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Abstract

The Pareto distribution has been studied by many authors for modeling phenomena
such as: income distribution, flood levels of rivers, droughts, major insurance claims and
financial issues among others. We propose a goodness of fit test for the type II Pareto
distribution; the test does not require the estimation of the parameters and is based on
the mean residual life function. The test statistic is the Kendall’s correlation coefficient
between the empirical mean residual life function and the sample order statistics, whose
distribution has been obtained through simulation. A simulation study shows that the
power of the test is very good when data come from light-tailed distributions and is rea-
sonably good when data come from heavy-tailed distributions. The test will be specially
useful for practitioners from the extreme events framework.

Keywords: Correlation coefficient · Extreme events · Mean residual life function
· type II Pareto distribution.
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1. Introduction

The Pareto distribution was introduced by Pareto in 1897, and since that time several mod-
ifications have been proposed. Arnold (1981) established a hierarchy for the Pareto family
starting with the classical Pareto distribution (type I Pareto) and by adding the location,
scale, form and inequality parameters, the type II, type III and type IV Pareto distributions
were obtained. Among these distributions, the type II Pareto (Pareto II) distribution is of
interest since it is perhaps the most widely used model within this family. Its cumulative
distribution function (Arnold, 2015) is the following:

F (x;µ, α, σ) = 1−
(

1 +
(
x− µ
σ

))−α
, µ < x,−∞ < µ <∞, α > 0, σ > 0, (1)

where σ and α are the scale and shape parameters respectively, and µ is a location parameter.
Another way to obtain the Pareto II distribution is through the generalized Pareto dis-

tribution (GPD) which was found by Pickands (1975) and whose cumulative distribution
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function (cdf) is the following:

F (x; k, σ) = 1−
(

1− kx

σ

)1/k
−∞ < k <∞, σ > 0, (2)

where σ and k are the scale and shape parameters respectively, x > 0 for k ≤ 0 and
0 < x < σ/k for k > 0.

This model (Equation (2)) includes the Pareto II distribution (with µ = 0), when k < 0,
with k = −1/α, α > 0 and σ∗ = σα then you will get the Equation (1). Since the GPD
has been extensively studied, and that provides important information about distributional
properties of the model, we are going to use the latter Pareto II distribution form with
parameters σ and k.

The heavytailedness of the Pareto II distribution is pretty much related with the value of
the parameter k. There are several ways to define a heavy-tailed distribution (Crovella and
Taqqu, 1999; Beirlant et al., 2001; Neves and Fraga-Alves, 2008; Foss et al., 2011). Among
them, the conditional mean exceedance function (CMEx) approach (Bryson, 1974) seems to
be a good option not only to classify a distribution in terms of its heavytailedness but also
to measure the degree of it. Under this approach, it is said that a heavy-tailed distribution
is that whose CMEx is an increasing function of x, a decreasing CMEx characterizes a
light-tailed distribution and a distribution for which CMEx is constant is the borderline
(the exponential distribution).

CMEx = E (X − x|X > x) . (3)

An interesting property of the Pareto II distribution is that its CMEx is a linear function
of x, i.e.

CMEx = E (X − x|X > x) = σ − kx
1 + k

= α0 + β0x, (4)

the CMEx will exist when k > −1 (Castillo and Hadi, 1997). Note that, because in this
case the CMEx is an increasing function of x, with positive slope −k/(1 + k), k is an
important quantity to determine the monotonic degree of CMEx and so to measure the
heavytailedness of the distribution. For example, if k is very close to zero, the CMEx ≈ σ;
i.e. the heavytailedness of the Pareto II distribution will be very close to the exponential
law. On the other hand if k is near −1, the monotonic degree of the CMEx will be large; in
that case, the distribution will have a very heavy tail. Thus, the Pareto II model is a flexible
family of distributions whose heavytailedness depending strongly on the value k, starting
with light-tailed distributions when k ≈ 0 and increasing the degree of heavytailedness as k
goes to −1.

The Pareto II distribution turned out to be very attractive for applied researchers because
heavy-tailed distributions are useful to model extreme events. It is well known that heavy-
tailed distributions frequently appear in applied areas such as major insurance claims or
major flood levels of a river (Diebolt et al., 2004). These kind of events have been modeled
by a Pareto II distribution with k near −1. According to Castillo and Hadi (1997) researchers
have often observed values of k less than −1/2 when they are modeling heavy tailed data
with the Pareto II distribution. Thus, the value of k = −1/2 seems to be a cut off point to
identify the degree of heavytailedness for which the Pareto II model is used in the extreme
events framework.

