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Abstract

We consider a robust Bayesian approach to the analysis of item response models, using
the inverse of an asymmetric exponential power cumulative distribution function as a
link function. This provides greater flexibility with respect to classic link functions such
as the probit and the logit. We conduct a simulation study to evaluate the performance of
our model. In order to draw samples from the posterior distribution of the parameters,
we implement a Markov chain Monte Carlo scheme by means of the JAGS software.
We also implement a posterior predictive model-checking method to assess the fit and
relative performance of the various submodels. Finally, we provide a real-data example
to illustrate the modeling approach proposed.

Keywords: Asymmetric exponential power (AEP) distribution - Generalized linear
model - JAGS and R software - Rasch model - Sample-based inference.

Mathematics Subject Classification: Primary 62F15 - Secondary 62J12.

1. INTRODUCTION

Item response data come from applying a test to a set of individuals. The test is composed
of a number of items. These tests are used extensively in schools, industry, and government,
and for various purposes (see Baker and Kim, 2004; van der Linden and Hambleton, 1997,
Fox, 2010). There is a very extensive literature about of the item response models, its
development, description, and applications goes back to Lord (1952, 1980), who established
the basis of item response theory (IRT), also called modern test theory.

Traditionally, frequentist analyses have been used in IRT. Recently, however, the Bayesian
approach become very attractive for modeling item response data; (see Ghosh et al., 2000;
Béguin and Glas, 2001; Bazan et al., 2006; Fox, 2010; Azevedo et al., 2011, 2012; Matteucci
et al., 2012). This approach allows one to incorporate additional information to the analysis
and provides powerful estimation methods based on simulated samples from posterior
distributions.

Although item response modeling can be employed in more general contexts (see Reckase,
2009; Fu et al., 2009; Svetina, 2013; Bacci et al., 2014), and nonparametric settings (see
Karabatsos, 2016; San Martin et al., 2011). In this paper, we focus on dichotomous response
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104 Ariza-Hernandez and Gutiérrez-Pena.

data and unidimensional models with a continuous latent trait. The Rasch model (see Rasch,
1961) is by far the most popular model in this latter case. It is basically a logistic model,
so the probit model is commonly used as an alternative.

Both the logit and probit link functions (corresponding to the standard logistic and the
standard normal distributions, respectively) have traditionally been utilized when modeling
dichotomous response data. Both of these link functions are symmetric. However, when the
proportion of ones in the observed sample is very different from the proportion of zeros, or
vice versa, the symmetric links commonly used may not be appropriate, as they may lead
to misspecified models (see Chen et al., 1999a). This situation is not uncommon with item
response experimental data.

The fit of item response models can be improved significantly by using asymmetric links.
Several authors have worked with asymmetric links. Chen et al. (1999a) proposed a class
models with skewed link to analyze binary data with covariates, Jiang et al. (2013) derived
a new class of symmetric power link functions to model binary data and applied it to the
Protea co-occurrence data. More recently, Durante (2019) proved that in the case of probit
regression models which have Gaussian priors for the coefficients, the posterior belongs
to the class of unified skew-normal distributions. Also, Naranjo et al. (2015) employed an
asymmetric exponential power (AEP) distribution for the error of a linear regression model,
and the inverse of the AEP cumulative distribution function (CDF) as a link function in a
regression model for binary data, but not in the context of IRT.

Models with asymmetrical link functions have also been proposed in IRT settings.
Samejima (2000) proposed a family of models called the logistic positive exponent family,
which provides asymmetric item characteristic curves (ICCs). Bazéan et al. (2006) introduced
a skew-probit IRT link function based on the skew normal distribution, while Azevedo
et al. (2011) used skew-normal distributions to model latent traits in an IRT two-parameter
probit model under centered parameterizations. However, these models are not as flexible as
the AEP distribution, which not only allows one to handle symmetry/asymmetry but also
light /heavy tails.

In this paper, we build on the work of Zhu and Zinde-Walsh (2009) and Naranjo et al.
(2015) to propose a Bayesian item response model based on the AEP distribution.

The outline of the paper is as follows. In Section 2, we briefly discuss the Rasch model and
review the probability density and cumulative distribution functions of the AEP distribution.
We describe the general model in Section 3. Then, in Section 4, we carry out Bayesian
inferences on the parameters of interest via the just another Gibbs sampler (JAGS) software
(see Plummer, 2017) within the R software (see R Core Team, 2020), and apply a posterior
predictive model-checking method (see Sinharay et al., 2006) with the purpose of comparing
various submodels. In Section 5, we present a simulation study and conducted to assess the
performance of the Bayesian estimates. Also, a real-data example is given in this section to
illustrate the AEP-based IRT model. Finally, Section 6 contains some concluding remarks.

