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Abstract

In this work, we propose a goodness-of-fit test based on the Kullback-Leibler information
for the Birnbaum-Saunders distribution. We use Monte Carlo simulations to evaluate
the size and power of the proposed test for several alternative hypotheses under di↵erent
sample sizes. We compare the powers with standard goodness-of-fit tests based as the
Anderson-Darling and Cramér-von Mises tests. Finally, we illustrate the proposed test
with a real data set to show its potential applications.

Keywords: Anderson-Darling and Cramér-von Mises tests · Information measures
· Maximum likelihood estimation · Monte Carlo method · Power test · R software
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1. Introduction

The Birnbaum-Saunders (BS) model, proposed by Birnbaum and Saunders (1969), is a
life distribution originating from a material fatigue problem, which relates the time to
the occurrence of failure with some cumulative damage that is assumed to be Gaussian
distributed. The BS model has received much attention in the last decades due to its wide
applicability. Based on to its genesis from material fatigue, di↵erent cumulative damage
processes can be modeled by this distribution, including natural engineering applications,
but the BS model can also be applied to other areas as: medicine (Leiva et al., 2007;
Barros et al., 2008; Azevedo et al., 2012; Gomes et al., 2012; Desousa et al., 2018; Leao
et al., 2018), atmospheric contamination (Leiva et al., 2008, 2010, 2015a; Vilca et al.,
2011; Ferreira, 2013; Marchant et al., 2018, 2019), water quality (Leiva et al., 2009; Vilca
et al., 2010), neuronal sciences (Leiva et al., 2015b), human aging (Leiva and Saunders,
2015), and earthquakes (Lillo et al., 2018), among others. However, because the BS model
is a statistical distribution, we can apply it to several other fields, for example, business,
finance, industry, science management, and quality control. For more details about various
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developments on the BS distribution, see Leiva (2016) and references cited therein. The
BS model has also been used to construct new more flexible models having heavier and
lighter tails than the standard BS distribution, as well as in the construction of models in
the unit interval; see Barros et al. (2008), Azevedo et al. (2012), Mazucheli et al. (2018)
and Athayde et al. (2019).
In statistics, it is of great interest to determine whether a probabilistic model fits a

data set well or not, which could indicate whether these data may have been generated
from this model or not. In this sense, several goodness-of-fit tests have been proposed
for di↵erent probability distributions. Since goodness-of-fit tests measure the discrepancy
between a theoretical model and a data set, they can be done in a variety of ways, such
as, for example, formulated by chi-squared type tests, by statistics based on the empirical
cumulative distribution function or empirical characteristic function. Further details on
goodness-of-fit tests can be found in D’Agostino and Stephens (1986), Castro-Kuriss (2011)
and Barros et al. (2014).
The Anderson-Darling (AD) and Cramér-von Mises (CM) statistics are often used to test

normality. These statistics are based on the distance between the empirical distribution
function and the theoretical distribution function. Chen and Balakrishnam (1995) pro-
posed a general purpose approximate goodness-of-fit test based on these statistics which
may be used to test the validity of di↵erent families of skew distributions. Note that the
Kullback-Leibler (KL) criterion is an information measure, which can be used to evaluate
the discrepancy between two distribution functions. Such a measure of information has
shown good results in testing fitting of models to data sets, in the sense of obtaining more
powerfull tests than the standard tests; see Park (2005) and Rad et al. (2011). Then, due
to the wide applicability of the BS distribution, the objective of this paper is to propose
a goodness-of-fit test for the BS distribution based on the KL information and investigate
if the proposed test is most powerful than in the case of standard AD and CM tests.
The rest of this paper is organized as follows. In Section 2, we present the methodology

with the definitions of entropy, KL information, and a brief review of the BS distribution,
as well as an estimation method of its parameters. In addition, in this section, goodness-
of-fit test for the BS distribution based on KL information are derived. In Section 3, a
simulation study based on the Monte Carlo method is conducted to evaluate the size and
power of the proposed test. Also in this section, we illustrate the proposed methodology
with a real data set. Finally, Section 4 provides the conclusions of this work and some
comments on future research related to this topic.