Researchers have found that the Pareto II distribution has estimation problems when
k ≤ −0.5. It has been found that the estimation of the parameters σ and k by the maximum
likelihood method has convergence problems when k < −1/2 (Gulati and Shapiro, 2008).
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The method of moments also presents some difficulties, since the second and higher moments
do not exist when k ≤ −0.5 (Hosking and Wallis, 1987). Note that just when the Pareto II
model is useful to model extreme events, the parameter estimation problems arise.

A major inference issue of interest is the adequacy of the Pareto II model for a given data
set, i.e. is the Pareto II distribution a good model for our data? One way to check adequacy
of a model is to use a goodness of fit test, and for the Pareto II case, several tests have
been proposed: Gulati and Shapiro (2008), Rizzo (2009), Meintanis and Bassiakos (2007),
Volkova (2016) and Babu and Toreti (2016). However, researchers specially from extreme
value framework may have difficulties to carry out these tests because these tests require
the estimation of the parameters. Therefore, a goodness of fit test that does not require the
estimation of the parameters may be of interest.

In Section 2 we propose a goodness of fit test which does not require the estimation of the
parameters, and in Section 3, we investigate the performance of the proposed test. Then, in
Section 4, we applied the proposed test to real data. Finally in Section 5, we include some
conclusions.

2. A Goodness of Fit Test

2.1 Practical parameter space for the Pareto II

It is known that the most common values for k that appeared in practice are a subset of
the theoretical parameter space of the Pareto II distribution. Hosking and Wallis (1987)
have commented that the common values of k are in the interval −0.5 < k < 0; however,
Castillo and Hadi (1997) pointed out that in some practical situations, such as modeling
heavy tailed data, it is often observed values of k less than −0.5. In addition, Rizzo (2009)
found data sets modeled by the Pareto II distribution in which estimates of k turned out to
be smaller than −0.5. All of this suggests that in practice, a plausible constrained range of
the parameter space for the Pareto II case could be −1 < k < 0.

According to our review it is unlikely to have estimation difficulties if data come from a
Pareto II distribution with −0.5 < k < 0, but if data come from a Pareto II distribution
with −1 < k < −0.5 then estimation troubles will arise and so it is likely to find difficulties
to carry out the current goodness of fit tests for the Pareto II distribution.

2.2 Idea

As mentioned, an interesting property of the Pareto II distribution for k ∈ (−1, 0) is that
its CMEx exists and it is a linear function of x. In the extreme value framework the CMEx
is well known as the mean residual life (MRL) function which is studied as a function of a
threshold u:

e(u) = E (X − u|X > u) = σ − ku
1 + k

. (5)

A nonparametric estimator of the MRL function was proposed by Embrechts et al. (1997)
and is given by:

ê (u) = 1
card ∆n(u)

n∑
i∈∆n(u)

(
X(i) − u

)
, (6)

where X(i) is the i-th order statistic of a random sample of size n, card ∆n(u) is the cardi-
nality of set ∆n(u), and ∆n(u) =

{
i : i = 1, . . . , n;X(i) > u

}
.
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Note that if we have a random sample from the Pareto II distribution with k ∈ (−1, 0),
we expect to have a linear relationship between ê (u) and u , since to each MRL function
corresponds to a distribution function and conversely (Barlow and Proschan, 1965). So, we
could construct a goodness of fit test based on this property by measuring the linearity
between the two variables.

We expect a kind of robustness on the proposed test because it has been showed that the
empirical MRL function is a strongly consistent estimate of the MRL function on a fixed
finite interval on [0, T ] (Yang, 1978), and it seems that other MRL function estimators have
the same drawback as the one we used. It is well known that the estimation of the MRL
function for large values of x is a challenging problem (see Embrechts et al., 1997; Csörgo
and Zitikis, 1996). Abdous and Berred (2005) found that a classical kernel estimate of the
MRL function increases its variability when the whole sample is used, i. e. the problem still
exist in the kernel estimation of the MRL function as in the empirical MRL function case.

