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Carlos D. Paulino Instituto Superior Técnico, Portugal
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M. Dolores Ugarte Universidad Pública de Navarra, Spain

Andrei Volodin University of Regina, Canada

Managing Editor
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Abstract

In this paper, the almost complete consistency and the asymptotic normality of the es-
timator of the regression operator in the case of a censored response given a functional
explanatory variable are investigated under some mild conditions. The latter is con-
structed from the minimization of the mean squared relative error. The novelty of this
work compared to the works found in the literature is that the response variable is cen-
sored. A simulation study is carried out to compare the finite sample performance based
on mean square error between the classical regression and the relative error regression.
Moreover, a real data study is used to illustrate our methodology.

Keywords: Censoring · Functional data analysis · Nonparametric statistics · Relative
error regression.

Mathematics Subject Classification: Primary 62G05, 62G20 · Secondary 62F12.

1. Introduction

Functional data analysis is a section of statistics that studies the observation of infinite
dimension. More precisely, the observations that are not real or vector variables but random
curves. This kind of data appears in many practical situations, and it has been the subject
of many works. The first authors who discussed this type of data are Ramsay and Silverman
(2005) for the parametric models and monograph of Ferraty and Vieu (2006) for the
nonparametric estimation. Recently, many topics concerning the analysis of functional data
have been developed and the most recent advances in this field have been collected in the
book of Ould-Said et al. (2015). The particularity of the nonparametric estimation consists
in estimating an infinite number of parameters whose function is unknown, elements of
a certain functional class, such as the density function or the regression function. The
latter is one of many methods to predict the link between the response variable Y and
the explanatory variable X, assuming the existence of a function r(X) which expresses
the relationship between these two variables. The literature concerning this field is widely
developed. We refer to Ferraty and Vieu (2004) for more details, where is established the
strong consistency of the regression function when the response is scalar given a functional

⇤
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explanatory variable. Usually, to estimate the nonparametric regression model, the authors
used the least squares error as a criterion for constructing the predictors (see some details
in Louzada et al. (2018)). This method is very sensitive to outliers, and therefore, the
presence of large outliers can lead to inappropriate results. For this, the authors developed
methods that study robustness of the nonparametric functional regression; see also Attouch
et al. (2009) and Gheriballah et al. (2013).
The relative squared error criterion is more convenient as a measure of performance

than the previous criterion, since the notion of relative regression is more recent than the
others, although the results are still limited. Jones et al. (2008) studied the asymptotic
properties of a consistent estimator of this model by using the kernel method. We refer
to Mechab and Laksaci (2016) for recent advances, who studied nonparametric relative
regression for associated variables. In a functional framework, the paper of Demongeot et
al. (2016) brought an extra to the research by studying the almost complete convergence
and asymptotic normality of the proposed estimator.
In this paper, we investigate the asymptotic properties of the relative error regression

by the kernel method and under censoring data. The literature of this kind of incom-
plete functional data is quite restricted. We refer to Kohler et al. (2002) and Horrigue
and Ould-Said (2011, 2014) for the nonparametric regression quantile estimation under
random censorship. Other works have been conducted on this subject for functional data
case. We cite for example the work of Khardani et al. (2010). Moreover, our framework
was considered by Altendji et al. (2018) for the estimation of the functional relative er-
ror regression under random left truncation, where they established the almost complete
convergence with rates, as well as the asymptotic normality of the kernel estimator of the
functional relative error regression for truncated data. In a more general field, we can see,
for example, Hsing and Eubank (2015) and Aneiros et al. (2017). In the present work, we
investigate the almost complete convergence and asymptotic normality of our proposed
estimator in case of censored functional data.
The organization of this paper is as follows. In Section 2, we construct an estimator of

the relative error regression for a censored response. The necessary conditions and main
results are presented in Section 3. In Section 4, a numerical study and a real example
show the performances of the proposed methodology for finite samples. Also, we establish
a confidence interval as an application for the asymptotic normality result. In Section 5,
we provide some concluding remarks. The proofs of our results are given in the appendix.

2. Description of the Model and Estimator

2.1 Estimator of the the relative error regression

Let Zi = (Xi, Yi)i=1,...,n be a F ⇥ R valued measurable strictly stationary process. A
common nonparametric modeling of the link between the response variables Y and the
explanatory variable X is to suppose that

Y = m(X) + ", (1)

where " is a random error variable and m is a regression operator usually estimated by
minimizing the expected squared loss function given by

E[(Y �m(X))2|X].