2. Methodology

2.1 Entropy and Kullback-Leibler information

In order to quantify the degree of disorder in a physical system the German Rudfold
Clausius introduced in Clausius (1867) a new quantity in thermodynamics which he called
entropy. Since this concept was introduced in studies of information theory by Shannon
(1948). Shannon’s idea was to measure the degree of disorder of the occurrence of the
values of a random variable (RV) in the sense that the more distinct rare events occurr.
Let X be an RV with cumulative distribution function (CDF) F and probability density

function (PDF) f. The di↵erential entropy H(f) of X is defined in Shannon (1948) by

H(f) = �
Z 1

�1
f(x) log(f(x))dx.

Let X1, . . . , Xn, with n � 3, be a sample from the distribution F , and let X(1)  · · ·  X(n)
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be their corresponding order statistics. A nonparametric estimator of H(f), proposed by
Vasicek (1976), is given by

Hmn =
1

n

nX

i=1

log
n

n

2m
(x(i+m) � x(i�m))

o
, (1)

where the window m is a positive integer less than n/2 and x(i�m) = x(1), for i �m < 1
and x(i+m) = x(n), for i+m > n, such that x(i) is i-th observed value of the corresponding
order statistic.
Let f(x) and g(x) be PDFs. The KL information is defined in Kullback and Leibler

(1951) as

I(f : g) =

Z 1

�1
f(x) log


f(x)

g(x)

�
dx, (2)

so that I(f : g) measures the divergence between the PDFs f and g. By using the Gibbs
inequality, we can show that I(f : g) � 0 and I(f : g) = 0 if and only if f(x) = g(x). Thus,
the sample estimate of the KL information can also be considered for goodness of fit.

2.2 The Birnbaum-Saunders distribution

Let X be a nonnegative RV. Then, X follows a BS distribution with shape parameter
↵ > 0 and scale parameter � > 0, if the CDF of X is given by

F (x) = �

"
1

↵

 r
x

�
�
r

�

x

!#
, x > 0.

We use the notation X ⇠ BS(↵,�) for indicating an RV X with BS distribution of shape
and scale parameters ↵ and �, respectively. Consequently, the PDF of X is given by

f(x) =
1p
2⇡

exp


� 1

2↵2

✓
x

�
+

�

x
� 2

◆�
x
�3/2(x+ �)

2↵
p
�

, x > 0. (3)

If X ⇠ BS(↵,�), then the following properties are satisfied:

(i) The parameter � is also the median of the distribution.

(ii) If Z ⇠ N(0, 1), then X and Z are related by X = �(↵Z + (↵2
Z

2 + 4)1/2)2/4. Thus,
Z = (1/↵)[(X/�)1/2 � (�/X)1/2] ⇠ N(0, 1).

(iii) cX ⇠ BS(↵, c�), if c > 0 and 1/X ⇠ BS(↵, 1/�).

(iv) E(X) = �(1 + ↵
2
/2) and Var(X) = �

2
↵
2(1 + 5↵2

/4).

(v) The qth quantile ofX is given by xq = �(↵zq + (↵2
z
2
q + 4)1/2)2/4, where zq = ��1(q),

N(0, 1) qth quantile.

(vi) The survival function is expressed as S(x;↵,�) = �{(1/↵)[(�/x)1/2 � (x/�)1/2]}.

For estimation of the model parameters, we consider the maximum likelihood (ML)
method. Let X1, . . . , Xn be a random sample of size n from X ⇠ BS(↵,�) with PDF
given by Equation PDF), so that x1, . . . , xn are their respective observed values. Then,
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the log-likelihood function for ✓ = (↵,�)> is given by

`(✓) = K � 1

2↵2

nX

i=1

✓
xi

�
+

�

xi
� 2

◆
+

nX

i=1

log(xi + �)� n log(↵)� n

2
log(�),

where K = n(log(1/
p
2⇡)� log(2))�3/2

Pn
i=1 log(xi). The ML estimate of ↵ is defined as

b↵ =

vuut 1

n

nX

i=1

 
xi

b�
+
b�
xi

� 2

!
.