2. PRELIMINARIES

2.1 THE RASCH MODEL

We model the probability of the correct answer, p;x, corresponding to ¢-th individual in the
k-th item, as py = P(Yik = 1|0;, ak, b)) = F(agh; — bg), fori=1,..., Nand k=1,..., K,
where Y}, is a random variable which takes the value of 1 if the i-th individual responds
correctly to the k-th item and F' is the CDF of a known parametric family. In the context
of IRT, F is the ICC, a; > 0 and by € R are item parameters (called discrimination and
difficulty parameters, respectively), and 6; € R is the person parameter associated with the
ability of individual . The inverse of F' is called the link function. The Rasch model is the
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simplest and most traditional model for p;;. It is given by

€xp (9i - bk)
1+ exp (0; — bi)

pik = P(Yi, = 116, b)) =

That is, the probability that the person ¢ obtains a correct response to item k is a logistic
function of the difference between the person’s ability, 6;, and difficulty of the item, by. Note
that, if the person’s ability is greater than the difficulty of the item, then the probability
of success is higher in comparison with the probability of failure. A limitation of the Rasch
model is that all items are assumed to discriminate between respondents in the same way
(that is, ar = 1 for all k = 1,..., K); as a result, items only differ in item difficulty (see
Fox, 2010). The probit model is another popular model for p;x; it takes py, = ®(0; — by),
where ® is the standard normal CDF. The Rasch model can be approximated by a probit
model by multiplying the parameter values by a scaling factor of 1.7.

2.2 THE AEP DISTRIBUTION

The probability density function (PDF) of the rescaled AEP distribution, proposed by Zhu
and Zinde-Walsh (2009), is stated as

; - ‘ i § if o <
] ) 5 PV s w1/ [ nE=
fagp(z|p, 6, a,01,02) = 1 A 5 (1)
s (1= )3/T(1+ 1/5) } neen

where p € R is the location parameter, & > 0 is the scale parameter, o € (0,1) is the
skewness parameter, and d; and Jy are the left- and right-tail parameters, respectively (6; >
0,02 > 0). For convenience, we consider a reparametrization of the scale parameter in
Equation (1), & = V270, so that

fAEP(m|M7 g, Q, 61762) = fAEP(l“IL% Vv 27TU7 «, 61762)'

With this parametrization, the density function of the AEP distribution is given by

= S § if z <
———exp{ — : if v < pu;
V2o P V2rao /T(1+1/01) a
fAEP(fE|M,O',Oé,($1,($2) = 1 (2)
x—p

02
},ifx>u.

We use X ~ AEP(u,0,q,01,02) to denote Equation (2). Important properties of the AEP
distribution have been discussed in the literature (see Zhu and Zinde-Walsh, 2009; Naranjo
et al., 2015). If « = 1/2 and §; = 2, the distribution is symmetric. An important special case
is when 6; = dy = 2 and o = 1/2, in which case Equation (2) is the N(u, 02) distribution. In
Figure 1, we show the PDF and CDF of the AEP distribution in Equation (2) for a range
of parameter values.

Voo P T ‘ Vor(l — a)o/T(1 + 1/6)
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For the standard version of the AEP distribution (x = 0, ¢ = 1), the CDF can be
expressed as

T o 1 .
all_G(<\/ﬁa/F(1+1/51)> ;61’1)]’ =0

02 1 .
a+<1_a)G((@(1—@)/“1—&—1/52)) ;62,1),1f1’>0;

Fagp(z|a, 61,02) =

(3)

where G(v;7, ) is the gamma CDF given by

G(v;, B) = / "L exp{~t/} dt.

1
L(v)p7

The proof of Equation (3) is given in Appendix A.

3. AN AEP-BASED GENERALIZED LINEAR MODEL FOR BINARY DATA

3.1 MODEL SPECIFICATION

The IRT model based on the AEP distribution is formally defined as follows. Let Y;; be
a random variable representing the response of the i-th individual to the k-th item. This
response variable is discrete, taking only two possible values. We define Y;; = 1 if the ¢-th
individual’s response to the k-th item is correct and Yj; = 0 for an incorrect response. Then,
we have

Yir|0i, ax, bi, o, 01k, 2, ~ Bern(pig), (4)

where Bern(p;x) denotes the Bernoulli distribution, for i = 1,..., N, k= 1,..., K, and p;
is given by

pik = P(Yir = 1|6;, ag, by, g, d1g, Oar)
= Fagp(arbt; — by | o, 015, O2k)- (5)

