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Editors

Héctor Allende Cid Pontificia Universidad Católica de Valparáıso, Chile
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Abstract

New alternative tests to the Hotelling T2 and the likelihood ratio tests for the multivari-

ate normal and non-normal population mean vector are proposed here. These new tests

are based on the ordinary and robust comedian covariance matrix estimator. The new

adapted likelihood ratio test overcomes the high dimensional issue that occurs with both

T2 and likelihood ratio tests. The asymptotic and parametric bootstrap distributions

for test statistics are used and the performance of these new tests based on normal and

non-normal distributions is evaluated through Monte Carlo simulations. Contaminated

normal multivariate populations are also considered to evaluate the e�ects of outliers on

test performances. Type I error probabilities and power in all simulations are computed

using the R software. The non-robust parametric bootstrap version of the likelihood

ratio test performs better and is recommended since it is easy to implement and com-

putationally fast. An application of the proposed new and T2 tests to a real data set is

provided. We use an R package of our authorship to perform the tests described here.

Keywords: Bootstrapping · Hotelling and likelihood ratio tests · Types I-II errors.

Mathematics Subject Classification: Primary 62G10 · Secondary 62F05.

1. Introduction

A big challenge in statistics is based on verifying if a p-variate normal mean vector µ is
equal to a known vector µ0 when the dimensionality p is greater than the sample size
n. The Hotelling T

2 test is widely used to test the null hypothesis. However, under non-
normal distributions or in the presence of outliers, the use of the Hotelling T

2 test is not
recommended. First, this statistic is built under multivariate normality. Second, even under
normality, this statistic considers the average sample vector X and the covariance matrix
S that are strongly influenced by outliers, as in the univariate case (Willems et al., 2002).
Third, T

2 cannot be calculated when the number of variables p is greater than or equal to
the number of observations n, since the sample covariance matrix, that is present in this
statistic, is a singular matrix (Bai and Saranadasa, 1996). In addition, Bai and Saranadasa
(1996) noted that the test power based on the T

2 statistic has low power when under these
same conditions, as also shown in Pan and Zhou (2011).
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Another widely used statistical method is the likelihood ratio (LR) test (Ferreira, 2018;
Wagala, A., 2020). In addition, testing the null hypothesis on a vector of population means
becomes a challenge under non-normal asymmetric distributions or in the presence of out-
liers. The Hotelling or likelihood ratio tests consider the sample estimators of the vector of
means and the covariance matrix in their expressions, which are highly influenced by out-
liers. Some robust testing proposals can be found by Tiku (1982); Mudholkar and Srivastava
(2000); Willems et al. (2002). In contrast, Srivastava and Du (2008); Srivastava (2009); Chen
et al. (2010); Lee et al. (2012); Srivastava et al. (2013); Wang et al. (2013); Marozzi (2015)
proposed alternative nonparametric tests for the LR test in non-normal populations, the
number of variables p is greater than or equal to the number of observations n.

In this article, new statistical tests are proposed for the null hypothesis involving tests
on the vector of multivariate population means. The idea is to obtain robust adaptations
of the T

2 and LR statistics using robust comedian estimators (Sajesh and Srinivasan, 2012)
for the vector of averages and population covariance matrix. The fundamental concept is to
replace ordinary estimators with the mean vector and covariance matrix with their respective
robust comedian estimators and provide accurate tests for the mean vector considering the
parametric bootstrap distribution under the null hypothesis. In addition, for the LR test
statistic with the original and robust comedian estimator of the covariance matrix, the
determinants (generalized variances) are replaced by the trace operator, which represents
the total sample variance. These new tests are potentially more advantageous than the
adapted tests mentioned above, since they can perform better under non-normality and in
the presence of outliers. In addition, they are computationally easy to implement and apply.

The performance of these proposed new tests is evaluated by Monte Carlo simulations
calculating the type I error probabilities and power of the tests. In Section 2, the new
proposed tests are introduced. The results regarding the type I error probability and power
of the tests are shown in Section 3. The exact binomial test proposed by Cardoso de Oliveira
and Ferreira (2010) is evaluated by Monte Carlo simulations. Section 4 applies the results
obtained in this work to real data. In Section 5, the conclusions are presented.

2. Methods

2.1 General context

Consider the problem of testing the hypotheses given by

H0: µ = µ0 versus H1: µ ”= µ0. (1)

In order to do this, let Xj = [Xj1, . . . , Xjp]€, with j = 1, . . . , n, be a random sample of size
n from a p-variate normal distribution with mean vector µ and covariance ⌃. Here, n refers
to the number of observations, and p refers to the number of variables (dimensionality) in
each random vector. In general, the p components in the random vectors are correlated
variables, where its p ◊ p covariance matrix ⌃ is positive definite.