In the case of the parameter �, the ML estimate do not have closed form requiring the
use of a numerical method. Under regularity conditions (see Cox and Hinkley, 1974), the

estimators b↵ and b� are consistent and have a bivariate normal joint asymptotic distribution
with asymptotic means ↵ and �, respectively, and an asymptotic covariance matrix ⌃b✓
that can obtained from the inverse of the Fisher information matrix given by

I(✓) =
✓ 2n

↵2 0
0 n

�2 (14 + 1
↵2 + I(↵))

◆
,

where

I(↵) = 2

Z 1

0

 
1

1 + 1
⇠(az)

� 1

2

!2

�(z)dz,

with � being the PDF of Z ⇠ N(0, 1) and ⇠(u) = u
1/2 � u

�1/2. For more details, see Leiva
(2016).

2.3 Goodness-of-fit tests for the BS distribution

Given a random sample X1, . . . , Xn of the RV X, we are interested in testing H0: the RV
X follows the BS(↵, �) distribution with PDF given in Equation (3) against H1: the RV
X does not follow the BS distribution. Note that Equation (2) can be written as

I(f : g) =

Z 1

�1
f(x)[log(f(x))� log(g(x))]dx

= �H(f)�
Z 1

�1
f(x) log(g(x))dx. (4)

Then, from Equation (4), an estimate of the KL information can be obtained. For doing
this, we replace H(f) by its estimate given in Equation (1) and we use the estimated values
of the parameters in f . Thus, under the null hypothesis that f(x) = g(x), we can estimate
the information of KL using

Imn = �Hmn �
Z 1

�1
f(x; b✓) log(f(x; b✓))dx,

where b✓ is a consistent estimator for ✓. Therefore, Imn is a test statistic to verify the
suitability of a continuous probabilistic model with PDF given by f to a data set.
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For X ⇠ BS(↵,�) and f given in Equation (3), we obtain

Imn = �Hmn � log
1p
2⇡

� 1

b↵2
+ log

✓
2b↵
q
b�
◆
+

1

b↵2

✓
1 +

b↵2

2

◆

+
3

2n

nX

i=1

log(x(i))�
1

n

nX

i=1

log(x(i) + b�),

where b↵ and b� are the ML estimates of ↵ and �, respectively. Thus, following Arizono and
Ohta (1989), we introduce the statistic

KLmn =
1

exp(Imn)
,

with 0  KLmn  1 since Imn 2 [0,1). Note that KLmn can be used as test statistic
for testing the goodness-of-fit of the BS distribuion to a data set. The decision rule is to
reject the hypothesis H0 if KLmn  KL⇤

mn(⇢), where KL⇤
mn(⇢) is the critical value for a

significance level ⇢. As we do not have an exact distribution of KLmn, then we obtain
KL⇤

mn(⇢) through Monte Carlo simulations.

3. Numerical Studies

3.1 Critical values for the simulations

To obtain the critical values of the proposed test, we conduct Monte Carlo simulation
studies with R = 10, 000 replications each. These studies are based on n 2 {10, 30, 50, 100},
↵ 2 {0.5, 1.0, 1.5}, and significance level ⇢ = 0.05. In addition, we fix, without loss of
generality, � = 1, since this is a scale parameter. The values considered for the window m

are those returned the maximum critical value, according to Arizono and Ohta (1989). This
procedure is described in Algorithm 1. All simulations are obtained from implementations
in the R statistical software, which is freely distributed from www.R-project.org. For
parameters estimation we use the maxLik package.

Algorithm 1: Obtaining the critical values of the proposed test.

1: Fix n, ↵ and �;
2: Generate 10,000 random samples of size n from X ⇠ BS(↵,�);
3: For each sample, estimate the parameter vector ✓ = (↵,�)> consistently, through

the ML method;
4: For each sample, obtain the values of the test statistic KLmn;
5: Sort the test statistic values obtained in the previous step and determine the 5th

quantile and then obtain the critical values for the respective significance level.

