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Héctor Allende Cid Pontificia Universidad Católica de Valparáıso, Chile
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Abstract

Synthetic aperture radar is an e�cient remote sensing tool by producing high spa-
cial resolution images. But, synthetic aperture radar data su�er speckle noise e�ect
that di�cult their processing (for example, making boundary detection). We propose
and assess edge detectors for synthetic aperture radar imagery based on stochastic dis-
tances between models.These edge detectors stem from generalized divergences with
good asymptotic properties. Results reveal that divergence-based detectors can outper-
form the likelihood-based counterpart.

Keywords: Edge detection · G0
I model · Synthetic aperture radar systems · Speckled

data · Stochastic distance.

Mathematics Subject Classification: Primary 62B10 · Secondary 68U10.

1. Introduction

Because of its all-time, all-weather, high-penetration, and high-resolution imaging capabil-
ity on a global scale, synthetic aperture radar (SAR) has become an essential tool for land
survey, resource mapping, environmental monitoring, disaster rescue, and national security.
SAR systems have progressed from low to high resolution, single polarization to full polar-
ization, and single frequency to multifrequency. SAR images can be analyzed using a variety
of techniques. There are primarily two types of methods depending on their theoretical foun-
dations: electromagnetic (EM) physics methods based on Maxwell’s equations (Kong, 1990),
and statistical methods which focus on the image data.

Due to the high complexity of the EM approach, both theoretically and computation-
ally, only simplified or empirical models for specific scenarios can be created. The statistical
approach is focused on the relationships between pixel values and their distributional char-
acteristics.

ú
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SAR image statistical analysis can be traced back to the 1950s. The first statistical study
was focused on SAR clutter in the ocean. Since early radar images had poor resolution, the
Rayleigh speckle model was developed under the assumption of the Central Limit Theorem,
resulting in the Rayleigh distribution for the amplitude of radar echoes (Ward et al, 2006).

The Rayleigh model, however, became less reliable as the spatial resolution of SAR images
improved: smaller areas comprise less elements in the summation, making the large sample
assumption questionable in many cases.

Ward (1981) proposed the multiplicative model in 1981, a turning point in statistical SAR
data description. Such an approach generalizes the Rayleigh model, and bridges the EM and
statistical approaches (Yue et al, 2020, 2021)

The central problem to be described is the presence of an interference pattern, common to
all images obtained with coherent illumination, called speckle. Although deterministic, the
precise knowledge of speckle amounts to specifying the EM characteristics of each scattering
element within a resolution cell. This is possible when there are a few well-known and simple
backscatterers as, for instance, a single small sphere or a few dipoles (Sant’Anna et al, 2008).
The multiplicative model is an adequate approach when the number of backscatterers or
their properties are unknown.

The models that arise from the multiplicative description are neither Gaussian nor ad-
ditive. Classical image processing techniques are, at best, sub-optimal in such scenario.
Therefore, SAR imagery processing requires specialized models and methodologies. To that
end, the use of Information Statistical Theory measures combined with the multiplicative
modeling approach has been successfully adopted for treating SAR images.

Edge detection is one of the fundamental image processing techniques. Gambini et al
(2006) proposed a method that relies on comparing two samples for estimating the position
of the edge along a thin strip of data. Gambini et al (2008) compared five strategies based on
SAR data or on estimates of the target roughness. Wei and Feng (2015), assuming a gamma
model, derived a detector with low false alarm rate, but its performance strongly depends
on the settings. Giron et al (2012) used a nonparametric approach with good results but,
again, the performance is a�ected by the underlying distribution of the data.

In this paper, we assume that intensity SAR data follow the G0

I model. This distribution
is recognized in the literature as the universal model for this kind of observations (Mejail et
al, 2003). Frery et al (2011) showed that using Information theory measures (as divergences
and entropies) combined with statistical inference is a powerful methodology. Recently,
Nikooravesh (2018) developed estimation procedures for the quantile function by means
of Shannon and Tsallis entropies. We propose boundary detectors which are competitive
with respect to those based on the joint likelihood, which are computationally demanding,
as discussed by Nascimento et al (2014). We propose and discuss two boundary detection
schemes based on the Kullback-Leibler (KL) and Rényi divergences. Additionally, we also
investigate their performance at the limit case when intensities are gamma distributed.
Results provide evidence in favor of the detector based on the Rényi divergence between G0

I
models.