Under the null hypothesis H0 as in Equation (1) the test statistic Hotelling T
2 is given by

T
2
c = n(X ≠ µ0)€

S
≠1(X ≠ µ0). (2)

where X =
qn

j=1 Xj/n is the sample mean vector, S = (1/(n≠1))
qn

j=1(Xj ≠X)(Xj ≠X)€

is the sample covariance matrix, and n is the sample size. Under H0 and with the assumption
of normality and homoscedastic covariance matrix, the T

2
c given in Equation (2) follows a

Hotelling T
2 distribution given by (n≠1)pFp,n≠p/(n≠p), where Fp,n≠p is the F distribution

with p and n ≠ p degrees of freedom.
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Considering the hypotheses given in Equation (1), another statistical method used is the
LR test. Let X ≥ Np(µ,⌃), where ⌃ is unknown. Therefore, the LR statistic is given by
the expression stated as

≠ 2 log(�) = n[log(|S + H|) ≠ log(|S|)], (3)

where H = (X ≠ µ0)(X ≠ µ0)€ and log is the natural logarithm. Consider � œ Rs the
unrestricted parametric space and �0 ™ Rr the restricted parametric space, with �0 µ �.
In general, under certain conditions of regularity, Equation (3) follows an asymptotic chi-
square distribution with r ≠ s degrees of freedom (Ferreira, 2018) under the null hypothesis
H0. Thus, the rejection region of H0 is given by R = {x| ≠ 2 log(�(x)) > ‰

2
1≠–(r ≠ s)},

where – is the nominal significance level and ‰
2
1≠–(r ≠ s) is the 100(1 ≠ –)% percentile of

a chi-square distribution with r ≠ s degrees of freedom. In this case, for testing hypothesis
about normal mean vector, the degrees of freedom r ≠ s are equal to p.

Here, the proposed new tests based on the modifications of the T
2 statistic defined in

Equation (2) and LR statistic stated in Equation (3) are shown. Also, the adopted Monte
Carlo simulation procedure to assess their performance is described. For this, consider a sam-
ple of size n from the normal p-variate distribution with a mean vector µ and covariance
matrix ⌃ to test the null hypothesis H0 given in Equation (1). In all cases, the original and
transformed LR expressed in Equation (3) are applied, consider the trace operator replacing
the determinant operator and the robust estimator replacing the traditional estimator of
the covariance matrix. Only in the cases where p < n, the T

2 test and its modifications
that use the comedian estimators. The theoretical justification can be seen in Section 1.
To evaluate test performance, first, type I error probabilities are calculated by generating
sample sizes from populations under H0, with a mean vector of µ0. Second, random samples
are generated under H1, with µ ”= µ0. In both cases, samples from normal and non-normal
populations are generated. The p-variate Student-t distributions with 5 degrees of freedom
for the non-normal distribution case. We also consider contaminated normal (CN) popula-
tions for generating outliers. Some factorial combinations of the number of variables p and
sample size n are considered.

Without loss of generality, the population covariance matrix ⌃ with the compound sym-
metry structure given by

⌃ = ‡
2

S

WWWU

1 fl . . . fl

fl 1 . . . fl

...
... . . . ...

fl fl . . . 1

T

XXXV = ‡
2[(1 ≠ fl)I + flJ ] (4)

is considered, where J is a p ◊ p matrix with all entries equal to 1 and I is an identity
array of the same order as J . Also, without loss of generality, ‡

2 = 1 and fl = 0.9 since
the test statistics are invariant under the true covariance structure. The p-variate Student-t
distribution is used to pick a distribution that has heavier tails than the multivariate normal
distribution and violate the assumptions of the T

2 and LR statistics. The p-variate CN
distribution is ÊN1(µ,⌃1) + (1 ≠ Ê)N2(µ,⌃2). Again, without loss of generality, Ê = 0.9,
⌃1 is defined by Equation (4) and ⌃2 is constructed using the constraint: |⌃2|/|⌃1| =
�, and thus, ⌃2 = �1/p⌃1, where � = 2. Sample sizes are n = 10, 50, 70, 100 and 200
and the nominal significance level – is – = 5%. The number of variables is p = 2, 5 and
200 and 2 000 Monte Carlo simulations to evaluate the empirical estimates of the type I
error probabilities and power of each test are considered. The parametric bootstrap null
distribution are generated with 2 000 resamples from a N(0, S

•) distribution, where the
null hypothesis H0 is imposed by considering µ = 0 to generate the null distribution of the
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statistic. Also, the covariance matrix used to generate the bootstrap null distribution, given
S

•, is the sample covariance matrix computed by using the traditional or robust comedian
estimator in the original sample for traditional and robust bootstrap tests, respectively.

Without loss of generality, to evaluate the type I error probabilities the µ0 vector under
the null hypothesis given in Equation (1) is the p-dimensional 0 null vector and the true
vector of population mean is also µ = 0. Under the alternative hypothesis H1 stated in
Equation (1), for the power study, the true population mean vector µ is chosen considering
a fixed generalized Mahalanobis distance ”(µ,µ0) between µ and µ0 given by

”(µ,µ0) = n(µ ≠ µ0)€⌃≠1(µ ≠ µ0). (5)

In this case, µ0 = 0, and the true population mean vector is calculated by trial and error
in Equation (5) by taken a fixed ” value and the final value is used as a parameter in
each of the population distributions considered under H1. The chosen values from ” are
0, 0.5, 1, 1.5, 3, 5, 10. Therefore, since the values of the mean vector change as n changes,
keeping fixed the value of the distance of Mahalanobis ”(µ,µ0) = n(µ≠µ0)€⌃≠1(µ≠µ0),
the power does not change as n increases.

Thus, five new tests based on the traditional T
2 statistic defined in Equation (2) and

in the LR statistic defined in Equation (3) are proposed, including the traditional and ro-
bust versions that use the comedian mean vector and covariance matrix estimators (Falk,
1997; Maronna and Zamar, 2002; Sajesh and Srinivasan, 2012). Some tests are based on
parametric bootstrap versions as well as the asymptotic chi-square distribution. However,
some asymptotic chi-square tests have not been shown since they did not control the type
I error probabilities. The performance of these new tests is evaluated by Monte Carlo sim-
ulations. Below, each of the proposed new tests for testing the null hypothesis H0: µ = µ0
is described. The new LR test has a chi-square asymptotic distribution with p degrees of
freedom, as the original LR test.

