown. The interval
was obtained by considering the minimum and maximum attainable GPA, i.e., Y0 = 1.0 and
Y1 = 7.0. Thus, the interval contains all the plausible values of the regression coefficients
that are compatibles with all the possible regression models. Note that these intervals are
quite large and include the zero. Then, the direction of the impact (positive or negative)
can not be identified, i.e., due to the large presence of missing outcomes, it is not possible to
know if the selection factors will impact in a positive or negative way the GPA. In contrast,
when only available data is used, all the coefficients have a clear sign and the direction
of the impact can be interpreted in the traditional way. If an interval did not contain the
zero value, thus its interpretation would be unambiguous. For instance, if the region is fully
positive (negative), we have no doubts that the impact would be positive (negative) over
the GPA. However, this is not the case.

A first reaction to the results shown in Table 3 could be that the imposed restriction is
no-viable because the probability of obtaining the minimum or maximum GPA is very low.
The advantage of the proposed strategy is that we can use other restrictions based on the
context of the problem, for instance: instead of using the minimum and maximum attainable
GPA, we can use the minimum and maximum observed GPA (2.97 and 6.1, respectively).
In Table 4 the resulting interval using this restriction is shown. As it can be appreciated,
although under this restriction we reduced the width of the interval for each selection factor
coefficient, the interpretation in terms of the impact of the selection factors over the GPA
do not change.

Table 3. Bounds on regression coefficients for the regression of the GPA over selection factors assuming
that the non-observed conditional expectation is in between the minimum and maximum attainable GPA.

Factor Mathematics Language Ranking HS-GPA
Lower Bound -1.8285 -1.9536 -5.1242 -4.7223
Upper bound 2.6538 2.3452 5.1251 5.4032

Table 4. Bounds on regression coefficients for the regression of the GPA over selection factors assuming
that the non-observed conditional expectation is in between the minimum and maximum observed GPA.

Factor Mathematics Language Ranking HS-GPA
Lower Bound -1.0086 -1.1708 -3.0592 -2.8006
Upper bound 1.6359 1.3655 2.9879 3.1734
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4. Discussion and conclusion

Throughout the manuscript, we discussed the different ways to deal with the missing out-
comes when the goal is estimating the regression coefficients. Traditional strategies are based
on missing at random assumptions; however, as was mentioned, in the selection process this
assumption does not make sense because the missing data-generation process depends on
the selection factors, causing a not missing at random process (Muthén and Hsu, 1993). In
this context, we have proposed to use a partial identification technique to compute bounds
for the parameters that contains all the possible values for the regression coefficients of the
selection factors. The bounds were estimated by assuming that the conditional mean of
the non-enrolled applicants should be in between the minimum and the maximum attain-
able/observed GPA. Although other assumptions can be used to point identify the regression
coefficients, the used assumptions for do it are rarely justified and they not consider the con-
text of the problem. In contrast, the used assumptions in this manuscript are fully justifiable
because they are based on the support of the GPA.

From the results of Tables 2, 3, and 4, when a point estimation for the regression coef-
ficients is used under an ignorability assumption, the conclusions about the effect of the
selection factors over the GPA are totally different when the bounds are considered. In
fact, due to the missing outcomes, it is impossible to know if the effect of the regression
coefficients is positive or negative.

The approach of combining the data with suitable restrictions for the non-observed data to
find an interval containing plausible values for the parameters of interest is known as partial
identifiability. This approach has the advantage of imposing restrictions on the non-observed
values by using more reasonable (and justifiable) assumptions than those commonly used
in the literature. Because the partial identification approach allows for making assumptions
based on the context of the problem, it has been used in other fields as intergenerational
mobility, test equating, surveys analysis with missing outcomes, decision theory, educational
measurement, among others (see for instance San Mart́ın and González, 2022; Pepper, 2000;
San Mart́ın and Alarcón-Bustamante, 2022; Manski, 2016; Stoye, 2011; Alarcón-Bustamante
et al., 2020). Finally, it is important to highlight that there is a no unique way to model a
problem (e.g., by using traditional distributional assumptions). In fact, we used assumptions
related to the problem that we intend to model, considering the physiognomy of it. From
our viewpoint, there is a necessity to make people know that there is another way to deal
with missing values. However, if the researcher is ready to believe in the assumptions rarely
justified, it must be willing to assume that stronger assumptions yield conclusions that are
more powerful but less credible (the law of decreasing credibility Manski, 2003, p.1).
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Beauchef. Ciencia, Tecnoloǵıa y Cultura. 6(1), 15-33.

Alarcón-Bustamante, E., 2023. Ignorabilidad: un supuesto clave en la dinámica de la infer-
encia estad́ıstica en ciencias de la salud. Inferencias: Bolet́ın de Bioestad́ıstica, 7, 11-13.

Alarcón-Bustamante, E., San Mart́ın, E., and González, J., 2020. Prefictive validity under
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