This represents the conditional probability that the i-th individual, with ability ;, responds
correctly to the k-th item with discrimination parameter a; and difficulty parameter by.
The quantities ay, 01 and o, are the AEP parameters defined in Equation (2). This model
assumes that a change in the probability of a specified response is described by the ICC in
Equation (5), and that the responses to a pairs of items are statistically independent given
the latent variable 6. The probability of success is modeled as a function of person, item
and AEP parameters. Note that, for a = 0.5 and §; = 09 = 2, the Equation (5) reduces to
the probit model.
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Figure 1. PDFs and CDFs of the AEP distribution for different values of the parameters.
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a). =058 =2 0,=2 b). o0 = 0.95, 8; = 2, 8, = 2
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Figure 2. Comparison of AEP-based and probit link functions.

3.2 LIKELIHOOD FUNCTION

Let y = (y11,...,ynk)' denote the observed item response data. Then, the likelihood
function for the AEP-IRT model is stated as

L(0.€&my) H]_[py““ 1 — pag)' 0

i=1k=1

= H H [Fagp (mi | m)]Y*[1 — Fagp (ma | m)]" ¥,
1=1 k=1

where my, = ap; — by, i=1,...,N, k=1,...,K; 0 = (04,...,0n), &€ = (a,b) and n =
(a,dl, 62), with a = (al, N ,aK), b= (bl, e ,bK), o = (Oél, RN ,O[K), 6 (51k; ce 751k)
and 52 = (52]€, ey 52k)

Note that the model proposed here is described in terms of N ability parameters, K
discrimination parameters, K difficulty parameters, K skewness parameters and K pairs of
tail parameters. Hence, it has a total of IV person parameters and 5K unknown parameters.
This model is overparameterized. In fact, for two different sets of parameter values the
model may give the same success probabilities and so the model may be unidentifiable.

For example, the linear predictor in Equation (5) can be written as ai; — by = ax(106; —



Chilean Journal of Statistics 109

50)/10 — (b, — 50ax/10) = a;0; — b;; that is, the model with ag, by, 6; is the same as with
ay, by, 0F. Thus, the parameters cannot be uniquely estimated, unless certain constraints are
imposed. From the Bayesian viewpoint, this problem may be solved by specifying suitable
priors for the parameters of interest (see Chen et al., 2003; Matteucci et al., 2012; Naranjo
et al., 2015).

As pointed out in Section 1, when the proportion of ones in the observed sample is very
different from the proportion of zeros, or vice versa, the symmetric links commonly used
may not be appropriate. To visualize the flexibility of the AEP-based link function with
respect to the probit link function, in Figure 2 we plot Fagp(®~1(u)|a,d1,d2) over the
interval (0,1) for selected values of «, §; and ds.

4. DBAYESIAN INFERENCE

4.1 PRIOR DISTRIBUTION

In this paper we use a Bayesian approach to make statistical inference about the parameters
of interest. In this setting, the parameters are regarded as random variables and have prior
distributions that reflect the uncertainty about their true values before observing the data.
Several authors have suggested informative as well as noninformative prior distributions for
the item para-meters; for example, lognormal priors for the discrimination parameters and a
normal prior for difficulty parameters (see Albert, 1992; Patz and Junker, 1999; Rupp et al.,
2004; Fox and Glas, 2001; Matteucci et al., 2012; Bazan et al., 2006). Ghosh et al. (2000)
pointed out that, with noninformative priors, posterior distributions for item and person
parameters may be improper when the sum of the binary responses for an item or person
takes its minimum or maximum possible value. However, they prove that under certain
conditions the joint posterior distribution is proper.

Here, we assume the item parameters to be exchangeable. We also assume monotonicity
of the ICC, which is satisfied when the discrimination parameter is restricted to be positive.
Thus, we assume the following prior distribution for the item parameters

(ak, br) ~ N(pe, Be) La(ar),

where A={a € R:a >0} k=1,...,K, and I4 is the indicator function of the set A.
Note that this prior is not conjugate for the observed likelihood. A typical prior for person
parameters assumes that the individual are chosen randomly from an unknown population,
where each individual has the same probability of being chosen. Individuals are also assumed
to be sampled independently, so we assume that

eiNN(M9709)7 izla"'aN7

where g, 09 are known parameters. These priors have been suggested by others authors
(see Bazan et al., 2006; Sinharay et al., 2006; Fox, 2010; Matteucci et al., 2012). In
generalized linear models, some authors have proposed an elicitation scheme for a class
of informative prior distributions for the regression parameters based on historical data (see
Chen et al., 1999b, 2003). Naranjo et al. (2015) proposed some alternative prior distributions
for the AEP parameters, which have the advantage of allowing one to derive the full
conditional distributions required for a Gibbs sampler. With some adjustments, the Jeffreys
prior distribution can be computed from the Fisher information matrix given by Zhu and
Zinde-Walsh (2009).
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Assuming prior independence of the parameters, we can write the joint prior distribution
as