One special case is considered regarding the distributions and for some values of n, p

and ”. A shifted zero mean exponential distribution with parameter � = 1p, where 1p is a
p-dimensional vector with 1 in all entries. The latter is a case of a skewed distribution. For
the exponential distribution, a p-dimension random vector Z is generated from a N(µ, ⌃)
distribution. A p-dimensional random vector Y from this distribution is obtained considering
for the ith entry the random variable stated as Yi = F

≠1(�(Zi); ⁄i) ≠ 1/⁄i, for i = 1, . . . , p,
where F

≠1(x; ⁄i) is the quantile function of the exponential distribution of parameter ⁄i

evaluated at x and �(x) is the cumulative distribution function of the standard normal
distribution evaluated at x.

2.2 The parametric bootstrap T
2

test

We construct the parametric bootstrap T
2 test, called T

2
PB (T2PB), where PB stands for

parametric bootstrap, adopting the following steps:
(1) From the original sample, the parameters ⌃ and µ are estimated, respectively, by

S
ú and X

ú, where S
ú and X

ú are the traditional sample covariance matrix and
vector mean, respectively. The test statistic is computed by

T
ú2 = n

1
X

ú ≠ µ0
2€

S
ú≠1

1
X

ú ≠ µ0
2
. (6)

(2) By using the original covariance estimates Sú, a random sample of size n is generated
from a p-variate normal distribution imposing H0, that is, by setting µ = µ0. Also
⌃ = S

ú. Therefore, a sample of size n is generated from a N(µ0, Sú) distribution.
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(3) In each parametric bootstrap sample, the sample mean XPB and the sample covari-
ance matrix SPB are estimated.

(4) In each parametric bootstrap sample, compute the test statistic by means of

T
2
PB = n(XPB ≠ µ0)€

S
≠1
PB(XPB ≠ µ0). (7)

(5) Steps (2) to (4) are repeated B times and a set of size B + 1 is constructed with the
test statistic values computed in Equation (7) and the original value calculated in
Equation (6). The null distribution of the parametric bootstrap test is constituted
by this set. Therefore, if the ith member of this set is represented by T

2
i , for i =

1, . . . , B + 1, then the p-value is computed by

p-value =

B+1ÿ

i=1
I(T 2

i Ø T
ú2)

B + 1 , (8)

where I(T 2
i Ø T

ú2) is the indicator function.
(6) The null hypothesis given in Equation (1) is rejected at the significance level – if

the p-value defined in Equation (8) is less than –.
Note that the traditional T

2 test is also considered, by computing the p-value direct from
the Hotelling T

2 distribution of the test statistic value obtained in Equation (6). This is
named by T2 and is considered the benchmark test.

2.3 The robust parametric bootstrap T
2

test

The robust parametric bootstrap T
2 test, called T

2
RPB (T2RPB), in which RPB stands for

robust parametric bootstrap, are performed by adopting the same steps described for the
previous test. However, some of them are modified as in the following sequence.

In Step 1, the estimators S
ú and X

ú are replaced by comedian estimators SR and XR
the test statistic in the original sample is computed by T

ú2 = n(XR ≠µ0)€
S

≠1
R (XR ≠µ0).

In Step 2, the sample of size n is generated from a N(µ0, SR) distribution, where again,
the null hypothesis is imposed by considering the multivariate normal mean equal to µ0,
the null value of the population mean.

In Step 3, the mean and the sample covariance in each parametric bootstrap sample are
denoted, respectively, by XRPB and SRPB.

In Step 4, the test statistic is computed by T
2
RPB = n(XRPB ≠ µ0)€

S
≠1
RPB(XRPB ≠ µ0).

Steps 5 and 6 are identically as described in the previous test, with T
2
i replaced now by

the ith value from the bootstrap null distribution of T
2
RPB. In this case, the asymptotic

chi-square distribution with p degrees of freedom is not considered as an alternative test,
since the corresponding robust T

2 test did not control the type I error probability (results
omitted here). More details on the performance of the above tests can be seen in Alves and
Ferreira (2019).

We have shown in Section 1, in addition to the problems presented for their use in data
following non-normal distributions, that the traditional T

2 test is not valid for high dimen-
sional data (p > n) due to the singularity of the sample covariance matrix S. The LR test
has the same limitations of the T

2 to be implemented in high dimensional data sets and
non-normal circumstances. Considering to Ledoit and Wolf (2002) as reference, we propose
an alternative test to the LR test that is based on replacing the determinants of the ma-
trices S and S + H for their respective traces. Here, H = n(X ≠ µ0)(X ≠ µ0)€. In this
way, we have obtained a new test that applies to high-dimensional (p > n) data sets and
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that maintains the same distributional properties of LR test. The validity of the asymptotic
null distribution of the new test with traditional sample estimators of the mean vector and
covariance matrix is evaluated by Monte Carlo simulations. Also, the parametric bootstrap
and robust parametric bootstrap versions for this latest proposal are built, as we have done
for the T

2 test. In the following subsections, we present the new procedures.