The critical values obtained, considering the BS(0.5,1), BS(1,1) and BS(1.5,1) distributions
are presented in Tables 1-3.

3.2 Evaluating the empirical size and power of the test

Next, the empirical size and power of the proposed test are evaluated for di↵erent sample
sizes based on the Monte Carlo method. We make a comparison among the AD, CM and
KL tests, whose statistics are denoted by A

2
,W

2, KL, and verify in what situations the
test based on the KL information is better, in the sense of being most powerful.
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Table 1. Critical values for the statistic KLmn considering the BS(0.5,1) distribution and significance
level 5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2462
4 0.2577
5 0.2925 0.4221
6 0.3256 0.4404
7 0.3544 0.4620 0.4835
8 0.3866 0.4935 0.5083
9 0.4054 0.5102 0.5319 0.5168
10 0.4250 0.5340 0.5481 0.5401
12 0.4614 0.5689 0.5840 0.5760 0.5625
14 0.4911 0.5908 0.6114 0.6072 0.5973 0.5771
16 0.5159 0.6207 0.6383 0.6354 0.6227 0.6069 0.5880
18 0.5308 0.6396 0.6597 0.6605 0.6461 0.6331 0.6184 0.5980
20 0.5499 0.6564 0.6820 0.6796 0.6674 0.6542 0.6428 0.6250 0.6082
25 0.5754 0.6871 0.7176 0.7194 0.7124 0.7042 0.6905 0.6769 0.6617 0.6489
30 0.5976 0.7132 0.7421 0.7474 0.7481 0.7384 0.7280 0.7153 0.7036 0.6899
35 0.6122 0.7297 0.7593 0.7699 0.7707 0.7655 0.7577 0.7473 0.7352 0.7254
40 0.6243 0.7423 0.7766 0.7904 0.7900 0.7860 0.7789 0.7720 0.7620 0.7527
45 0.6343 0.7547 0.7887 0.8007 0.8053 0.8034 0.7975 0.7917 0.7832 0.7765
50 0.6426 0.7634 0.7982 0.8129 0.8165 0.8142 0.8146 0.8062 0.8027 0.7935
60 0.6568 0.7755 0.8135 0.8291 0.8350 0.8368 0.8355 0.8330 0.8274 0.8235
70 0.6646 0.7854 0.8251 0.8421 0.8498 0.8515 0.8522 0.8501 0.8476 0.8435
80 0.6751 0.7959 0.8349 0.8514 0.8596 0.8641 0.8644 0.8649 0.8628 0.8595
90 0.6804 0.8012 0.8408 0.8598 0.8687 0.8735 0.8758 0.8742 0.8733 0.8718
100 0.6858 0.8075 0.8471 0.8656 0.8760 0.8818 0.8833 0.8841 0.8826 0.8813

Under same the conditions of the obtained critical values, we calculate the empirical
size of the test. Algorithm 2 displays this procedure. The results of our simulation study
are presented in Table 4. Note that the empirical size is close to the nominal level for all
situations considered, indicating that the test is controlled.

Algorithm 2: Obtaining the empirical size of the proposed test.

1: Fix n, ↵ and �;
2: Generate 10,000 random samples of size n from X ⇠ BS(↵,�);
3: For each sample, estimate the parameter vector ✓ = (↵,�)> consistently, through

the ML method;
4: For each sample, obtain the values of the test statistic KLmn;
5: Obtain the empirical size of the test by calculating the proportion of replications

that present test statistic value less than the critical value for the corresponding
values of n and m.