In some situations, this loss function which is considered as a measure of prediction, may
not be suitable. Among these situations, the presence of outliers can lead to inappropriate
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results since all variables have an equal weight. For this, we overcame this limitation by
proposing to estimate the functionm with respect to the minimization of the mean squared
relative error defined as

E

"✓
Y �m(X)

Y

◆2 ���X
#
, Y > 0. (2)

Obviously, this loss function is a more meaningful measure of prediction performance in the
presence of outliers since the range of predicted values is large. Furthermore, the solution
of (2) can be expressed by the ratio of first two conditional inverse moments of Y given
X. The best predictor of Y given X (as studied in Park and Stefanski (1998)) is given by

r(x) =
E[Y �1|X = x]

E[Y �2|X = x]
.

We estimate the regression operator r under our relative loss as

er(x) =
Pn

i=1
Y

�1

i K(h�1
d(x�Xi))Pn

i=1
Y

�2

i K(h�1d(x�Xi))
, (3)

where K is a kernel and h = hn is a sequence of positive real numbers.

2.2 Estimator of the relative error regression under a random censorship

Let (Xi, Yi)i=1,...,n be a F ⇥ R valued measurable strictly stationary process, where F
is a semi-metric abstract space, denote by d, a semi-metric associated with the space
F . We observe the lifetimes Yn as a sequence of independent and identically distributed
random variable (with common unknown absolutely continuous distribution function F

with density f).
In censoring case, due to possible withdrawals of items from the study, we observe the

censored lifetimes C instead observing the lifetimes Y . Supposing that (Ci) is a sequence
of independent and identically distributed censoring random variable (r.v.) with common
unknown continuous distribution function G. We remark the pairs (Ti, �i) where

Ti = Yi ^ Ci, �i = I{YiCi}, 1  i  n,

where IA denotes the indicator of no censoring.
We consider a pseudo estimator of the regression operator r under the censorship and

the relative loss given by

er(x) =
Pn

i=1
�iḠ

�1(Ti)T
�1

i K(h�1
d(x�Xi))Pn

i=1
�iḠ

�1(Ti)T
�2

i K(h�1d(x�Xi))
=
eg1(x)
eg2(x)

(4)

where Ḡ(u) = 1�G(u) and for l = 1, 2,

egl(x) =
1

nE(K1(x))

nX

i=1

�iḠ
�1(Ti)T

�l
i Ki(x),

where Ki(x) = K(h�1
d(x�Xi)). Since G is unknown in practice, one can estimate it using
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the Kaplan and Meier (1958) estimator defined as

Ḡn(t) =

8
><

>:

nY

i=1

✓
1�

1� �(i)

n� i+ 1

◆I{T(i)t}

, if t < T(n),

0, otherwise;

where T(1) < · · · < T(n) are the order statistics of (Ti)1in and �(i) is concomitant with
T(i). Thus, an estimator of r is given by

brn(x) =
Pn

i=1
�iḠ

�1
n (Ti)T

�1

i K(h�1
d(x�Xi))Pn

i=1
�iḠ

�1
n (Ti)T

�2

i K(h�1d(x�Xi))
=
bg1,n(x)
bg2,n(x)

, (5)

where

bgl,n(x) =
1

nE(K1(x))

nX

i=1

�iḠ
�1

n (Ti)T
�l
i Ki(x), l = 1, 2.

Let ⌧F = sup{y, F̄ (y) > 0} and ⌧G = sup{y, Ḡ(y) > 0} be a upper endpoints of F̄ and Ḡ,
respectively. We assume that ⌧F < 1, Ḡ(⌧F ) > 0, which implies that ⌧F  ⌧G) and that
(Cn)n�1 and (Xn, Yn)n�1 are independent.

3. Assumptions and Main Results

3.1 Consistency: almost complete convergence

We fixe a point x in F and Nx denotes a fixed neighborhood of this point. We will denote
by C and C

0
some strictly positive constants, gl(x) = E[Y �l|X = x] for l = 1, 2 and we

have B(x, h) = {x0 2 F|d(x0
, x) < h} a ball of center x and a radius h. In what follows,

we will need the following assumptions:

(H1) For all h > 0, P(X 2 B(x, h)) =: �x(h) > 0 and lim
h!0

�x(h) = 0.