2.3 Correlation Coefficient

In our proposal, the natural measurement of linearity would be the Pearson’s correlation
coefficient since we would like to detect a linear relationship; however, the Kendall’s τ
correlation coefficient is a good alternative for our goal. The use of the Pearson’s correlation
coefficient requires finite variance of the involved random variables; unfortunately, that
assumption does not hold for this proposal. A possible option to overcome that problem is the
use of the Kendall’s τ correlation coefficient. Although the τ correlation coefficient reflects
the degree of association between two random variables in somewhat different manner, it
does not require the finite variance assumption. The range of possible values to τ is from -1 to
1, similarly to Pearson’s correlation coefficient τ will be one when the two involved random
variables have a perfect increasing monotonic relationship. Since the τ correlation coefficient
measures the strength of the linear relationship in terms of the degree of monotonicity, τ will
be equal to one when two random variables have a linear relationship. The disadvantage of
the τ correlation coefficient is that its values could be near one not only for linearly related
variables but also for variables that are related according to some type of non-linear but
monotonic relationship. Chok (2010) studied the behaviour of three correlation coefficients:
Pearson, Spearman and Kendall, and he found that these correlation coefficients can be
represented as the differently weighted averages of the same concordance indicators. Chok
(2010) studied the performance of the three sample correlation coefficients to affect the
statistical power of tests for monotone association in continuous data and concludes that
the sample Pearson’s correlation coefficient could have advantages even for non-normal data
which does not have obvious outliers. In addition, he found that if the sample size is equal or
larger than 100 and the true correlation coefficient is larger than 0.80 then the performance
of the three sample correlation coefficients do not have a significantly different performance.
Thus, since we expect to have a sample τ correlation coefficient near one if data come from
the Pareto II distribution and to have relatively large sample sizes in many applications, we
decided to use the sample τ correlation coefficient as the test statistic for our proposal.

Let us define R∗ as the sample Kendall’s correlation coefficient between ̂
e
(
X(i)

)
and X(i),

where X(i) is the i-th order statistic. If a random sample comes from the subfamily of Pareto
II distributions with k ∈ (−1,−1/2) then we expect that R∗ will be close to one.
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2.4 A goodness of fit test based on the sample Kendall’s τ correlation
coefficient

LetX1, . . . , Xn be a random sample of size n, from an unknown distribution function denoted
by F (x).

Let F∗ be the family of Pareto II distributions, with unknown parameters σ > 0 and
−1 < k < −1/2. We wish to test the following composite hypotheses:

H0 : F is a member of F∗ vs Ha : F is not a member of F∗.

The test rule consists of rejecting H0 if R∗ ≤ Cα, where Cα is the critical value that
satisfies P (R∗ ≤ Cα|H0) ≤ α; i.e. such that the test is of size α, for some given α ∈ (0, 1).

2.5 Distribution of the test statistic R∗ under H0

The distribution of R∗ under H0 was obtained by using the Monte Carlo simulation since
it is not easy to obtain it analytically. The distribution turned out to depend on the value
of k, and does not depend on σ as we expected due to the scale invariance property of
the correlation coefficient. Since our interest in the distribution of R∗ is actually to get
the critical values for the test, we studied the behavior of probability of type I error for
C = 0.6, 0.8, 0.9, sample size n = 100, 200 and B = 10, 000 Monte Carlo replicates.

Figure 1 shows that the probability of the type I error is an increasing function on k for
a fixed critical value and sample size n. As it can be seen the value of k that maximizes
the probability of the type I error over the target range (−1,−1/2) is −1/2. Therefore, the
critical values, Cα,k,n, that preserve the size of the test are obtained from the estimated
distribution of R∗ under the null hypothesis Pareto II (σ = 1, k = −1/2).
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Figure 1. P(Type I Error) as a function of k obtained from the estimated R∗ distribution, for n = 100, 200,
B=100,000 Monte Carlo replicates.

We found the desired behaviour of the values of the probability type I error in order to get a
test which could be useful in areas where data usually come from heavy-tailed distributions,
for instance in the extreme events framework. The critical values were obtained by Monte
Carlo simulation. The simulation was carried out using an script written in the R statistical
software (R Core Team, 2015). The script uses the library function evd (Stephenson, 2002)
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to generate the random numbers from the Pareto II distribution (See algorithm 1).

Algorithm 1: Get the critical values from the estimated distribution of R∗

Input: n: sample size
p: proportion of sample to use, in this case 0.7
k: shape parameter of Pareto II distribution
σ: scale parameter of Pareto II distribution
B: number of Monte Carlo replicates

Output: r, Simulated distribution of R∗
Cα,k=− 1

2
: critical values from the estimated distribution of R∗

1 r← ∅
2 for j ← 1 to B do
3 Generate a random sample of size n from the X ∼ Pareto II(σ = 1, k = −1

2)
4 Sort the observed values
5 for l← 1 to [n ∗ p] do
6 With the values in step 4 obtain the mean residual life function estimator

̂
e
(
X(l)