2.4 The asymptotic LR trace test

The asymptotic trace version of the LR test, named asymptotic trace LR (ATLR) test, is
obtained by directly replacing the determinant given in the expression of the LR by the
trace operator tr. Let the null hypothesis be H0: µ = µ0, then the ATLR test statistic is
T

2
ATLR = n{log[tr(Sú + H)] ≠ tr(Sú)}, where H = (Xú ≠ µ0)(Xú ≠ µ0)€, that under the

null hypothesis H0 and normality has a chi-square distribution with p degrees of freedom,
since the plim (probability limit) of H is 0 as n æ Œ, still under the null H0. The null
hypothesis should be rejected if the T

2
ATLR Ø ‰

2
1≠–(p).

2.5 The TLR parametric bootstrap test

There is no guarantee the T
2
ATLR has an asymptotic chi-square distribution with p degrees of

freedom under H0 and multivariate normality. To overcome this issue we proposed the TLR
parametric bootstrap test, named trace likelihood ratio parametric bootstrap (TLRPB) test.
The steps to apply for this test are the same as described previously for T

2
PB, except for

some details explained as follows.
In Step 1, the estimators S

ú and X
ú are computed in the original sample and the test

statistic is T
ú2 = n{log[tr(Sú + H

ú)] ≠ tr(Sú)}, where H
ú = (Xú ≠ µ0)(Xú ≠ µ0)€.

In Step 2, the sample of size n is generated from a N(µ0, Sú) distribution, where the null
hypothesis is imposed by considering the multivariate normal mean equal to µ0, the null
value of the population mean.

In Step 3, the mean and the sample covariance in each parametric boot-
strap sample are denoted respectively by XTLRPB and STLRPB. In Step 4,
the test statistic is T

2
TLRPB = n{log[tr(STLRPB + HTLRPB)] ≠ tr(STLRPB)},

with HTLRPB = (XTLRPB ≠ µ0)(XTLRPB ≠ µ0)€.
Steps 5 and 6 are identically as described in the previous test, with T

2
i replaced now by

the ith value from the bootstrap null distribution of T
2
TLRPB.

2.6 The robust TLR parametric bootstrap test

For overcoming problems with outliers the robust parametric bootstrap version of the pre-
vious TLRPB, called robust trace likelihood ratio parametric bootstrap (RTLRPB) is con-
structed. The steps necessary for this test to be applied are the same as the previous steps
described for the T

2
PB, except for some details explained below.

In Step 1, the comedian estimators SR and XR are computed in the original sample and
the test statistic is T

ú2 = n{log[tr(SR+HR)]≠tr(SR)}, where HR = (XR≠µ0)(XR≠µ0)€
.

In Step 2, the sample of size n is generated from the N(µ0, SR) null distribution.
In Step 3, the comedian sample mean and sample covariance in each parametric bootstrap

sample are denoted respectively by XRTLRPB and SRTLRPB.
In Step 4, the test statistic is T

2
RTLRPB = n{log[tr(SRTLRPB +HRTLRPB)]≠ tr(SRTLRPB)},

where HRTLRPB = (XRTLRPB ≠ µ0)(XRTLRPB ≠ µ0)€.
Steps 5 and 6 are identically as described in the previous test, with T

2
i replaced now by

the ith value from the bootstrap null distribution of T
2
RTLRPB.
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2.7 The exact binomial test

The test type I error probabilities are evaluated by Monte Carlo simulations, and according
to Cardoso de Oliveira and Ferreira (2010), these estimates are not error-free. Therefore, an
exact binomial test is used to decide whether each of the modified or the original statistical
test is considered accurate, liberal or conservative. In this sense, considering a nominal level
of significance of 1%, the hypotheses to be tested are defined as

H0: – = 5% versus H1: – ”= 5%. (9)

The statistic of the exact binomial test is given by

Fc =
3

z + 1
N ≠ z

431 ≠ –

–

4
, (10)

where z is the number of rejection of the null hypothesis accounted by one of the tests con-
sidering the nominal significance level of – and N is the number of Monte Carlo simulations
performed. Under the null hypothesis defined in Equation (9), the Fc statistic defined in
(10) follows a F distribution with ‹1 = 2(N ≠ z) and ‹2 = 2(z + 1) degrees of freedom. If
the null hypothesis is rejected and the type I error probability is considered significantly
less than the nominal level adopted of the 5%, the test can be considered conservative; if
the null hypothesis is rejected and the type I error is considered significantly higher than
the nominal level adopted of the 5%, the test can be considered liberal; and if the null
hypothesis is not rejected the test can be considered accurate.

A computer with a Core-I7 processor with 4 cores and 8 GB of RAM is used. The simula-
tions are performed in R with functions developed by the authors, except for the mvrnomr,
var, pf, pchisq, ginv and covComed functions of the MASS, statistics and robustbase
packages. The execution time of each simulation is 12 hours on average considering small
sample sizes (10, 50, and 70) and, in the case of larger sample sizes (100, and 200), the
average duration of the simulations is 2 days, regardless of the dimension considered.

3. Monte Carlo simulations

3.1 General context

The performance results for the proposed new tests are presented in two stages. First, the
results regarding type I error probability control and power for cases where p = 2 and
p = 5 where shown. Second, the results for the special case of high dimension (p = 200)
are shown. The performance of these new tests is evaluated considering the multivariate
normal, Student-t with 5 degrees of freedom and CN distributions.