(H2) For all (x1, x2) 2 N
2
x and l = 1, 2, we have

|gl(x1)� gl(x2)|  Cd
kl(x1, x2) for kl > 0.

(H3) The kernel K is a measurable function that is supported by (0, 1) and satisfies:

0 < C  K  C
0
< 1.

(H4) The bandwidth satisfies:

lim
n!+1

h = 0 and lim
n!+1

log(n)

n�x(h)
= 0.

(H5) The inverse moments of the response variable verify:

E[Y �m|X = x] < C < 1, 8m � 2.



Chilean Journal of Statistics 181

Remark 1 The hypothesis (H1) defines the concentration properties of the probability
measures of the explanatory variable X, which is provided by means of a function �x.
This property allows to propose an alternative to the curse of dimensionality problem.
(H2) is a regularity condition to facilitate the calculation of the bias part of our estimator.
(H3)-(H5) are technical assumptions to ensure the convergence of our results.

Theorem 3.1 Assume that conditions (H1)-(H5) hold true, we get

|brn(x)� r(x)| = O(hk1) +O(hk2) +O

 s
log(n)

n�x(h)

!
. (6)

Lemma 3.2 Under assumptions (H1)-(H4), we obtain, for l = 1, 2,

|E [egl(x)]� gl(x)| = O(hkl). (7)

Lemma 3.3 Under conditions (H1) and (H3)-(H5), we have, for l = 1, 2,

|egl(x)� E [egl(x)]| = O

 s
log(n)

n�x(h)

!
. (8)

Lemma 3.4 Assume hypotheses (H1)-(H5) hold, we have, for l = 1, 2,

|bgl,n(x)� egl(x)| = Oa.s

 r
log(log(n))

n

!
. (9)

Corollary 3.5 Under assumptions of Theorem 3.1,we get

|bg2,n(x)| ���!
n!1

g2(x).

3.2 Asymptotic normality

Here, we establish the asymptotic normality of the estimator brn(x). To do that, we consider
the following assumptions:

(C1) The hypothesis (H1) holds and there exists a function �x such that, for all s 2 [0, 1], we

have �x(sr)/�x(r) = �x(s) + o(1) and
R
1

0
(Kj)

0
(s)�x(s)ds < 1, for j � 1.

(C2) The functions  l(u) = E[gl(X)� gl(x)|d(x,X) = u] are derivable at 0, for l = 1, 2.
(C3) The hypothesis (H3) holds and the kernel K is a di↵erentiable function on ]0, 1[ and its

first derivative function K
0
satisfies that C < K

0
< C

0
.

(C4) The small ball probability satisfies:

n�x(h) ! 1.

(C5) The inverse moments gm(u) = E[|Ḡ�1(Y )Y �m||X = u] of the censored response variable
are continuous in a neighborhood of x, for m = 1, 2, 3, 4.

Remark 2 The condition (C1) is realized by several small ball probability functions, there
exist many examples, we quote the following (which can be found in Ferraty et al. (2007)):

(i) For some � > 0, �x(h) = Cxh
� with �x(u) = u

� ,
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(ii) for some � > 0 and p > 0, �x(h) = Cxh
� exp(�C/h

p), with �x(u) = �1(u), where �1 is
the Dirac function,

(iii) �x(h) = Cx/| log(h)|, with �x(u) = I[0,1](u), where IA is an indicator function of a set
A.

Theorem 3.6 Suppose that conditions (C1)-(C5) hold true, for all x 2 F , we have, as
n ! 1,

✓
n�x(h)

�2(x)

◆ 1
2

(brn(x)� r(x))
D�! N(0, 1),

where
D�! means the convergence in distribution and

�
2(x) =

M2

M2
1

�
g2(x) + r

2(x)g4(x)� 2r(x)g3(x)
�
,

with M0 = K(1)�
R
1

0
(sK(s))

0
�x(s)ds and Mj = K

j(1)�
R
1

0
(Kj)

0
(s)�x(s)ds, for j = 1, 2.

Proof of Theorem 3.6. From the decomposition 10, we get the decomposition

brn(x)� r(x) =
1

bg2,n(x)g2(x)
[(eg1(x)� E [eg1(x)]) g2(x) + (E [eg2(x)]� eg2(x)) g1(x)

+ (bg1,n(x)� eg1(x)) g2(x) + (eg2(x)� bg2,n(x)) g1(x)

+ (E [eg1(x)]� g1(x)) g2(x) + (g2(x)� E [eg2(x)]) g1(x)] .