p(0,€,m) = p(0) p(§) p(n)

p(6
N
:H {Hpak (br) p(ak) p(d1k) p (52k)}

4.2 POSTERIOR SAMPLING

By the Bayes theorem, the posterior distribution of the parameters of interest is established
as

p(0,€&,mly) = L(8,§,m;9)p(0,€,m)/p(y)

=

K
o H { [Fapp (mak | 0)]Y*[1 — Fapp(ma | 7)) ¥
1k=

X p(0:) pla) p(bk) plak) p(Ork) p(d2k) } - (6)

.
Il

—_

Note that the joint posterior distribution is analytically intractable and thus obtaining
the marginal posterior densities of the parameters is not an easy task; however, samples
from Equation (6) can be obtained using Markov chain Monte Carlo (MCMC) techniques.
The most common MCMC methods are the Gibbs sampling (see Gelfand and Smith, 1990;
Casella and George, 1992) and the Metropolis-Hastings (see Metropolis et al., 1953; Chib and
Greenberg, 1995). Currently, many of the MCMC algorithms have been already implemented
in computer programs, such as, WinBUGS (see Spiegelhalter et al., 2003), JAGS (see Plummer,
2017) and Stan (see Stan Development Team, 2014). All of these software packages provide
programs for Bayesian modeling through posterior simulation given a specified model and
data. In particular, JAGS provides several samplers and attempts to use the most efficient one
to update the parameters of the model at each iteration. The R packages named R2WinBUGS,
R2jags and rstan allow one to run WinBUGS, JAGS and Stan from within R, respectively.
There are several R packages for IRT. Choi and Asilkalkan (2019) presentes a summary of
the IRT package that have been developed over the last decade. In this paper, we utilize
JAGS within R to obtain samples from the posterior distributions of interest (see Appendix
B).

4.3 A POSTERIOR PREDICTIVE MODEL-CHECKING METHOD

The posterior predictive model-checking (PPMC) method is a popular Bayesian
model-checking tool, has a strong theoretical basis, and can provide graphical or numerical
summaries about the model fit (or lack thereof). For IRT models, Sinharay et al. (2006)
presented an extensive explanation of the PPMC method and discuss different discrepancy
measures to detect various violations to model assumptions. Azevedo et al. (2012) developed
Bayesian methods for the multiple-group IRT model, including an estimation method based
on MCMC and different posterior predictive assessment tools. The idea of PPMC is to
generate replicate data sets by simulating from the posterior predictive distribution, and
then compare these simulated samples with the observed data. If the replicated data and
the observed data differ systematically, it is an indication of a potential model misfit.

The choice of discrepancy measure is crucial in the application of the PPMC method. In
this paper, we used the Observed Score Distribution (OSD) as the discrepancy measure,



Chilean Journal of Statistics 111

which has been employed by Béguin and Glas (2001). This discrepancy measure is given by

[NC), — E(NCy))?

OSDzzk: BN : (7)

where NC}, denotes the number of examinees getting exactly k correct items, and E(NCy)
is the expected value of NC under the model, for £k =0,1,..., K.

In addition, here we propose an alternative discrepancy measure based on the
Kullback-Leibler divergence between the “true” model and an “approximate” model, stated
as

Dr(alf7) = 3 mvlog (Z). (8)

where 1, = E(NCy)/N and 7, = NCi/N.
In order to assess the fit of the IRT model to a given data set, we can repeat the following
steps a large number of times:

(1) Generate a draw of the parameters of interest from the posterior distribution given
by Equation (6).

(2) Obtain a data set from the model given in Equations (4)-(5), using the parameters
drawn in the previous step.

(3) Compute the values of the predictive and realized discrepancy measures given in
Equations (7) or (8), utilizing the data set drawn in the previous step.

With the predictive and realized discrepancy measures, we can creates plots to assess the
fit of the IRT model.

5. NUMERICAL APPLICATIONS

5.1 SIMULATION STUDY

We carried out a simulation study to assess the performance of the Bayesian estimators of
the parameters of interest. The procedure was applied to each of several combinations of
data-generating and fitted models. Table 1 shows the cases we considered, that is:

e The AEP-III model is based on Equations (4)—(5). This model can describe both
symmetry/asymmetry and light /heavy tails separately for each item.

e In the AEP-II model, the tails of the AEP distribution for each item are described by
means of the parameters 01, and dop, while oy, is held fixed at oy = 0.5.

e In the AEP-I model, the symmetry/asymmetry for each item is formulated by means of
the skewness parameter «y, while 01, and dop are held fixed at d15 = dop, = 2.