The paper unfolds as follows. Section 2 recalls the G0

I model. In Sections 3 and 4, we
discuss the divergence measures and boundary detection procedures, respectively. Section 5
shows results of a simulation study and an application to an actual SAR image. Finally,
Section 6 concludes the paper.

2. Model for speckled data: The G0

I model

The multiplicative model for the observation at position (i, j) of an intensity SAR image
describes it as the outcome of the random variable Z(i, j) = X(i, j)Y (i, j), where X(i, j) and
Y (i, j) are independent random variables. The latter, which describes the speckle, follows
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a unitary-mean gamma distribution with shape parameter L Ø 1; this parameter is known
as “number of looks,” it is proportional to the signal-to-noise ratio, and it is often fixed for
the whole image. The unobserved quantity of interest, X(i, j), is called “backscatter.” The
backscatter is positive, and contains all the relevant information about the target.

Assuming a Reciprocal Gamma law for the backscatter (Frery et al, 1997), we obtain that
the density of Z is expressed by

fZ(z; –, “, L) = LL�(L ≠ –)
“–�(≠–)�(L)zL≠1 (“ + Lz)–≠L , z > 0,

where – < 0 is the texture, and “ > 0 is the brightness. We denote this situation as
Z ≥ G0(–, “, L), with ⇥ = R≠ ◊ R+ ◊ [1, Œ) the parameter space.

Frery et al (1997) proved the following result. Consider the sequence of random variables
Z1, Z2, . . . in which Zi ≥ G0

I (–i, “i, L). If ≠–i, “i æ Œ such that ≠–i/“i æ —1, then the
following convergence in distribution holds:

Zi
D≠æ Z, (1)

where Z follows a gamma distribution with mean —1 and shape parameter L. In particular,
if L = 1 then the convergence is towards an Exponential law.

Fig. 1 shows four single-look unitary-mean G0

I densities with varying roughness: – œ
{≠Œ, ≠10, ≠3, ≠1.5}. Since the G0

I distribution is the Exponential law in the limit above,
we plot this density in black to serve as a reference. The densities in linear scale might look
like Exponential, but they are not, as revealed in the semi-logarithmic scale: G0

I densities
have heavier tails. The larger the texture parameter is, the heavier the tail is.

(a) Linear scale (b) Semi-logarithmic scale

Figure 1. Single-look unitary-mean G0
I densities with varying roughness.

A remarkable feature of this distribution is that it describes well extremely textured areas
(urban centers), textured regions (forests), and areas with fully developed speckle and,
thus, textureless (bare soil and crops, for instance). Figure 2 illustrates how – and “ can be
interpreted.

Due to its desirable asymptotic properties (unbiasedness, normality, and e�ciency), we
use the maximum likelihood (ML) estimator for obtaining the parameters – and “ from
data. Let Z = (Z1, Z2, . . . , Zn) be a random sample drawn from Z ≥ G0

I (–, “, L). The
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Figure 2. Properties of the G0
I parameters.

likelihood function of the observed sample z = (z1, z2, . . . , zn) is expressed as

L(–, “; z) =
A

LL�(L ≠ –)
“–�(≠–)�(L)

Bn nŸ

i=1

zL≠1

i (“ + Lzi)–≠L.

Assuming L fixed, the ML estimates for – and “, say ‚– and ‚“, respectively, are the solution
of the following system of nonlinear equations:

Â0(≠‚–) ≠ Â0(L ≠ ‚–) ≠ log(‚“) + 1
n

nÿ

i=1

log(‚“ + Lzi) = 0,

≠
‚–
‚“

+
‚– ≠ L

n

nÿ

i=1

(‚“ + Lzi)≠1 = 0,

where Â0 is the digamma function. This nonlinear system does not have a closed-form
solution, then, we rely on numerical optimization methods.

3. Contrast based on information andivergence

The KL divergence (or relative entropy) is a well-known way of comparing two distributions.
Divergence measures are submitted to a systematic and comprehensive treatment and, as a
result, Salicrú et al (1994) proposed the class of (h, „)-divergences.