Then, Theorem 3.6 is a consequence of the following lemmas.

Lemma 3.7 Under the same conditions of Theorem 3.6, we have

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

([eg1(x)� E [eg1(x)]] g2(x) + [E [eg2(x)]� eg2(x)] g1(x))
D�! N(0, 1).

Lemma 3.8 Under hypotheses of Theorem 3.6, we get bg2,n(x) ! g2(x), in probability, and

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

[(bg1,n(x)� eg1(x)) g2(x) + (eg2(x)� bg2,n(x)) g1(x)] ! 0,

in probability.

Lemma 3.9 Under hypotheses of Theorem 3.6, we obtain

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2


1

g2(x)
(E [eg1(x)]� g1(x)) g2(x) + (g2(x)� E [eg2(x)]) g1(x)

�
! 0,

in probability.
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4. Numerical Studies

4.1 Simulation study on the finite samples

To compare the finite-sample performance of the proposed estimator of r(x) = E[Y |X = x]
to the classical regression, we conducted a small simulation study. We consider a functional
regression model defined as

Yi = m(Xi) + ",

where the random variable " is normally distributed as N(0, 1) and

m(x) = 4 exp

✓
1

1 +
R ⇡
0
|x(t)|2dt

◆
.

The functional variable X is chosen as a real-valued function with support [0,⇡], we gen-
erate n = 100 functional data (see Figure 1) by Xi(t) = sin(Wi(t)), for all t 2 [0,⇡] and
i = 1, . . . , n, where the random variables Wi are independent and identically distributed
and follow the normal distribution N(0, 1). The curves are discretized on the same grid
which is composed of 100 equidistant values in [0,⇡].

Figure 1. Curves Xi

Our purpose is to compare the mean square error (MSE) of the estimator of relative error
regression (RER) with the censored data set and with the classical regression estimator
(CR) respectively which are defined as

brn(x) =
Pn

i=1
�iḠ

�1
n (Ti)T

�1

i K(h�1
d(x�Xi))Pn

i=1
�iḠ

�1
n (Ti)T

�2

i K(h�1d(x�Xi))

and

br(x) =
Pn

i=1
�iḠ

�1
n (Ti)TiK(h�1

d(x�Xi))Pn
i=1

�iḠ
�1
n (Ti)K(h�1d(x�Xi))

.
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We choose the quadratic kernel given by

K(u) =
3

4
(1� u

2)I[�1,1](u)

and the bandwidth h is automatically selected by the procedure of the cross validation.
We give the formula of the MSEs of the both estimators as

MSE(RER) =
1

n

nX

i=1

(Yi � brn,i(Xi))
2

and

MSE(CR) =
1

n

nX

i=1

(Yi � bri(Xi))
2
,

where brn,i (bri) is the leave-one-out version of brn (br) computed by removing the ith data
from the initial sample.

Table 1. Values of the MSE according to the number of introduced artificial outliers (first line).

Outliers 5 10 20 30 40 50
CR 0.5254138 70.67035 658.129 3702.399 5923.839 14809.60
RER 0.1219565 0.1256098 0.1261814 0.1261834 0.1261834 0.1261834

Note from Table 1 that the MSE values for both kernel methods increase considerably
relative to the presence of the outliers, while these errors remain very small in the case of
the relative error estimator. In conclusion, the relative error regression performs better than
the classical regression, that is, the classical regression is more sensitive to the presence of
outliers than the relative error regression.

4.2 Real data application

We apply the theoretical results obtained in the previous section to real data. More specif-
ically, we examine the performance of the relative regression estimator in the presence of
outliers than the classical kernel method. For this purpose application, we consider the
spectroscopic dataset, are available from http://www.models.kvl.dk/NIRsoil. The data
concern spectra of 108 soil samples measured by near infrared reflectance (NIR), in the
range 400–2500 nanometre (nm) with a 2 nm resolution (Rinnan and Rinnan, 2007). Thus,
the soil samples are obtained during a long-term climate change manipulation experiment
at a subarctic fell heath in Abisko, northern Sweden. Moreover, to determine the chemical
and microbiological properties of soil, soil organic matter (SOM) was measured as loss on
ignition at 550�C and ergosterol concentration was determined through High-Performance
Liquid Chromatography (HPLC), which are taken in the following as two response vari-
ables. The aim is to analyse relationships between the NIR data (X-variables), and the
chemical and microbiological data (Y -variables). For each sample soil, one observes a
spectroscopic curve which corresponds to the reflectance at 1050 wavelengths, and its soil
organic matter and ergosterol content. Hence, Xi(t) is the reflectance of the i