)
=

n∑
m=l+1

(
X(m) −X(l)

)
/ (n− l)

7 r[j] < − Kendall’s correlation coefficient between ̂
e
(
X(l)

)
and the first np% of the

sample order statistics X(i)’s
8 Obtain critical values, Cα,k=− 1

2
, of r that is quantile(r,c(0.01,0.05,0.1))

We only use 70% of the sample since Embrechts et al. (1997) found that the empirical
mean residual life function increases its variability when the whole sample is used. The 70%
sample size was chosen among other options such as 20, 30, 50, 70, 80 and 90% considering
the estimated variance of the test statistic. The distribution of R∗ is presented in Figure 2.
Table 1 presents the critical values for the R∗ test. The distribution of the test statistic was
obtained using algorithm 1.

Table 1. Critical values (Cα,k=− 1
2 ,n

) for the R∗ test.

n \ α 0.01 0.05 0.1
40 -0.3545 0.2063 0.5026
50 0.1059 0.4353 0.6471
72 0.1951 0.6637 0.7943
100 0.5437 0.8095 0.8774
142 0.7745 0.8953 0.9287
150 0.7897 0.9044 0.9341
179 0.8508 0.9272 0.9492
200 0.8822 0.9400 0.9570
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Figure 2. Distribution of R∗, for n = 100, k = −0.5, σ = 1, B = 100, 000, obtained by using Monte Carlo simulation.

3. Performance of the Test

3.1 The size of the R∗ test

The size of the test was investigated by Monte Carlo simulation for sample size 50, 100, 150
and 200, for different values of k and for different significant levels (0.01, 0.05, and 0.10).
We use the Algorithm 2 to estimate the test size.

Algorithm 2: The size of the R∗ test
Input: n: sample size

p: proportion of sample to use, in this case 0.7
k: shape parameter of Pareto II distribution
σ: scale parameter of Pareto II distribution
B: number of Monte Carlo replicates
α: size of the test
Cα,k=− 1

2 ,n
: critical values from the estimated distribution of R∗

Output: st/B: Estimated probability of the type I error
1 st← ∅
2 for i← 1 to B do
3 Steps 3 to 6 as Algorithm 1
4 Compare the R∗ value with the specified critical value Cα,k=− 1

2 ,n

5 if R∗ ≤ Cα,k=− 1
2 ,n

then
6 st < −st+ 1

7 return st/B

3.1.1 Simulation results
Based on the estimated probability of the type I error, we have evidence that the size of

the test is preserved in the range of interest (See Table 2).
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Table 2. Estimated size of the R∗ test based on B=10,000 Monte Carlo replicates.
α n k

-0.99 -0.9 -0.8 -0.7 -0.6 -0.5
0.05 50 0.0027 0.0060 0.008 0.0152 0.0340 0.0508
0.10 50 0.0079 0.0112 0.0194 0.0335 0.0551 0.0951
0.05 100 0.0007 0.0004 0.0023 0.0061 0.0147 0.0340
0.10 100 0.0033 0.0056 0.0079 0.0152 0.0330 0.0707
0.05 200 0.0008 0.0009 0.0026 0.0032 0.0109 0.0337
0.10 200 0.0029 0.0044 0.0082 0.0119 0.0321 0.0726

3.2 Power study

In order to investigate the performance of the proposed goodness of fit test, the power of
the test was estimated for alternatives with support in the positive real line as the Pareto II
as well as distributions with finite support (e.g. Beta distribution), light-tailed distributions
(e.g. exponential distribution) and heavy-tailed distributions (e.g. lognormal distribution).

The power of the test was investigated by Monte Carlo simulation for sample sizes 50,
100, 150 and 200 and the test sizes considered were 0.05 and 0.10. In this case, we use
Algorithm 3.
Algorithm 3: Power of the R∗ test
Input: n: sample size

p: proportion of sample to use, in this case 0.7
B: number of Monte Carlo replicates
α: size of the test
Cα,k=− 1

2 ,n
: critical values from the estimated distribution of R∗

Output: pt/B: Estimated power
1 pt← ∅
2 for i← 1 to B do
3 Generate a random sample of size n from a distribution that does not belong to the

family F∗ described on the R∗ test
4 Steps 3 to 7 as Algorithm 1
5 for j ← 1 to 10, 000 do
6 Steps 4 to 7 as Algorithm 2

7 return pt/B

The estimated power of the test has been obtained for the following alternatives:
Beta(α, β), Weibull(τ, 1), Gamma(α, 1), Absolute value of Normal(µ, σ), Chi-square(υ), Ab-
solute value of Gumbel(α1, α2) and Lognormal(0, σ). These alternatives have been used to
model extreme events, so they are natural competitors of the Pareto II distribution. In ad-
dition, they have been used for others authors in order to measure the performance of their
test, so we include those ones too.