To determine the empirical power, we consider some probability distributions for the
alternative hypothesis. These distributions are chosen and grouped into classes to be an-
alyzed according to the shape of their hazard function: increasing, decreasing and non-
monotonous. The probability distributions considered in the evaluation of the power test
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Table 2. Critical values for the statistic KLmn considering the BS(1,1) distribution and significance level
5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2618
4 0.2724
5 0.3066 0.4446
6 0.3369 0.4698
7 0.3653 0.4947 0.5095
8 0.3974 0.5215 0.5398
9 0.4132 0.5349 0.5650 0.5420
10 0.4350 0.5575 0.5809 0.5691
12 0.4681 0.5870 0.6143 0.6133 0.5941
14 0.4960 0.6066 0.6390 0.6408 0.6338 0.6115
16 0.5202 0.6338 0.6610 0.6654 0.6591 0.6464 0.6292
18 0.5342 0.6508 0.6803 0.6871 0.6807 0.6709 0.6592 0.6416
20 0.5539 0.6671 0.6974 0.7049 0.6989 0.6923 0.6854 0.6683 0.6558
25 0.5778 0.6946 0.7299 0.7387 0.7371 0.7358 0.7279 0.7177 0.7056 0.6986
30 0.5987 0.7193 0.7525 0.7621 0.7686 0.7639 0.7587 0.7502 0.7436 0.7357
35 0.6140 0.7341 0.7680 0.7823 0.7863 0.7856 0.7827 0.7776 0.7709 0.7651
40 0.6258 0.7460 0.7830 0.7990 0.8038 0.8031 0.7997 0.7968 0.7911 0.7869
45 0.6355 0.7572 0.7942 0.8089 0.8156 0.8169 0.8157 0.8122 0.8085 0.8053
50 0.6436 0.7663 0.8028 0.8196 0.8261 0.8261 0.8289 0.8249 0.8231 0.8175
60 0.6575 0.7776 0.8169 0.8338 0.8422 0.8453 0.8471 0.8463 0.8431 0.8427
70 0.6651 0.7872 0.8279 0.8461 0.8555 0.8583 0.8603 0.8606 0.8596 0.8577
80 0.6753 0.7967 0.8375 0.8546 0.8637 0.8694 0.8717 0.8730 0.8727 0.8716
90 0.6806 0.8024 0.8429 0.8621 0.8722 0.8781 0.8815 0.8809 0.8816 0.8809
100 0.6859 0.8084 0.8484 0.8675 0.8789 0.8850 0.8877 0.8898 0.8895 0.8895

are: gamma, generalized exponential, beta, Pareto type I, Weibull, and half-normal, whose
PDFs are the following:

• Gamma(; ✓) with PDF

f1(x;, ✓) =
1

�()✓
x
�1 exp

⇣
�x

✓

⌘
, x > 0, , ✓ > 0

and CDF denoted by F1.
• GExp(; ✓) with PDF

f2(x;, ✓) = ✓x exp{�✓x}[1� exp(�✓x)]�1
, x > 0,

, ✓ > 0, and CDF denoted by F2.
• Beta(; ✓), with PDF

f3(x;, ✓) =
�(+ ✓)

�()�(✓)
x
�1(1� x)✓�1

, 0 < x < 1,

, ✓ > 0, and CDF denoted by F3.
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Table 3. Critical values for the statistic KLmn considering the BS(1.5,1) distribution and significance level
5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2819
4 0.2911
5 0.3237 0.4760
6 0.3514 0.5053
7 0.3796 0.5303 0.5440
8 0.4102 0.5547 0.5791
9 0.4256 0.5665 0.6065 0.5852
10 0.4449 0.5865 0.6206 0.6114
12 0.4763 0.6121 0.6529 0.6591 0.6446
14 0.5036 0.6274 0.6734 0.6850 0.6848 0.6684
16 0.5270 0.6509 0.6916 0.7056 0.7080 0.7029 0.6938
18 0.5385 0.6651 0.7067 0.7234 0.7267 0.7247 0.7198 0.7136
20 0.5564 0.6787 0.7191 0.7371 0.7430 0.7454 0.7462 0.7343 0.7317
25 0.5806 0.7025 0.7460 0.7630 0.7704 0.7791 0.7791 0.7785 0.7741 0.7770
30 0.6010 0.7260 0.7643 0.7816 0.7940 0.7992 0.8004 0.8024 0.8021 0.8048
35 0.6149 0.7396 0.7777 0.7984 0.8080 0.8131 0.8167 0.8198 0.8209 0.8238
40 0.6273 0.7499 0.7900 0.8116 0.8210 0.8254 0.8293 0.8318 0.8340 0.8349
45 0.6365 0.7602 0.8008 0.8193 0.8298 0.8358 0.8404 0.8425 0.8447 0.8478
50 0.6443 0.7685 0.8080 0.8285 0.8385 0.8425 0.8496 0.8507 0.8541 0.8544
60 0.6581 0.7794 0.8206 0.8402 0.8507 0.8572 0.8614 0.8645 0.8661 0.8708
70 0.6657 0.7884 0.8309 0.8506 0.8618 0.8677 0.8720 0.8749 0.8778 0.8789
80 0.6758 0.7977 0.8397 0.8580 0.8694 0.8761 0.8808 0.8847 0.8867 0.8886
90 0.6807 0.8026 0.8449 0.8652 0.8760 0.8838 0.8891 0.8904 0.8934 0.8946
100 0.6856 0.8089 0.8502 0.8699 0.8824 0.8895 0.8936 0.8972 0.8988 0.9012