th sample of
soil at wavelength t, where t 2 {400, . . . , 2500}. Let Y1 and Y2 be two response variables
which correspond to soil organic matter and ergosterol concentration, respectively (see
Figures 3 and 4). The functional covariates in Figure 2 shows the 108 NIR reflectance
spectra.

http://www.models.kvl.dk/NIRsoil
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Figure 2. Curves of 108 NIR spectra

Figure 3. The distribution of 108 values of Y1 (SOM)

Figure 4. The distribution of 108 values of Y2 (ergosterol concentration)

Applied to NIR data the MAD-Median method identifies 21 outliers for Y1 and 1 outlier
for Y2. Recall that we are interested to build two models: Y1 = r1(X) + "1 and Y2 =
r2(X) + "2, where r1(x) = E(Y1|X = x) and r2(x) = E(Y2|X = x). Furthermore, the
dataset was randomly split into a learning sample (72 curves) used to build the estimators,
and a testing sample (36 curves) which allows computing the MSE. We note that the result
of our simulation study is evaluated over 100 independent replications and its sensitivity
to grid sizes or to size of test sample and training sample is not very substantial. Because
of the smoothness of the NIR curves, we use the semi-metric based on the second order
derivatives, where the curves are replaced by their B-spline expansion. Here, the best results
in terms of prediction are obtained for a number of interior knots needed for defining the
B-spline basis, equal to 40. Therefore, we chosen the smoothing parameter h via a local
cross-validation method on the number of nearest-neighbors. It can be seen that, in the
presence of outliers, the relative regression estimator performs better than the classical
kernel method. This is confirmed by the MSE obtained respectively in the two cases of
study.
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Figure 5. Box plots of the MSE for Y1

Figure 6. Box plots of the MSE for Y2

4.3 Confidence bands

A usual application of asymptotic normality is to establish confidence intervals for the true
value of the proposed estimator. To determine this band, we need the estimation of the
unknown quantity of the asymptotic variance. In our case, we have

�
2(x) =

M2

M2
1

�
g2(x) + r

2(x)g4(x)� 2r(x)g3(x)
�
,

where M1,M2, r and gl, for l = 1, 2, 3, 4, are unknown in practice and have to be estimated.
Now a plug-in estimate for the asymptotic standard deviation �(x) can be easily obtained

using the estimators cM1,
cM2, brn and bgl,n of M1,M2, r and gl respectively. Precisely, we

estimate g3(x) and g4(x) in the same way as for g1(x) and g2(x).
We estimate empirically the constants M1 and M2, as

cM1 =
1

n�x(h)

nX

i=1

�iḠ
�1

n (Ti)Ki(x)
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and

cM2 =
1

n�x(h)

nX

i=1

�iḠ
�1

n (Ti)K
2

i (x).

Furthermore, we get

b�(x) =
 
cM2

cM2
1

�
bg2,n(x) + br2n(x)bg4,n(x)� 2brn(x)bg3,n(x)

�
! 1

2

.

We have approximate (1� ⇣) confidence bands for r(x) given by

"
brn(x)� t

1� ⇣
2

✓
b�2(x)

n�x(h)

◆ 1
2

, brn(x) + t
1� ⇣

2

✓
b�2(x)

n�x(h)

◆ 1
2

#
,

where t
1� ⇣

2
denotes the 1� ⇣

2
⇥ 100th quantile of the standard normal distribution.

5. Concluding Remarks

This paper illustrated the asymptotic properties of the regression operator estimator based
on the minimization of the mean squared relative error under censoring data. The resulting
relative error regression showed to be consistent and asymptotically distributed normally
under appropriate conditions in case of censored functional data. Our theoretical and
practical studies confirmed that the relative error regression is more e�cient than the
classical regression.