Note that the AEP-I and AEP-II models are both particular cases of the AEP-III model.

Table 1. Cases examined in the simulation study.

Fitted Data-generating model

model AEP-I AEP-II AEP-III Probit

AEP-I ° °
AEP-II ° °
AEP-III °

Probit ° °
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We now describe the simulation study:

(1) We simulated B = 100 data sets from each data-generating model (see below for
details).

(2) For each simulated sample, we obtained Bayesian estimators of the parameters of
interest, both for model given in Equations (4)—(5) and for the two-parameter probit
model.

a) We calculated the Bayes estimators as the sample mean from Equation (6)
using JAGS within R. We employed two chains, each with 26,000 iterations,
with a burn-in of 1000 iterations and a thinning rate of 50, so we kept a total
of 500 iterations to make inferences about the parameters of interest.

The analysis of each sample took around 1.74 minutes on a computer with a
4 GHz Intel Core i7 processor and 32GB of RAM.

b) We calculated 95% credible intervals for each parameter; these intervals are
based on the 2.5-th quantile and the 97.5-th quantile of the corresponding
posterior sample.

(3) From these B samples, we computed the mean squared error (MSE) of the estimators
as

MSE = s2(0) + B2(9),

where s2(0) = P (08 — 05)2/(B—1) is the sample variance of the Bayes
estimators, B(#) = 05 — 0 is the bias, 5 = Y2 08/B, and 6P is the Bayes
estimator corresponding to the i-th sample.

(4) Finally, we computed the coverage of the corresponding credible intervals.

To perform this study, we used R together with the R2jags package (see Su and Yajima,
2020). Our simulated data sets consist of N = 100 individuals and K = 3,5, 10, 20 items.
The true values of the parameters utilized to generate the data sets were varying according
to the Table 2.

Table 2. Parameter values for the simulation study.
Parameters from to

ay 0.5 2.0
by -2.0 20
(67 0.1 0.9
01k 0.5 4.0
0ok 0.5 4.0

We assumed the following priors for the discrimination and difficulty parameters:
ar ~ N(1,1)I(ax > 0); b ~N(0,1), k=1,..., K,
while, for the AEP parameters, we took the priors used by Naranjo et al. (2015), namely,
ag ~ Beta(1,1); 1 ~ Gamma(1,1) and dop ~ Gamma(l,1), k=1,... K.
In Tables 3 and 4, we show the estimated MSE and coverage for the cases considered
in Table 1: AEP-I versus Probit, AEP-II versus Probit, AEP-III versus Probit, and Probit

versus AEP-z, (z = LILII). Generally speaking, the AEP models outperform the probit
model, especially AEP-IIT and AEP-II.
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When we generated simulated data from an AEP-z model, and fitted both the
corresponding AEP-z and the probit models, we observed that in all cases the coverage
of the credible intervals for the item parameter was close to 100% for the AEP-x models. In
contrast, the coverage obtained for the credible intervals of the discrimination and difficulty
parameters of the probit model was much lower, even reaching zero in some cases. In general,
the estimated MSE and bias are lower for the AEP-z models than for the probit model (see
Table 3). Also, when we simulated data from the probit model, and fitted both the AEP-z
and the probit models, we observed that both the coverage and the MSE are very similar
for all models and close to 100%. As expected, all three AEP models fit the data generated
from the probit model reasonably well (Table 4).

5.2 A REAL-DATA EXAMPLE

Next, an example is given to illustrate the Bayesian item response modeling approach
proposed in this paper. We consider a data set previously analyzed by Fox (2010), which
consists of 200 eighth-grade students that are subjected to a mathematics test with 5 items.
The data set contains the responses of the examinees, where 1 indicates a correct answer
and 0 an incorrect answer. We assume that the five items measure a unidimensional ability
represented by 6, which is a continuous latent variable that takes values on the real line. We
estimate the item parameters of both the probit IRT model and the AEP-IRT model using
the MCMC methodology described above. This example was also implemented utilizing the
JAGS package within R (see Appendix B for details).