Table 4. Empirical size for di↵erent sample size and values of the parameter ↵ indicated.

n m BS(0.5,1) BS(1,1) BS(1.5,1)

10 3 0.0473 0.0588 0.0494
30 5 0.0564 0.0563 0.0513
50 7 0.0520 0.0514 0.0454
100 8 0.0504 0.0515 0.0482

• Pareto(; ✓), with PDF

f4(x;, ✓) =
✓



x+1
, x 2 [✓,1), , ✓ > 0,

and CDF denoted by F4.
• Weibull(; ✓), with PDF

f5(x;, ✓) =


✓

⇣
x

✓

⌘�1
exp

n
�
⇣
x

✓

⌘o
, x > 0,

, ✓ > 0 and CDF denoted by F5.
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• HN(✓), with PDF

f6(x; ✓) =
2✓

⇡
exp

✓
�x

2
✓
2

⇡

◆
, x � 0, ✓ > 0,

and CDF denoted by F6.

The power of the test is calculated based on testing the hypotheses

⇢
H0: X ⇠ BS(↵,�), for some ↵ > 0 and � > 0;
H1: X ⇠ Fi(✓), with ✓ > 0 and i = 1, . . . , 6.

In the procedure, 10,000 Monte Carlo replications and sample sizes n = 10, 30, 50, 100 are
considered. The powers of the tests are obtained at the significance level ⇢ = 0.05. For
each value of n and each distribution in H1, with di↵erent parameters, the 10,000 samples
are generated and the respective values of the test statistic are calculated. Based on the
critical values presented in Tables 1-3, we obtain the rejection proportions based on the
10,000 simulated samples. In addition, the power of the test is evaluated based on the
CM and AD statistics using the procedure proposed by Chen and Balakrishnam (1995).
We make a comparison among the tests and verify in what situations the test based on
the KL information is better, in the sense of being most powerful. Tables 5-8 present the
powers for the test in question with sample sizes of n = 10, n = 30, n = 50 and n = 100,
respectively.

Table 5. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 10.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.1534 0.0873 0.0937
GExp(3; 1) 0.1288 0.0805 0.0825
Beta(2; 1) 0.6841 0.3970 0.4282

Decreasing
Gamma(0.5; 1) 0.0376 0.0890 0.0959
GExp(0.5; 1) 0.0428 0.0938 0.1025

Nonmonotone
Pareto(2; 1) 0.4748 0.4070 0.4342
Weibull(2; 1) 0.2405 0.1507 0.1617
HN(3) 0.2434 0.2096 0.2298

Table 6. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 30.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.2656 0.1856 0.2082
GExp(3; 1) 0.2050 0.1544 0.1719
Beta(2; 1) 0.9970 0.9053 0.9388