Let Z1 and Z2 be two random variables equipped with densities fZ1 and fZ2 , respectively,
with common support I ™ R. The (h, „)-divergence between Z1 and Z2 is defined by

Dh
„(Z1ÎZ2) = h

3⁄

I
„

1fZ1(z;✓1)
fZ2(z;✓2)

2
fZ2(z;✓2)dz

4
,

where „ : (0, Œ) æ [0, Œ) is a convex function, h : (0, Œ) æ [0, Œ) is a strictly increasing
function with h(0) = 0, and indeterminate forms are assigned value zero. Table 1 shows
three choices of h and „ functions, and the resulting divergences.
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Table 1. „ and h functions, and related divergences.
(h, „)-distance/notation h(y) „(x)

Kullback-Leibler/KL y/2 (x ≠ 1) log(x)
Rényi (order 0 < — < 1)/RD:— 1

—≠1
log((— ≠ 1)y + 1), 0 Æ y < 1

1≠—
x1≠—

+x—≠—(x≠1)≠2

2(—≠1)

Bhattacharyya/BA ≠ log(≠y + 1), 0 Æ y < 1 ≠
Ô

x + x+1

2

In particular, consider Z1 and Z2 be random variables following the G0

I model and indexed
by parameters ✓1 = [–1, “1, L1]€ and ✓2 = [–2, “2, L2]€, respectively. The KL divergence
between Z1 and Z2 can be computed setting A(–, “, L) © LL�(L ≠ –)[“–�(≠–)�(L)]≠1.
With this

D
G0

I
KL(Z1ÎZ2) =

⁄ Œ

0
fZ1(z) log

3
fZ1(z)
fZ2(z)

4
dz

=
⁄ Œ

0
A(–1, “1, L1)z(L1≠1)(“1 + L1 z)–1≠L1

5
log

3
A(–1, “1, L1)
A(–2, “2, L2)

4

+ log
3

zL1≠1(“1 + L1 z)–1≠L1

zL2≠1(“2 + L2z)–2≠L2

46
dz

= log
3

A(–1, “1, L1)
A(–2, “2, L2)

4
+ (L1 + L2 ≠ 2)E[log(Z1)] + (–1 ≠ L1)E[log(“1 + L1 Z1)]

≠(–2 ≠ L2)E[log (“2 + L2 Z1)],

where E denotes the expected value, E[log (“1 + L1 Z1)] = log(“1) + Â(L ≠ –1) ≠ Â(≠–1),
E[log(Z1)] = log(“1) ≠ Â(≠–1) + Â(L) ≠ �(L)≠1[log(L) + 1] ≠ 1 and E[log (“2 + L2 Z1)] is a
quantify which can be defined in terms of the following integral

⁄ Œ

0
log(“2 + L2 z) zL1≠1 (“1 + L1 z)–1≠L1dz = ≠ L≠–1

2 [L1 (“2L1 ≠ “1L2)]≠L1

–1 (–2
1 ≠ 1) “2L1� (L1 ≠ –1 + 1)

◊
;

≠
(L1 ≠ –1) (“2L1 ≠ “1L2)L1 � (L1 + 1) (“1L2)–1+1

3F2
1

1, 1, L1 + 1; 2, –1 + 2; L2“1
L1“2

2

� (–1 ≠ 1)

◊ fi csc (fi–1) + (–1 + 1) (–1 ≠ L1) (“2L1 ≠ “1L2)L1

5
“2� (2 ≠ –1) log (“2) � (L1 + 1) (“1L2)–1

+ fi“1L2 csc (fi–1) (“2L1)–1 � (L1 ≠ –1 + 1) 2F1

3
1 ≠ –1, L1 ≠ –1 + 1; 2 ≠ –1; L2“1

L1“2

4 6

≠ fi
!
–2

1 ≠ 1
"

csc (fi–1) (“2L1)L1+1 (“2L1 ≠ “1L2)–1 � (L1 ≠ –1 + 1)
<

,

where pFq is the generalized hypergeometric function (Gradshteyn and Ryzhik, 1980,
Sec. 9.18). Under the conditions of Equation (1), Equation (2) collapsed to

D�

KL
(Z1ÎZ2) = L1 log(L1/—1) ≠ L2 log(L2/—2) + log(�(L2)) ≠ log(�(L1))

+ L1

1L2/—2

L1/—1

≠ 1
2

+ [Â(L1) ≠ log(L1/—1)](L1 ≠ L2).

One can note that both D
G0

I
KL

(·Î·) and D�

KL
(·Î·) are non-symmetric measurers. A simple

solution for addressing the symmetry problem is the definition of a new measure dh
„ expressed
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by

dh
„(Z1, Z2) =

Dh
„(Z1ÎZ2) + Dh

„(Z2ÎZ2)
2 . (2)

In this paper, we work with the KL distances stated as

d
G0

I
KL

(Z1, Z2) = D
G0

I
KL

(Z1ÎZ2) + D
G0

I
KL

(Z2ÎZ1)
2

and

d�

KL
(Z1, Z2) = D�

KL
(Z1ÎZ2) + D�

KL
(Z2ÎZ1)

2 .