Appendix

Proof of Theorem 3.1. This is based on the following decomposition

|brn(x)� r(x)| = 1

bg2,n(x)
[|bg1,n(x)� eg1(x)|+ |eg1(x)� E [eg1(x)]|+ |E [eg1(x)]� g1(x)|]

+
r(x)

bg2,n(x)
[|eg2(x)� bg2,n(x)|+ |E [eg2(x)]� eg2(x)|+ |g2(x)� E [eg2(x)]|] . (10)

Thus, we prove Theorem 3.1 by the following intermediate results

Proof of Lemma 3.2. We have

|E [egl(x)]� gl(x)| =

�����
1

nE[K1(x)]

nX

i=1

E[�iḠ
�1(Ti)T

�l
i Ki(x)� gl(x)]

����� .
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By using a double conditioning with respect to Yi, we get

E [egl(x)] =
1

nE[K1(x)]

nX

i=1

E[E(�iḠ
�1(Ti)T

�l
i Ki(x)|Xi)]

=
1

E[K1(x)]
E[K(h�1(x�X1))E(�1Ḡ

�1(T1)T
�l
1

|X1)]

=
1

E[K1(x)]
E[K(h�1(x�X1))E(E[�1Ḡ

�1(T1)T
�l
1

|Y1]|X1)]

=
1

E[K1(x)]
E[K(h�1(x�X1))E(Ḡ

�1(Y1)Y
�l
1

E[I{Y1C1}|Y1]|X1)].

Then,

E [egl(x)� gl(x)] =
1

E[K1(x)]
E
h
K(h�1(x�X1))IB(x,h)(X1)

���E(Y �l
1

|X1)� gl(x)
���
i

=
1

E[K1(x)]
E
⇥
K(h�1(x�X1))IB(x,h)(X1)|gl(X1)� gl(x)|

⇤
.

Thus, under conditions (H2), we get

|E [egl(x)� gl(x)] |  Ch
kl

= O(hkl).

Proof of Lemma 3.3. We have for l = 1, 2

egl(x)� E [egl(x)] =
1

nE[K1(x)]

nX

i=1

h
�iḠ

�1(Ti)T
�l
i Ki(x)� E[�iḠ

�1(Ti)T
�l
i Ki(x)]

i
.

Now, we consider

Zi,l =
1

E[K1(x)]

h
�iḠ

�1(Ti)T
�l
i Ki(x)� E[�iḠ

�1(Ti)T
�l
i Ki(x)]

i
.

To prove this lemma, we use the exponential inequality given in the monograph of Ferraty
and Vieu (2006) (Corollary A.8i). We calculate the quantity of E[|Zm

i,l |] similarly as in
Lemma 6.3 of Ferraty and Vieu (2006). By the Newton binomial expansion, we get

E[|Zm
i,l |]  C

mX

j=0

1

(E[K1])j
E
h����1Ḡ�j(T1)T

�jl
1

K
j
1
(x)
���
i

 C max
j=0,...,m

�
�j+1

x (h)

 C�
�m+1

x (h).

Then,

E[|Zm
i,l |] = O(��m+1

x (h)).
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Thus, by applying the mentioned exponential inequality with a
2 = �

�1
x (h), we have, for

all " > 0,

P

 �����

nX

i=1

Zi,l

����� > "n

!
 2 exp

✓
�"

2
n

2a2(1 + ")

◆
.

We establish

" = "0

s
log(n)

n�x(h)
.

Hence,

P

 �����

nX

i=1

Zi,l

����� > "n

!
 2 exp

0

@
�"

2
0

log(n)
n�x(h)

n

2 1

�x(h)
(1 + "0

q
log(n)
n�x(h)

)

1

A

 2 exp

0

@� "
2
0
log(n)

2(1 + "0

q
log(n)
n�x(h)

)

1

A

 2 exp
�
�C"

2

0 log(n)
�

 2n�C"20 .

Therefore, an appropriate choice of "0 and by Proposition A.4. in Ferraty and Vieu (2006),
we deduce that

|egl(x)� E [egl(x)]| = O

 s
log(n)

n�x(h)

!
= o(1).