The probability of a correct response by examinee ¢ to item k is modeled by the following
item response models:

(Problt) ( ik — 1‘91, ag, bk) (akQZ - bk),

(AEP I) (Yk = 1]91,%, bk, Ozk) = FAEp(ain - bk\ak),

(AEP-II) P(Yr = 116;, ak, bk, 01k, 02x) = Farp (arbi — bi|d1k, 02k),
(AEP-III) P (Y, = 110;, ag, b, ou, 01k, 02x) = Farp(arbs — bi|ow, 01, S2k),

for i = 1,...,200 and k = 1,...,5, where Fagp is given in Equation (3), and ® is the
standard normal CDF.

The prior distributions used were as follows: for all models, we employed a
N(0,1) distribution for the difficulty parameters, while a truncated normal distribution,
N(1,1)I(ar > 0), was utilized for the discrimination parameters. These values of the
hyperparameters indicate a moderate level of discrimination and average level of difficulty.
Assuming that the individuals are sampled independently from the population, we specified
a N(0,1) for the ability parameters of all of the models. This restriction identifies the
two-parameter item response model (see Fox, 2010). Finally, for the AEP parameters we
took the priors used by Naranjo et al. (2015). That is, ay ~ Beta(1,1), d1x ~ Gamma(1, 1)
and 09, ~ Gamma(1,1), for k=1,...,5.

For each model, we employed two chains, each with 26000 iterations, and the first 1000
were discarded, taking a thinning rate of 50. Thus, 1000 posterior samples were used to
obtain the summary statistics about the parameters of interest. Standard convergence
diagnostics were carried out. To mention a few, the value of Gelman-Rubin R was close
to 1 for each parameter of interest and for all the models we considered. Also, the Geweke
diagnostics were calculated and showed evidence of convergence.



Table 3. Estimated MSE | Bias | (coverage).

Parameters AEP-1 Probit AEP-II Probit AEP-III Probit
ay 0.08 |-0.005| (1.0)  0.08 ]0.02 | (1.0) 0.12 |-0.16] (1.0)  0.17 ]0.27| (0.70)  0.018 |-0.10| (1.0)  0.148 [0.36| (1.0)
as 0.17 -0.27] (0.96) 0.15 |-0.23] (0.96) 0.54 |-0.68] (0.92) 0.34 |0.27| (0.90) 0.161]-0.33 | (1.0)  0.220|-0.33] (1.0)
as 0.08 |-0.05] (1.0) 0.09 [0.07| (1.0) 0.04 |-0.03| (1.0)  0.14 |-0.46| (0.96)  0.043|-0.18] (1.0)  0.187 | 0.36/(0.96)
b 0.53 ]-0.72| (1.0)  0.30 |-0.56] (0.33)  0.15 |-0.09] (1.0)  0.08 |0.23] (0.71) 0.011]0.09| (1.0) 0.944| 0.95| (0.0)
b 0.15 |0.38] (1.0) 0.54 [0.73| (0.0) 0.05 |-0.01| (1.0)  0.05 ]0.07] (0.60)  0.001|-0.01] (1.0) 0.031| 0.11] (1.0)
b3 1.25 [1.11] (0.90)  1.59 |-1.25] (0.0) 0.04 |0.06| (1.0)  0.03 |-0.04| (0.10)  0.012]-0.08] (1.0)  0.355[0.57| (0.41)
aq 0.07 |-0.27] (1.0) - - - 0.095 [-0.22/(1.0) -
Qo 0.005 10.06| (1.0) - - - 0.015|0.07| (1.0) -
Qs 0.12 |0.34] (1.0) - - - 0.264] 0.45| (1.0) -
011 - - 0.46 [0.21| (0.96) - 0.354]-0.12| (1.0) -
012 - - 2.04 |0.26| (1.0) - 0.794]-0.52| (1.0) -
013 - - 4.84 |-2.04] (0.84) - 0.447) 0.27| (0.84) -
021 - - 4.48 |-2.63] (0.68) - 5.644 [2.32((0.68) -
092 - - 1.61 ]-0.13|(1.0) - 0.469 |-0.38](1.0) -
093 - - 0.51 |-0.48] (1.0) - 0.324/0.38| (1.0) -
Table 4. Probit versus AEP: Estimated MSE (coverage).
Parameters Probit AEP-I AEP-II AEP-III
aq 0.16 (0.86) 0.16 (0.95) 0.23 (1.0) 0.14 (1.0)
as 0.15 (1.0) 0.15 (1.0)  0.27 (1.0) 0.03 (1.0)
as 0.18 (1.0) 0.17 (1.0)  0.06 (1.0) 0.16 (1.0)
b 0.09 (0.90) 0.11 (1.0) 0.06 (1.0) 0.47 (1.0)
ba 0.05 (1.0) 0.01 (1.0) 0.03 (1.0) 0.02 (1.0)
b3 0.08 (0.90) 0.39 (1.0) 0.16 (1.0) 0.51(1.0)
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Table 5 shows the parameter estimates for each of the fitted models. Posterior means are
used as point estimates of the parameters of interest. The deviance information criterion
—DIC- (see Spiegelhalter et al., 2002) for each model was obtained too, and was utilized to
assess the fit of the various models.