We also consider the Rényi distance (of order 0 < — < 1) between G0

I distributions given by

(— ≠ 1) d
G0

I
RE:—(Z1, Z2) = log

3⁄ Œ

0

1
2[f—

Z1(z) f1≠—
Z2 (z) + f—

Z2(z) f1≠—
Z1 (z)]dz

4

= ≠ log(2) + log
5 ⁄ Œ

0

x—L1+(1≠—)L2≠1(“1 + L1x)—(–1≠L1)

◊(“2 + L2x)(1≠—)(–2≠L2)dx ◊ A(–1, “1, L1)—A(–2, “2, L2)1≠—

+
⁄ Œ

0

x—L2+(1≠—)L1≠1 ◊ (“2 + L2x)—(–2≠L2)(“1 + L1x)(1≠—)(–1≠L1)dx

◊A(–2, “2, L2)—A(–1, “1, L1)1≠—
6
.

The expressions of the above integrations are suppressed for simplicity. Under the conditions
of Equation (1), we have that

2 exp{(— ≠ 1) d�
RE:—(Z1, Z2)} =

3 �(L2)
(L2/—2)L2

(L1/—1)L1

�(L1)

4—≠1

◊�(—L1 + (1 ≠ —)L2¸ ˚˙ ˝
L01

) [—(L1/—1) + (1 ≠ —)(L2/—2)]≠L01

(1/(—1/L1))L1�(L1)

+
3 �(L1)

(L1/—1)L1

(L2/—2)L2

�(L2)

4—≠1
�(—L2 + (1 ≠ —)L1¸ ˚˙ ˝

L02

)

◊ [—(L2/—2) + (1 ≠ —)(L1/—1)]≠L02

(1/(—2/L2))L2�(L2) .

In particular, one obtains the Bhattacharyya distance when — = 1/2 and the final expression
is multiplied by 1/2

d�
BA(Z1, Z2) = ≠ log

3⁄ Œ

0


fZ1(z; L1, L1 —1) fZ2(z; L2, L2 —2) dz

4

= ≠L1 log(L1/—1) + L2 log(L2/—2)
2 +

1L1 + L2
2

2
log

3 (L1/—1) + (L2/—2)
2

4

≠ log
3

�
3

L1 + L2
2

44
+

5 log �(L1) + log �(L2)
2

6
.
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The Hellinger (H) distance between gamma distributions can be derived from d�

BA
(Z1, Z2)

as

d�

H
(Z1, Z2) = 1 ≠ e≠d�

BA(Z1,Z2).

We now employ these measures to propose new boundary detection tools. Although the
previous contrast discussion considers that the number of looks are di�erent and unknown,
called “equivalent number of looks”, this parameter can be assumed common and known in
the whole image. From now on, we assume it is a known constant for the G0

I law and an
estimable unknown constant for the � distribution as approached by Anfinsen et al (2009).
Under this setting, both models have the same parametric space dimension being, thus,
comparable.

4. Boundary detectors

An edge detector seeks a point on a strip of data where the statistical properties change.
The detection procedures used in this paper work in three stages: (i) identifying the cen-
troid of the candidate area (in automatic, semiautomatic, or manual manner), (ii) detecting
transition points which belong to the edge, and (iii) defining the contour using a imputation
method among the transition points, such as B-Splines (Gambini et al, 2006). We focus our
analysis on stages (ii) and (iii).

Assume that an initial region R with centroid C is available. Rays are traced from C
to points outside R. They are of the form s(i) = CPi, where the angle between rays is
\(s(i), s(i+1)), for i = 1, 2, . . . , S, being S the number of rays. Finally, the data are collected
in thin strips around these rays.

We assume that the data follow a G0

I distribution, and that there are two populations:
one inside the edge with j(i) observations, and another outside the edge with N (i) ≠ j(i)

observations. We can then model the N (i) observations around segment s(i), 1 Æ i Æ S as
I

Z(i)
k ≥ G0

I (–(i)
A , “(i)

A , L), for k = 1, . . . , j(i),

Z(i)
k ≥ G0

I (–(i)
B , “(i)

B , L), for k = j(i) + 1, . . . , N (i).
(3)

In the limit case, that is, under the conditions of Equation (1), Equation (3) becomes
I

Z(i)
k ≥ �(L(i)

A , L(i)
A /—(i)

A ), for k = 1, . . . , j(i),

Z(i)
k ≥ �(L(i)

B , L(i)
B /—(i)

B ), for k = j(i) + 1, . . . , N (i).
(4)

Note that Equation (3) collapses in Equation (4) if L(i)
A = L(i)

B = L, ≠–(i)
A /“(i)

A æ —(i)
A and

≠–(i)
B /“(i)

B æ —(i)
B , but these laws are not nested and, therefore, are competitive.