3.2 Type I error probabilities

The type I error probabilities for the five new tests proposed via Monte Carlo simulations are
shown in Table 1, considering the dimension p = 2 at the significance level of – = 0.05. The
exact binomial test is used to classify these tests as exact, liberal, or conservative (see Section
2). The traditional and ordinary Hotelling T

2 test is also applied in each circumstance and
it is invoked as a benchmark test. We note that for all n sample sizes considered, as well as
for all evaluated multivariate distributions, the proposed tests T2, T2PB, and T2RPB are
exact since they showed test size equal to the nominal significance level –. The traditional
T

2 test constituted an exception when considering the bivariate Normal distribution with
a sample size of 50. In this case, this test is conservative but still acceptable. The same is
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not the case for LR adaptations. The ATLR is conservative on all distributions and sample
sizes considered. For this test, a substantial loss of power is expected to occur, which is an
important fact to be taken into account. The TLRPB test and RTLRPB test (see Section
2), in all the evaluated scenarios, are all accurate. A single exception occurs for the TLRPB
test, considering the multivariate normal distribution with n = 50, where it shows a liberal
performance in the control of the type I error probability. In practice, a test is considered
reliable if it has an exact size. Otherwise, if it is conservative, it can be considered acceptable.
However, if it is a liberal test, then it must be discarded. It does not appear the case for the
TLRPB test, once it showed a unique exception. Therefore, since in circumstances where
the normality assumption is violated, the performance regarding the type I error probability
control of the proposed new tests is acceptable.

Table 1. Type I error probabilities of the six tests with – = 5% and p = 2, considering the multivariate
normal (N), Student-t with 5 degrees of freedom (t5) and CN distributions.

Test Model
n

10 50 70 100 200

T2

N 0.0525
≠

0.0380
≠

0.0505 0.0485 0.0460

t5 0.0450 0.0495 0.0420 0.0485 0.0510

CN 0.0520 0.0450 0.0420 0.0490 0.0570

T2PB

N 0.0510 0.0475 0.0455 0.0485 0.0475

t5 0.0510 0.0430 0.0405 0.0485 0.0560

CN 0.0535 0.0435 0.0440 0.0430 0.0515

T2RPB

N 0.0430 0.0480 0.0525 0.0450 0.0535

t5 0.0430 0.0390 0.0520 0.0500 0.0485

CN 0.0530 0.0455 0.0525 0.0490 0.0615

ATLR

N 0.0195
≠

0.0085
≠

0.0120
≠

0.0110
≠

0.0130
≠

t5 0.0275
≠

0.0085
≠

0.0105
≠

0.0140
≠

0.0145
≠

CN 0.0200
≠

0.0125
≠

0.0120
≠

0.0140
≠

0.0120
≠

TLRPB test

N 0.0535 0.0940
+

0.0555 0.0445 0.0535

t5 0.0500 0.0680 0.0460 0.0520 0.0580

CN 0.0515 0.0520 0.0485 0.0445 0.0470

RTLPBT

N 0.0560 0.0490 0.0445 0.0430 0.0530

t5 0.0415 0.0415 0.0555 0.0510 0.0555

CN 0.0550 0.0505 0.0480 0.0435 0.0570

≠: significantly (p < 0.01) less than the nominal significance level of 5%.

To evaluate if the patterns presented in Table 1 are maintained we decided to increase
the dimensionality p and keep the sample sizes n fixed. Table 2 presents the results for
the empirical type I error probabilities considering the dimension p = 5. Similar behavioral
pattern to the control of the type I error probabilities showed for the case with p = 2 holds.
The atypical situation (conservative) for the T

2 test no longer occurs. We note that the
T2RPB for the multivariate Student-t distribution with 5 degrees of freedom and n = 10
and 200 is conservative in this case. The TLRPB test and RTLRPB test are considered
exact tests. The ATLR remains conservative and therefore acceptable. Likewise, it expects
that this test substantially loses power for this dimension. Next, we present the results of
the power of the tests for these same cases.

3.3 Power

The powerful performance of the proposed new tests is evaluated in the same cases used
to evaluate type I error probabilities: distributions, sample sizes, and dimensions. In all
circumstances, the power curves are plotted against Mahalanobis distances (”), given in 5,
between the true population vector µ and the hypothetical mean vector µ0. These distances
have been fixed (see Section 2) to establish the true value of the population mean vector.
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Table 2. Type I error probabilities of the six tests with – = 5% and p = 5, considering the multivariate
Normal (N), Student-t with 5 degrees of freedom (t5) and CN distributions.

Test Model
n

10 50 70 100 200

T2

N 0.0525 0.0545 0.0430 0.0500 0.0565

t5 0.0420 0.0545 0.0435 0.0440 0.0445

CN 0.0475 0.0535 0.0465 0.0475 0.0520

T2PB

N 0.0520 0.0545 0.0430 0.0500 0.0560

t5 0.0545 0.0505 0.0440 0.0440 0.0465

CN 0.0475 0.0540 0.0555 0.0470 0.0515

T2RPB

N 0.0505 0.0595 0.0465 0.0460 0.0605

t5 0.0315
≠

0.0385 0.0430 0.0405 0.0365
≠

CN 0.0430 0.0525 0.0460 0.0475 0.0500

ATLR

N 0.0050
≠

0.0000
≠

0.0005
≠

0.0005
≠

0.0005
≠

t5 0.0000
≠

0.0005
≠

0.0000
≠

0.0005
≠

0.0010
≠

CN 0.0005
≠

0.0005
≠

0.0005
≠

0.0000
≠

0.0105
≠

TLRPB test

N 0.0555 0.0550 0.0490 0.0585 0.0570

t5 0.0445 0.0455 0.0610 0.0495 0.0530

CN 0.0510 0.0575 0.0465 0.0545 0.0525

RTLRPB test

N 0.0555 0.0550 0.0490 0.0585 0.0570

t5 0.0490 0.0460 0.0535 0.0455 0.0405

CN 0.0495 0.0550 0.0425 0.0450 0.0520

≠: significantly (p < 0.01) less than the nominal significance level of 5%.