Table 5. Parameter estimation for Fox (2010) data set.
Parameters Probit AEP-I AEP-II AEP-III

ay 1.54 1.52 1.84 1.65
as 0.90 0.88 1.78 1.54
as 0.66 0.70 1.50 1.32
N 0.91 0.89 1.47 1.48
as 0.46 0.49 1.61 1.22
b1 -0.27  -0.04 -0.26 -0.02
bo -0.79  -0.25 -0.52 -0.05
bs -0.11 0.05 0.31 0.55
by -0.73  -0.35 -0.83 -0.19
bs -0.42  -0.18 -0.02 0.53
o1 - 0.58 - 0.50
o - 0.69 - 0.61
o3 - 0.56 - 0.51
oy - 0.63 - 0.62
as - 0.59 - 0.61
011 - - 3.80 1.36
012 - - 0.18 0.75
013 - - 0.76 0.56
014 - - 1.03 1.26
015 - - 0.10 0.67
021 - - 4.36 1.15
022 - - 5.68 1.61
023 - - 3.79 1.70
024 - - 3.50 1.38
025 - - 3.67 1.53
DIC 13329 1303.0 1463.6  2235.1

We observe that item five discriminates poorly in the AEP-I and Probit models, with
values less than 1, except for item 1. Item 1 is the most discriminative item for all fitted
models. The average estimated discrimination level is 0.89 with the AEP-I IRT model, which
is slightly smaller than the prior mean. The posterior means for the skewness parameters
show that the marginal posterior densities are non-symmetric and slightly positively skewed
(see the AEP-IIT and AEP-I models). For the estimated difficulty parameter, we can observe
that the item with higher values for difficulty is item 3, whereas the less difficult items are 2
and 4. The proportion of correct responses for each of the five items are estimated as 56%,
73%, 54%, 71%, and 65%, respectively. In Table 5, we also observe that, for the AEP-I IRT
model, we have a lower value of DIC with respect to the probit, AEP-III and AEP-II IRT
models. This criterion indicates that the AEP-I IRT model is preferable with respect to the
other models considered.

We applied the PPMC method to assess the fit of each of the IRT models. We calculated
the values of discrepancy measure OSD and compared the observed and predicted score
distribution through plots of the discrepancy measures. Figure 3 and Figure 4 show the
OSD and KL discrepancy measures, respectively. The PPMC method provides graphical
evidence that the Probit and AEP-I models cannot adequately explain the observed score
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Figure 3. PPMC based on the OSD discrepancy.

distribution of the actual dataset, even though the AEP-I model seems preferable under the
DIC criterion. As a quick numerical summary of the plots, we also calculated the average
orthogonal distances from the 45-degree line to the points given by the realized and predictive
OSDs. We used this mean orthogonal distance (MOD) to provide a quantitative measure
of the fit (included in Figures 3 and 4). A large value of the MOD suggests that the model
does not adequately capture the features of the data.

Neither the results in Figure 3 nor those in Figure 4 are in agreement with the results
obtained using the DIC (see Table 5). The DIC has been criticized on several grounds (see
Spiegelhalter et al., 2014). In this particular application, the PPMC procedure seems to
yield better results.

6. CONCLUDING REMARKS

In this paper, we have proposed the use of link functions based on the asymmetric
exponential power distribution to model item response data. These link functions provide
great flexibility to model a wide range of item characteristic curve shapes and include
the symmetric probit model as a special case. The resulting model can handle both
symmetry/asymmetry and light /heavy tails at the same time.

In contrast with traditional approaches to IRT modeling, the Bayesian approach has a
number of advantages. For one thing, inferences based on posterior simulations are both
more flexible and relatively easy to implement in JAGS within the R software. Also, the
possible lack of identifiability in the general IRT model may be tackled using suitable prior
distributions.
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Figure 4. PPMC based on the Dgy, discrepancy.

Our simulation study shows that the general IRT AEP-based model and the corresponding
Bayesian estimates perform well. Our results also suggests that the DIC does not provide
a good measure of model fit in our setting, perhaps because it is not based on a proper
predictive criterion. By contrast, the posterior predictive model-checking procedure used
here provides a nice graphical summary and, together with the mean orthogonal distance,
provides a better way of comparing models. Moreover, in the real data example the
Kullback-Leibler discrepancy proposed here seems to outperform the OSD discrepancy.
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APPENDIX A

Consider the standard version (1 = 0, 0 = 1) of the AEP PDF given in Equation (2) stated

as
g1
, ifx <0;

02
},ifm>0.