Proof of Lemma 3.4. We have

|bgl,n(x)� egl(x)| =

�����
1

nE[K1(x)]

nX

i=1

�iḠ
�1

n (Ti)T
�l
i K

✓
x�Xi

h

◆
�

�iḠ
�1(Ti)T

�l
i K

✓
x�Xi

h

◆����

=
1

nE[K1(x)]

nX

i=1

����I{YiCi}Ḡ
�1

n (Yi)Y
�l
i K

✓
x�Xi

h

◆
�

I{YiCi}Ḡ
�1(Yi)Y

�l
i K

✓
x�Xi

h

◆����

 1

nE[K1(x)]

nX

i=1

����Y
�l
i K

✓
x�Xi

h

◆✓
1

Ḡn(Yi)
� 1

Ḡ(Yi)

◆����


supttF |Ḡn(t)� Ḡ(t)|

Ḡn(tF )Ḡ(tF )

1

nE[K1(x)]

nX

i=1

Y
�l
i K

✓
x�Xi

h

◆
.
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By using conditional expectation, we obtain

|bgl,n(x)� egl(x)| 
supttF |Ḡn(t)� Ḡ(t)|

Ḡn(tF )Ḡ(tF )

1

nE[K1(x)]

nX

i=1

E


Y

�l
i K

✓
x�Xi

h

◆
|Xi

�
.

Under conditions (H3), (H5) and by taking into account formula (4.28) in Deheuvels and
Einmahl (2000), we get

|bgl,n(x)� egl(x)| = O

✓
log(log(n))

n

◆
.

Proof of Corollary 3.5. We have

P
⇣
lim
n!1

bg2,n(x) = g2(x)
⌘
= 1.

By taking into account the results of Lemmas 3.2-3.4, we prove the corollary.

Proof of Lemma 3.7. We use the same arguments as in Lemma 7 of Demongeot et al.
(2016) for censored data.
Let

p
n�x(h)

g2
2
(x)�(x)

([eg1(x)� E [eg1(x)]] g2(x) + [E [eg2(x)]� eg2(x)] g1(x)) =
Sn

g2
2
(x)�(x)

,

with Sn =
Pn

i=1
(Li(x)� E[Li(x)]), where

Li(x) =

p
n�x(h)

nE[K1]
�iḠ

�1(Ti)Ki(x)
�
g1(x)T

�2

i � g2(x)T
�1

i

�
.

We apply the Lyapunov central limit theorem on Li(x) for showing the asymptotic nor-
mality of Sn. It su�ces to show, for some � > 0, that

Pn
i=1

E
⇥
|Li(x)� E[Li(x)]|2+�

⇤

(var (
Pn

i=1
Li(x)))

2+�
2

! 0. (11)

Clearly,

Var

 
nX

i=1

Li(x)

!
= n�x(h)Var [ eg2(x)g1(x)� eg1(x)g2(x)]

= n�x(h)
⇥
Var ( eg2(x)) g21(x) + Var ( eg1(x)) g22(x)� 2g1(x)g2(x)Cov( eg1(x), eg2(x))

⇤
.

Thus, for l = 1, 2, we obtain

Var (egl(x)) =
1

(nE[K1])2

nX

i=1

Var
h
�iḠ

�1(Ti)T
�l
i Ki(x)

i

=
1

n(E[K1])2
Var

h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i
.



Chilean Journal of Statistics 191

By conditioning on the random variable X, using hypotheses (C1) and (C3) and the fact
that

E[K1] = �x(h)

✓
K(1)�

Z
1

0

K
0
(s)�x(s)ds

◆
+ o(�x(h)),

we get

E
h
�1Ḡ

�2(T1)T
�2l
1

K
2

1 (x)
i
= E

h
K

2

1 (x)E
h
Ḡ

�1(Y )Y �2l|X = x

ii

= E
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Ḡ

�1(Y )Y �2l|X = x

i

⇥
✓
�x(h)

✓
K

2(1)�
Z

1

0

(K2)
0
(s)�x(s)ds

◆
+ o(�x(h))

◆
.

By a double conditioning on the random variable X and under conditions (H3) and (H5),
we obtain

E
h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i
= E

⇥
K1(x)E

⇥
Y

�1

1
|X = x
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 CE[K1]

 C�x(h).

Therefore,
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E
h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i⌘2

= O(�x(h)
2).

Then,
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h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i
= E

h
Ḡ

�1(Y )Y �2l|X = x
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⇥
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�x(h)

✓
K

2(1)�
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(K2)
0
(s)�x(s)ds

◆◆
+O(�x(h)

2).