Note in Figure 1 that the TLRPB test showed the best performance among all evaluated
tests with p = 2. Under non-normality or in the presence of outliers, the performance of
this test showed a loss of power only when the multivariate Student-t distribution with 5
degrees of freedom is considered (Figure 1 (b)). We also noticed that the asymptotic version
ATLR has lower power as expected; see Tables 1 and 2.

In order to verify if the patterns observed in Figure 1 remain the dimensionality is fixed in
p = 2 and the multivariate distributions are the same, but the number of observations varied
in n = 50, 70, 100 and 200 for generating the power curves by Monte Carlo simulations.
Under these circumstances, the behavioral power patterns shown in Figure 1 remain the same
(Figures 2, 3, 4 and 5). The only exceptions are for the multivariate Student-t distribution
with 5 degrees of freedom (Figures 2(b), 3(b), 4(b) and 5(b)). In this case, the performance
of the TLRPB test and RTLRPB test is equivalent and higher than the performance of the
other tests.

In general, for this dimension (p = 2), the parametric bootstrap version (TLRPB test)
performed better when compared to the other tests. Also, all tests show a very robust
behavioral pattern, since they control the type I error probabilities and show higher power
when compared with the multivariate normal case.

We decide to increase the dimension to p = 5 and to maintain the same sample sizes n and
distributions. Similar performance of all tests that presented at p = 2 remains. Considering
the dimension p = 5, Figures 6, 7, 8, 9 and 10 show the results obtained for the power of the
tests. Figures 6(b), 7(b), 8(b), 9(b) and 10(b) show that power of the parametric bootstrap
version (TLRPB test) and the robust parametric bootstrap version (RTLRPB test) are
equivalent and higher than the other tests in the multivariate Student-t distribution with
5 degrees of freedom. In general, the TLRPB test performs better. The ATLR continues
to show substantial low power, once it has shown to be a conservative test, this pattern of
behavior is expected; see Tables 1 and 2.
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Figure 1. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 10 and p = 2, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 2. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 50 and p = 2, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 3. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 70 and p = 2, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 4. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 100 and p = 2, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
δ

P
o
w

e
r

ATLRT RTLRPBT T2 T2PB T2RPB TLRPBT

(a) Normal distribution

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
δ

P
o
w

e
r

ATLRT RTLRPBT T2 T2PB T2RPB TLRPBT

(b) t5 distribution

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
δ

P
o
w

e
r

ATLRT RTLRPBT T2 T2PB T2RPB TLRPBT

(c) CN distribution

Figure 5. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 200 and p = 2, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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Figure 6. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 10 and p = 5, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 7. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 50 and p = 5, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 8. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 70 and p = 5, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 9. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 100 and p = 5, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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Figure 10. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 200 and p = 5, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

3.4 Special case of p = 200: type I error probabilities and power

Table 3 shows the results considering this case of high dimensionality (p = 200). It is
considering sample sizes of n = 10, 50, 70, 100, and 200 and therefore deal with the cases
where p Ø n. For this circumstance, the traditional T

2 test and the adapted T2PB, T2RPB
can not be applied due to the high dimension issue (see Section 1). It is noticed that
the ATLR is conservative in all scenarios considered. It is expected that this test shows
substantial low power. It is also noticed that the other adapted tests, TLRPB test and
RTLRPB test, are exact, according to the binomial test (see Section 2).

Table 3. Type I error probabilities of the three tests with – = 5% and p = 200, considering the multivariate
Normal (N), Student-t with 5 degrees of freedom (t5) and CN distributions.

Test Model
n

10 50 70 100 200

ATLR

N 0.0130
≠

0.0130
≠

0.0120
≠

0.0110
≠

0.0130
≠

t5 0.0145
≠

0.0145
≠

0.0105
≠

0.0140
≠

0.0145
≠

CN 0.0120
≠

0.0120
≠

0.0120
≠

0.0140
≠

0.0120
≠

TLRPB test

N 0.0535 0.0535 0.0495 0.0450 0.0535

t5 0.0580 0.0580 0.0460 0.0520 0.0580

CN 0.0470 0.0470 0.0485 0.0445 0.0470

RTLRPB test

N 0.0530 0.0530 0.0445 0.0430 0.0530

t5 0.0555 0.0555 0.0555 0.0510 0.0555

CN 0.0570 0.0570 0.0480 0.0435 0.0570

≠: significantly (p < 0.01) less than the nominal significance level of 5%.

The power results for p = 200 are shown in Figures 11 to 15. Considering n = 10, Figure
11 shows that the TLRPB test outperformed the other proposed tests. It is also noticed that,
unlike the other dimensions considered (p = 2 and p = 5), the TLRBP and RTLRPB test
perform similarly with the multivariate Student-t distribution with 5 degrees of freedom
(Figure 11 (b)). It is also noticed for this scenario that the asymptotic version (ATLR)
shows substantial low power. This fact is already expected, as it did control the type I error
probabilities in a conservative way (Table 3).