1 x
Var Py T | V2ra/T(1 +1/5,)

fAEP<x|O[7 51) 52) —

feXp ‘\/%1—a)/r(1+1/52)

The CDF of the AEP distribution is expressed by

e For x <0,

F(zla, b1, 65) = / Faep(zla, 81, 8) dz

z 1 T
- /_oo Var P {_ ‘\/ﬁa/m T 1/61)

01
} dz.
Now, making the change of variable

o1 1)

r(1+1 !

_ ’Z‘ ’ dt — 61’z‘6171 ((—i_/él)) dz = —0; tz1 dz,
V2ra/T(1+ 1/6y) 2no

we have

1/61—1
gy V2matlmT

[(1/61)

~

5
Note also that ¢ — 400 as z — —oo, while t — t1(x) = (m) Das 2 o .

Hence,

oo l/h—1 exp( t)
51,62) /
( ’a ! 2 - tl(:E 1/61

B t1(x) $1/01-1 exp( t)
=« <1 /0 (1/51) dt)

dt

where G() denotes the gamma CDF.
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e For x > 0,

xT

Flela, 61,62) :/ Famp(zla, 61, 85) dz

0 x
=/ fAEP(Z|a>51,52)dZ+/O faep(z]a, 61, 02) dz
::0*+L/ fagp(z]a, d1,02)dz by Equation (9)
0

Similarly to the previous case, making the change of variable

8 >
_ || _ g1 [T +1/02)
) At =0 =) s,
V(i — )01+ 1/5) Van(t -a)
we have
t2(w) $1/92=1 exp(—t)
Pl o) =act (1= a) [ e
1
=a+(1-a)G <t2(x);5,1) ;>0
2
where

]

o2
to(z) = (m(l —a)/T(1+ 1/52>> .

APPENDIX B. JAGS IMPLEMENTATION

The proposed models were all implemented in JAGS using the R2jags package to fit the
models and to perform convergence diagnostics right within R. Here we use the data set of
Section 5.2 to illustrate the implementation of our model in JAGS.

(1) Packages. Load the required R packages:

library(R2jags)
library(coda)
library(lattice)
library (R2WinBUGS)
library(rjags)

(2) Data. Read the data from the working directory:

setwd("my directory")

cito<-matrix(read.table(file="cito.txt", sep=","),200,5,byrow=T)
N<-dim(cito) [1]; K<-dim(cito) [2]

cito.data <- list("cito","N",6"K")
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(3) The model. Write the model in BUGS code and save it as “cito.model.jags” in the
working directory.

model{
for (i in 1:N){
for(k in 1:K){
pli,k]<-phi(alk]*thetal[i]-b[k])
Y[i,k] ~ dbern(pli,k])
}
thetal[i] ~ dnorm(0,1)
}
for (i in 1:K){
alk] ~ dnorm(1,1)T(0,)
b[k] ~ dnorm(0,1)
}
}

(4) Parameters. Define the parameters of interest:

cito.params<—C("a" , nbn)
(5) Initial values. Define the starting values for the MCMC runs:

cito.inits<-function()
{
list("a"=c(0.5,0.5,0.5,0.5,0.5), "b"=c(0,0,0,0,0))
}

Alternatively, specify separate starting values for each chain:

unitsi<-list("a"=c(0.1,0.1,0.1,0.1,0.1), "b"=c(-4,-4,-4,-4,-4))
units2<-1list("a"=c(3,3,3,3,3), "b"=c(4,4,4,4,4))
cito.inits2<-1list(unitsl, units2)

(6) Fit. Fit the model in JAGS:

set.seed(123)
fit.cito<-jags(data=cito.data, inits = cito.inits2, parameters.to.save=
cito.params, n.chains =2, n.iter = 9000, n.burnin=1000,
model.file="cito.model.jags")
print(fit.cito)

(7) Diagnostic. Convert the model output into an MCMC object in order to have
access to several convergence diagnostics:

cito.mcmc<-as.mcmc(cito,fit)
xyplot(cito.meme,layout=c(2,6), aspect="fill")
densityplot(cito.mcmc)
autocorr.plot(cito.mcmc)

elman.plot(cito.mcmc)

geweke.diag(cito.mcme)

geweke.plot(cito.mcmc)

raftery.diag(cito.mcmc)
raftery.plot(cito.mcmc)
heidel.diag(cito.mcmc) .
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