Thus,

Var (egl(x)) =
E
⇥
Ḡ

�1(Y )Y �2l|X = x
⇤ ⇣

K
2(1)�

R
1

0
(K2)

0
(s)�x(s)ds

⌘

n�x(h)
⇣
K(1)�

R
1

0
K

0(s)�x(s)ds
⌘2 (12)

+ o

✓
1

n�x(h)

◆
. (13)

Now, we calculate the corresponding covariance as

Cov( eg1(x), eg2(x)) =
1

n(E[K1])2
Cov

�
�1Ḡ

�1(T1)T
�1

1
K1(x), �1Ḡ
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�2

1
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�

=
1

n(E[K1])2
⇥
E
�
�1Ḡ

�2(T1)T
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1 (x)
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� E
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E
�
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where

E
�
�1Ḡ

�2(T1)T
�3

1
K

2

1 (x)
�
= E

⇥
K

2

1E
⇥
Ḡ
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Hence,

Cov( eg1(x), eg2(x)) =
E
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Ḡ

�1
Y

�3|X = x
⇤ ⇣

K
2(1)�
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0
(K2)
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⌘
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✓
1
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◆
.

It follow that

Var

 
nX

i=1

Li(x)

!
= g

2

2(x)� + o(1).

Therefore, it is su�cient to demonstrate that the numerator of (11) converges to 0 to finish
the evidence of this lemma. For that we apply the Cr inequality (see Loeve (1963), p. 155)
showing that

nX

i=1

E
h
|Li(x)� E [Li(x)] |2+�

i
 C

nX

i=1

E
h
|Li(x)|2+�

i
+ C

0
nX

i=1

|E [Li(x)] |2+�
.

Then, under assumptions (H5) and (H3), we get

nX

i=1

E
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|Li(x)|2+�

i
= n

��
2 (�x(h))
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2E
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1

Ḡ
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1
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�1
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 C(n�x(h))
�1� �

2

⇣
E[K2+�

1
]
⌘
! 0.

For the second term, we obtain

nX

i=1

|E [Li(x)] |2+�  n
��
2 (�x(h))

�1� �
2

��E
⇥
�1Ḡ

�1(T1)K1(x)|g1(x)T�2

i � g2(x)T
�1

i |
⇤��2+�

 Cn
��
2 (�x(h))

1+�
2 ! 0

which finishes the proof.

Proof of Lemma 3.8. For the first term, by taking into account Lemmas 3.2-3.4 and
equation (12), we have

E [ eg2(x)� g2(x)] ! 0

and

Var [ eg2(x)] ! 0.



Chilean Journal of Statistics 193

Then,

bg2,n(x)� g2(x) ! 0,

in probability. For the second limit, by lemma 3.4 and first limit, we get

Var [bgl,n(x)� egl(x)] ! 0.

Thus, it follow that

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

[(bg1,n(x)� eg1(x)) g2(x) + (eg2(x)� bg2,n(x)) g1(x)] ! 0,

in probability.

Proof of Lemma 3.9. We write


1

g2(x)
(E [eg1(x)]� g1(x)) g2(x) + (g2(x)� E [eg2(x)]) g1(x)

�

=
1

g2(x)
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= AnE [eg2(x)] .

For An, we get

An =
E [eg1(x)]
E [eg2(x)]

� g1(x)

g2(x)
,

for which su�ces to evaluate E [eg1(x)] and E [eg2(x)]. By the same arguments used in Lemma
3.2, we obtain

E [eg1(x)] =
1

E [K1]
E
⇥
K1(x)E
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1
|X1
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⇥
Y

�2

1
|X1
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.

By the same ideas used by Ferraty et al. (2007) for regression operator, we demonstrate
that

E [eg1(x)] = g1(x) + h 
0

1(0)

"
K(1)�

R
1

0
(sK(s))

0
�x(s)ds
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#
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and

E [eg2(x)] = g2(x) + h 
0
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0
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0
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Thus,

An =
E [eg1(x)]
E [eg2(x)]

� r(x) = hBn(x) + o(h),

where

Bn =
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0

1
(0)� r(x) 
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2
(0))M0

M1g2(x)
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For the second term, we have
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Then,

E [eg2(x)]� g2(x) = O(h).

Hence, to show that Lemma 3.9 converges to 0 in probability, we have

E

"✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

An (|g2(x)� E [eg2(x)]|)
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which complete the proof.
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