When the sample size n is increased, it is noticed that the TLRPB test continues to
perform better (Figures 12, 13, 14 and 15). For the multivariate Student-t distribution with
5 degrees of freedom (Figures 12(b), 13(b), 14(b) and 15(b)), the TLRPB test and RTLRPB
test have similar performance. This pattern is identical to those for the dimensions of p = 2
and p = 5. In contrast, the ATLR has substantial power gain for this dimension (p = 200).
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(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 11. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 10 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

This fact can be noticed in Figures 13, 14 and 15. In general, the TLRPB test (parametric
bootstrap version test) outperformed in power when confronted with other tests.

(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 12. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 50 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 13. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 70 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 14. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 100 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 15. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 200 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

In a more general analysis, considering all scenarios evaluated (n = 10, 50, 70, 100, and
200 and p = 2, 5, 200), the Monte Carlo simulations for type I error probability and power
showed that the TLRPB test performed better. We recommend using this test as it is not
hard to implement and computationally fast.

Willems et al. (2002) concluded that his proposed new test T
2
R showed power losses when

compared to the traditional Hotelling T
2 test for several configurations of n and p (n > p).

Under p-variate CN populations, with 10% of contamination, the T
2
R has also less power

than the traditional Hotelling T
2 test. Dong et al. (2016) indicated that his proposed new

test for high dimensional data, based on a shrinkage process of the traditional Hotelling T
2

statistic test, showed high power under p-variate normal and Student-t with 4 degrees of
freedom distributions, considering di�erent values of µ.

In both tests (Willems et al., 2002; Dong et al., 2016), the e�ect of the sample size n

influenced the power, which is an expected fact. In the results of the present work it does
not occur, as presented before, because the values of the population means change when
the sample sizes change, keeping fixed the value of the distance of Mahalanobis ”(µ,µ0) =
n(µ≠µ0)€⌃≠1(µ≠µ0). To clarify, note that Willems et al. (2002) and Dong et al. (2016)
fixed the population mean vector µ, and therefore, the value of Mahalanobis distance ”

increases with increasing sample size n. Thus the power grew with an increase of n. On the
contrary, in the present work µ changed in each simulation when n varied, keeping the value
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of ” fixed, which keeps the power practically constant, as can be seen from Figures 1 to 15.
Di�erences in the power values found under identical configuration, but at di�erent values
of n, are attributed to the Monte Carlo error.

4. Special cases and real data analysis

4.1 General context

Marozzi (2015) proposed an alternative multivariate test class for case-control studies for
high dimensional data, considering heavy tails or skewed distributions. The proposed tests
are based on the combination of tests on inter point distances. The Euclidean distance
is utilized. These tests are exact, unbiased and consistent. The results showed that the
proposed tests are very powerful under normality, heavy tails, and skewed distributions.
Marozzi (2015) applied these same tests to magnetic resonance data which are usually with
few observations and many variables, that is, high-dimensional data.

We decided to verify the behavior of our proposed tests regarding the type I error control
and power considering heavy tails and skewed distributions. For this, we consider the multi-
variate exponential distributions with parameter � = 1. In the latter case, data are shifted
to zero mean by subtracting the population exponential mean µ = 1. We consider in our
simulations only the dimensions p = 2 and 5 and the same sample sizes n of Section 2.

4.2 Multivariate exponential distribution

For the multivariate exponential distribution, in general, the tests are very liberal. The
exception occurred for ATLR and TLRBPT. The ATLR is exact for n = 10 and conservative
for n Ø 50 with p = 2 or p = 5 (see Tables 4 and 5). The TLRPB test did not control the
type I error for n = 10 and n = 100 with p = 2 and p = 5, showing a liberal behavior (see
Tables 4 and 5, though with no expressive di�erence from the nominal significance level of
5%. In the other cases, it is exact. For large enough n, say n = 200, the T2 and T2BP tests
showed either type I error probabilities control or inexpressive liberal behavior, although
significant (see Tables 4 and 5).

Table 4. Type I error probabilities of the six tests with – = 5% and p = 2, considering the multivariate
exponential distribution.

Test Model
n

10 50 70 100 200

T2

exponential

0.1296
+

0.0778
+

0.0648
+

0.0658
+

0.0558

T2BP 0.5414
+

0.9651
+

0.0648
+

0.0658
+

0.0558

T2RBP 0.3470
+

0.9412
+

0.9821
+

1.0000
+

1.0000
+

ATLR 0.0459 0.0269
≠

0.0160
≠

0.0199
≠

0.0070
≠

TLRPB test 0.0927
+

0.0608 0.0439 0.0658
+

0.0489

RTLRPB test 0.2393
+

0.6112
+

0.7149
+

0.8335
+

0.9811
+

≠:

significantly (p < 0.01) less than the nominal significance level of 5%.
+: significantly (p < 0.01) greater than the nominal significance level of 5%.

The power of the tests for exponential distribution with n = 200 and p = 2 and p = 5
can be seen in Figures 16(a) and (b). Only the T2, ATLR, and TLRPB test tests should be
considered in the comparison, as they are those who controlled the Type I error probabilities.
Again, the TLRPB test test is the most powerful, especially with ” = 10, followed by the
T2 and ATLR tests, in this order.

Table 6 shows the results of type I error probabilities for multivariate exponential distri-
bution. We consider the dimension p = 200 and the sample size n = 200, with the nominal
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Table 5. Type I error probabilities of the six tests with – = 5% and p = 5, considering the multivariate
exponential distribution.