The main idea is to find the edge j(i)th on the segment s(i) as the point that provides
the best configuration according with respect to a decision rule. In the following we present
three di�erent decision rules omitting, for the sake of brevity, the index (i) since only one
strip is considered at each epoch.

The log-likelihood for the configuration stated in Equation (3) (or (4)) is given by

¸(j) = log(L(j)) =
jÿ

k=1

log(fZ1(zk;✓A)) +
Nÿ

k=j+1

log(fZ2(zk;✓B)),

where ✓A œ {[–A, “A], [LA, —A]} and ✓B œ {[–B, “B], [LB, —B]}.
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Gambini et al (2006) showed that an e�cient estimator, ‚äML, for the index on the segment
that corresponds to the transition point is stated as ‚äML = arg maxj ¸(j). However, this
procedure is computationally demanding as it needs to evaluate two likelihood functions at
each search step.

As discussed in Nascimento et al (2010), the distances derived in Section 3 can be scaled
to be asymptotically distributed as chi-square statistics:

SD
!„✓1(j), „✓2(N ≠ j)

"
= 2j(N ≠ j)vD

N
dD

!„✓1(j), „✓2(N ≠ j)
"
,

where vD = 1, —≠1, 4, and 4 for D = KL, RD:—, BA, and H, respectively, and „✓1(j) =
[‚–A(j), ‚“A(j)] and „✓2(N ≠ j) = [‚–B(N ≠ j), ‚“B(N ≠ j)] are the maximum likelihood esti-
mators for ✓1 = (–A, “A) and ✓2 = (–B, “B) using random samples of sizes j and N ≠ j,
respectively. Under mild conditions, SD

!„✓1(j), „✓2(N ≠ j)
"

is asymptotically distributed as
a ‰2

2
random variable under the null hypothesis ✓1 = ✓2.

Thus, we propose novel detectors for finding edges on SAR intensities by seeking for the
point that maximizes the test statistics between the two models, that is,

‚äD = arg max
j

SD
!„✓1(j), „✓2(N ≠ j)

"
= arg max

j
SD(j),

where D = {KL; BA; H; RD :—}.

5. Numerical results

In the simulations, we study the performance of the two edge detectors here proposed. We
use simulated data from two models, namely gamma and G0

I and edge detectors based on
the gamma and G0

I distributions. With this, we verify the robustness of the detectors when
fed with data that do not belong to the model they were originally devised. We utilize the
absolute value of the di�erence between the mean detection and actual edge position as
performance criterion, given by

D = |B̄ ≠ 100|,

where B̄ is the sample mean of detected edge and 100 is the true edge position. The smaller
this measure is, the better the performance is.

We performed a Monte Carlo simulation study with: i) 1000 replications for each situation;
ii) G0

I and � distributed data; iii) in each replicate we simulate a strip of data of size 1◊200.
The first half from one distribution, and the second from another distribution.

The first set of experiments used edge detectors based on the gamma distribution, in
which we set — = 0.9 in the Rényi distance. The observations are samples Z1, Z2 . . . , Z100

from �(‹0, ‹0/—0), and Z101, Z102, . . . , Z200 from �(‹1, ‹1/—1), with —0 = —1 = 1 (unitary
mean), ‹0 = 1 and ‹1 = 4, 6, 8.

The second set of experiments used edge detectors based on the G0

I law and samples
Z1, Z2 . . . , Z100 from G0

I (≠‹0, ‹0, 4), and Z101, Z102, . . . , Z200 from G0

I (≠‹1, ‹1, 4), with ‹0 =
1.5, 3 and ‹1 = 3, 5. These parameters provide a small but representative set of values.

Table 2 shows the performance of the Gamma-based edge detectors. The best results
(smallest errors) are highlighted in gray. In this table, finding an edge between Gamma
samples seems a di�cult task for Gamma-based detectors. The Hellinger-based detector
performs best in call cases, but the mean errors are of the order of four pixels. The Rényi-
based detector performs worst.
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Table 2. Performance measures for gamma distances in the indicated model.