Decreasing
Gamma(0.5; 1) 0.3465 0.3959 0.5343
GExp(0.5; 1) 0.3638 0.3937 0.5442

Nonmonotone
Pareto(2; 1) 0.9767 0.9039 0.9365
Weibull(2; 1) 0.5458 0.4172 0.4559
HN(3) 0.7164 0.6576 0.6987
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Table 7. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 50.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.3575 0.2774 0.3099
GExp(3; 1) 0.2716 0.2187 0.2498
Beta(2; 1) 1.0000 0.9905 0.9965

Decreasing
Gamma(0.5; 1) 0.6622 0.7369 0.8711
GExp(0.5; 1) 0.6779 0.7394 0.8748

Nonmonotone
Pareto(2; 1) 0.9993 0.9922 0.9970
Weibull(2; 1) 0.7317 0.6190 0.6671
HN(3) 0.9026 0.8701 0.8999

Table 8. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 100.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.4937 0.4829 0.5364
GExp(3; 1) 0.3744 0.3807 0.4276
Beta(2; 1) 1.0000 1.0000 1.0000

Decreasing
Gamma(0.5; 1) 0.9861 0.9786 0.9969
GExp(0.5; 1) 0.9882 0.9772 0.9957

Nonmonotone
Pareto(2; 1) 1.0000 1.0000 1.0000
Weibull(2; 1) 0.9134 0.8922 0.9256
HN(3) 0.9948 0.9915 0.9958

According to our simulation study, we conclude that the goodness-of-fit test based on the
KL information, in general, presents greater powers when compared to standard AD and
CM tests, for small sample size. When the hazard function under alternative hypothesis
is decreasing, the proposed test has di�culties in discriminating the models, leading to
powers close to nominal levels. This is because the hazard functions considered under the
alternative hypothesis closely approximate the hazard function of the BS distribution. In
addition, as the sample size increases, the power of the test also increases, as expected.

3.3 Empirical illustration

Next, we consider a set of data related to fatigue life cycles of samples of 6061-T6 aluminum
presented in Birnbaum and Saunders (1969). These specimens were cut at an angle parallel
to the direction of rotation, oscillating at 18 cycles per second. They were exposed to a
pressure with a maximum stress of 26000 psi (pounds per square inch). The data are
presented in Table 9.
We want to test the null hypothesis that the sample presented in Table 9 follows the

BS distribution.The model parameter estimates are b↵ = 0.1614 and b� = 392.7622. The
value observed for the test statistic is klmn = 0.9270, and the critical value for this case is
KL⇤

mn(⇢) = 0.8834, at the 5% significance level. Therefore, we do not reject the hypothesis
that the data follow the BS distribution. Figure 1 compares the empirical distribution
function with the theoretical one. We can observe from this figure that the empirical and
theoretical distribution functions are very close, which reinforces the conclusion reached
by the test.
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Figure 1. Empirical and theoretical distribution functions BS for aluminum data.

Table 9. Data set of aluminum lifetimes (26.000 psi).

233 258 268 276 290 310 312 315 318 321
321 329 335 336 338 338 342 342 342 344
349 350 350 351 351 352 352 356 358 358
360 362 363 366 367 370 370 372 372 374
375 376 379 379 380 382 389 389 395 396
400 400 400 403 404 406 408 408 410 412
414 416 416 416 420 422 423 426 428 432
432 433 433 437 438 439 439 443 445 445
452 456 456 460 464 466 468 470 470 473
474 476 476 486 488 489 490 491 503 517
540 560

4. Conclusions and Future Research

In this paper, we proposed a goodness-of-fit test for the Birnbaum-Saunders distribution
based on the Kullback-Leibler information. The proposed goodness-of-fit test performed
better than the standard Anderson-Darling and Cramér-von Mises tests, in the sense that
the proposed test had greater power for the alternatives considered with increasing and
nonmonotone hazard functions. When the distribution of the alternative hypothesis had
a decreasing hazard function, the test based in KL information presented less power than
the Anderson-Darling and Cramér-von Mises tests. In general, the proposed test proved to
be a good alternative to the standard Anderson-Darling and Cramér-von Mises tests. As
future research, we hope to obtain new tests for the Birnbaum-Saunders distribution based
on information measures for censored data, more specifically, for type II and progressively
Type-II censored samples.
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