Test Model
n

10 50 70 100 200

T2

exponential

0.1296
+

0.0778
+

0.0648
+

0.0658
+

0.0558

T2BP 0.5517
+

0.9753
+

0.0676
+

0.0759
+

0.0658
+

T2RBP 0.3490
+

0.9423
+

0.9827
+

1.0000
+

1.0000
+

ATLR 0.0449 0.0267
≠

0.0180
≠

0.0299
≠

0.0080
≠

TLRPB test 0.0929
+

0.0618 0.0459 0.0755
+

0.0495

RTLRPB test 0.2397
+

0.6125
+

0.7193
+

0.8435
+

0.9831
+

≠:

significantly (p < 0.01) less than the nominal significance level of 5%.
+: significantly (p < 0.01) greater than the nominal significance level of 5%.

0.00

0.25

0.50

0.75

1.00

0.0 0.5 10.0

δ

P
o
w

e
r

T2 T2PB T2RPB ATLRT TLRPBT RTLRPBT

(a) n = 200, p = 2
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(b) n = 200, p = 5

Figure 16. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with multivariate exponential distribution, where the gray lines represent the lower and
upper limits of the exact binomial interval and the maximum power.

significance level of 5%, that is, an extreme case. We realized that only the ATLR and
TLRPB test tests controlled the type I error, being the first conservative and the second,
exact. The margin of error of the Monte Carlo simulations is also presented (see Table 6).
The RTLRPB test test showed all type I error probabilities close to 1 and is extremely
liberal in this high-dimensional case.

Table 6. Type I error probabilities (” = 0) and power (” = 0.5 and 10) of the three tests with – = 5%,
p = 200 and n = 200, considering the multivariate exponential distribution, where the values in parenthesis
express the margin of error of Monte Carlo simulations.

Test Model
”

0 0.5 10

ATLR

exponential

0.0069
≠

(0.0051) 0.0000(0.0036) 0.0000(0.0036)

TLRPB test 0.0488 (0.0133) 0.0473(0.0131) 0.9909(0.0058)

RTLRPB test 0.9810
+

(0.0084) 0.9673(0.0110) 1.0000(0.0036)

≠:

significantly (p < 0.01) less than the nominal significance level of 5%.
+: significantly (p < 0.01) greater than the nominal significance level of 5%.

We develop a package that is available in the R software (R Core Team , 2020) to assist
the user in executing the mentioned methodology called multivariate tests for the vector of
means (Alves and Ferreira, 2020). Then, we introduce the use of this package to one real
data set.
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4.3 Application to real data

In this section, the proposed methodology is applied to one real data set, that deals with the
contents of sand and clay from capoeira nova, in the Amazon, Brazil, available in Ferreira
(2018). The data set has two variables (sand and clay) and 30 observations (p = 2, n = 30).
We want to verify that the new capoeira soil has an average sand and clay content equal
to that of a forest population, at a level of 5% of significance. An exploratory analysis is
previously carried out and we verified that the variables sand and clay are correlated and
the data do not show normal p-variable according to the Royston test. There is also the
presence of outliers in the data. Table 7 presents the data set of sand and clay contents in
a new capoeira soil in the Amazon to be analyzed.

The vector of sample averages for the sand and clay contents takes on the values of 22
and 36.1, respectively, that is, X = [22, 36.1]€. According to Ferreira (2018), it is known
that in a forest soil the average levels of sand and clay content have values equal to 14
and 42, respectively, that is, µ0 = [14, 42]€. So, in possession of the samples collected of
sand and clay contents in a new capoeira soil, in the Amazon, the hypotheses to be tested
are H0: µ = µ0 versus H1: µ ”= µ0. The T2, T2PB, T2R, T2RPB, ATLR, TLRPB and
RTLRPB tests have been applied; see Section 2.

Table 8 shows that all tests took the same decision to reject the null hypothesis H0.
However, since the assumption of p-variate normality is not met, we suggest choosing the
result of the TLRPB test because this is the most powerful among all tests evaluated in
Alves and Ferreira (2019). All tests provided the same decision to reject the null hypothesis.

Table 7. Sand and clay contents in a new capoeira soil in the Amazon.
sand clay sand clay sand clay
11 38 20 32 13 47
24 25 18 34 28 32
16 49 17 39 11 45
18 34 30 32 27 36
5 64 45 24 7 59
11 40 11 50 42 23
17 38 41 21 21 35
9 40 22 36 48 21
13 40 14 32 12 36
53 21 25 28 31 32

Table 8. Tests for the vector of population means for the levels of sand and clay in a new capoeira soil,
in the Amazon.

Test Statistics p-value Decision
T2 11.93406 0.00802 Reject H0
T2PB 11.93406 0.00899 Reject H0
T2RPB 45.19158 0.00049 Reject H0
ATLR 9.21556 0.00997 Reject H0
TLRPB test 9.21556 0.00299 Reject H0
RTLRPB test 7.11871 0.02848 Reject H0
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5. Conclusions

The trace likelihood ratio parametric bootstrap test is recommended for testing hypoth-
esis about a multivariate population mean vector of normal and non-normal populations,
including the presence of outliers. For the case of the contaminated multivariate normal dis-
tribution, the robust average and comedian covariance matrix estimators performed below
tests that do not use these estimators. This fact occurred in all scenarios evaluated consid-
ering this distribution. It is possible to conclude that the use of robust comedian mean and
covariance estimators is not helpful for testing hypotheses on a population mean vector.

These tests have some limitations, as in the multivariate lognormal distribution, where
they did not perform well in controlling type I error probabilities, being considered liberal.
As a future work, we will intend to adapt these tests to data from two or more populations.
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