Distribution and parameters gamma-based detectors
LR KL BA H RD,—

Gamma, ‹0 = 1, ‹1 = 4 26.51 6.41 11.35 5.05 60.50
Gamma, ‹0 = 1, ‹1 = 6 28.55 4.71 10.18 4.41 66.93
Gamma, ‹0 = 1, ‹1 = 8 29.64 4.68 10.88 3.96 68.94
GI

0
, ‹0 = 1.5, ‹1 = 3 27.57 12.26 13.73 7.01 4.93

GI
0
, ‹0 = 1.5, ‹1 = 5 18.19 1.25 20.80 0.14 1.70

GI
0
, ‹0 = 3, ‹1 = 5 26.75 1.56 19.98 8.65 6.44

Table 3 shows the performance of the G0

I -based edge detectors. In this table, overall, the
two edge detectors based on the G0

I distribution have similar performance. The Rényi-based
detector produces consistently better results than the KL-based one when the data follow G0

I
laws. Although the latter detector is better in two out of three cases of Gamma-distributed
samples, the di�erences are approximately 1% and 7%.

Table 3. Performance measures for GI
0 distances.

Distribution and parameters GI
0

-based detectors
KL RD,—

Gamma, ‹0 = 1, ‹1 = 4 6.30 6.68
Gamma, ‹0 = 1, ‹1 = 6 9.84 9.94
Gamma, ‹0 = 1, ‹1 = 8 10.70 10.20
GI

0
, ‹0 = 1.5, ‹1 = 3 3.23 1.27

GI
0
, ‹0 = 1.5, ‹1 = 5 5.12 1.33

GI
0
, ‹0 = 3, ‹1 = 5 3.57 1.05

The results presented in Tables 2 and 3 led us to conclude that the safest and most
versatile option for edge detection is the G0

I -based detector that uses the Rényi distance
with — = 0.9. We now are in position of submitting the detectors to real data. We present
an application to an actual SAR image to assess the proposed detectors in practice.

Figure 3(a) displays a SAR image of crops in Foulum (Denmark) from the HH (horizontal-
horizontal) polarization channel. This picture has been obtained by an EMISAR sensor with
four nominal looks. Figure 3(b) shows the reference map, and Figure 3(c) identifies classes
with shades of gray. According to the discussion about this image Foulum in Ferreira and
Nascimento (2020), there is a centroid between the wheat and rapeseed areas. We use it to
cast the rays on which the proposed detectors work. Figures 3(d) and 3(e) exhibit the result
of detecting the edges that separate wheat from rapeseed.

The following analysis is made by visual inspection on the edges reconstructed from the
estimated transition points and fourth-degree B-splines curves, as in Nascimento et al (2014).

The performance of G0

I -based detectors is consistently better than those obtained from the
� law. They provide the same good estimate of the edge. This result is in agreement with the
simulation study once the G0

I distribution is a better alternative to describe di�erent SAR
clutter. The Rényi distance furnishes the best detection for the Gamma-based detectors.

Simulation and real experiments were made in the R programming environment (Wick-
ham, 2019); functions integrate and maxLik(.,method=BFGS) were used for numerical
integration and obtaining ML estimates (equipped with moments method ones as initial
point), respectively. All studies were performed in a Intel(R) Core(TM) i5-5200U processor
at 2.20 GHz.
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(a) Gray level HH channel Image (b) Reference map (c) Kind of terrain

ĵ LR|Γ ĵ KL|Γ ĵ BA|Γ

ĵ H|Γ ĵ RD:0.9|Γ

(d) Gamma-based detectors

ĵ KL|GI
0 ĵ RD:0.9|GI

0

(e) G0
I -based detectors

Figure 3. Application of edge detectors based on stochastic distances on an actual SAR image.

6. Conclusions, limitations, and future research

In this paper, we proposed distance-based boundary detectors for synthetic aperture radar
data modeled by the � and G0

I laws. These proposals have wide applicability in practice,
like the Monitoring of oil spill (Fan et al, 2015) and deforestation areas in forests (Bouvet
et al, 2018). We quantified their performances with both simulated and actual data. Results
provided evidence that detectors based on Kullbak-Leibler and Rényi distances for G0

I models
outperform ones based on distances between � limit cases and on the joint � likelihood, which
have been employed in the synthetic aperture radar literature.

This paper has addressed only measures induced from the � and G0

I distributions and
approached the univariate aspect, that consist in two of its limitations.

In future works, we use the general distributions like complete G (Frery et al, 1997) and
KummerU (Deng et al, 2017).
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