The Weibull distribution function has the following form:

F (x; τ, λ) = 1− e(x/λ)τ , 0 < x <∞, τ > 0, λ > 0,

where λ and τ are parameters of scale and shape respectively.
3.2.1 Results of the power study

The estimated power of the test is close to 1 when the alternative is a light-tailed dis-
tribution for sample sizes equal to larger than 50, while for heavy tailed distributions the
power is larger than 0.50 in most cases for sample sizes larger than 150 (see Table 3).
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Figure 3. Mean residual life function for different distributions.

One of the properties of the Lognormal and Weibull (τ < 1) (heavy-tailed distributions) is
that their mean residual life function is an increasing monotonic function of u (see Figure 3),
while the MRL function of the Exponential, Gamma (α > 1) and Weibull (τ > 1) (light-
tailed distributions) distributions have a decreasing monotonic function of a threshold u.
Note that when the MRL function is decreasing, the sample correlation coefficient is expected
to be negative. On the other hand in the Pareto II case we expect to have a positive sample
correlation coefficient since its MRL function is a linear increasing function. The simulations
results (Table 3) show that the estimated power is larger than 0.90 for α = 0.05, 0.10 when
the alternative is Weibull (τ > 1), Gamma (α > 1), Beta (α, β) with n = 50. In addition,
the power of the test in the Weibull (τ = 1) [exponential] is 0.95 when n = 100. Besides,
the power of the test is larger than 0.95 for α = 0.05, 0.10 when the alternative is the
Absolute value Normal (µ, σ) and Chi-square (υ) distributions both known as light-tailed
distributions. Therefore, as expected the performance of the R∗ test turned out to be very
good in these cases. However, in the Weibull (0.75, 1) and Gamma (0.5, 1) cases, the power
of the test is relatively low compared with the other results because those distributions
have an increasing monotonic MRL function on µ (Figure 3). So, for small sample sizes
it is difficult to reject the null hypothesis since sometimes the value of test statistics will
not be much different from the ones obtained when a distribution comes from the Pareto
distribution. However, when the sample size increases the power of the test gets better.

In the case when the alternative is a heavy tailed distribution, the power of the test is
larger than 0.50 for sample sizes larger than 150 or 200 in most cases. Therefore, we have
evidence that if data come from some of these distributions then the power of the test is
acceptable for α = 0.05, 0.10 and n > 150. Note that in the Lognormal(1.5) case the power
is very low; the reason is that this distribution is very hard to distinguish from a Pareto II
distribution since its MRL function is also strictly monotonic (see Figure 4); similar results
were found by Gulati and Shapiro (2008) with different test statistic. Nonetheless, the power
of the proposed test is higher than 0.70 for the other studied lognormal alternatives.
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Table 3. Estimated power of the R∗ test based on B=10,000 Monte Carlo replicates.
α 0.05 0.10
n 50 100 150 200 50 100 150 200

Alternative
Beta(1,2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Beta(2,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Weibull(0.75,1) 0.16 0.29 0.41 0.52 0.28 0.44 0.58 0.68
Weibull(1,1) 0.71 0.95 1.00 1.00 0.84 0.99 1.00 1.00
Weibull(1.25,1) 0.97 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Weibull(1.5,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Weibull(2,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lognormal(0,0.5) 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Lognormal(0,1) 0.26 0.53 0.77 0.90 0.43 0.71 0.89 0.96
Lognormal(0,1.5) 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01
Gamma(0.5,1) 0.10 0.21 0.34 0.43 0.19 0.35 0.47 0.59
Gamma(0.75,1) 0.42 0.71 0.86 0.95 0.57 0.84 0.94 0.98
Gamma(1.25,1) 0.88 1.00 1.00 1.00 0.96 1.00 1.00 1.00
Gamma(1.5,1) 0.95 1.00 1.00 1.00 0.99 1.00 1.00 1.00
Gamma(2,1) 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Halfnormal 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AbsNorm(2,2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AbsNorm(2,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AbsNorm(3,1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Chisq(6) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Chisq(15) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Abs(Gumbel(3,2)) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Abs(Gumbel(5,2)) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Abs(Gumbel(5,5)) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3.2.2 Comparative Power Study
We wish to compare our test against similar ones, but we did not find any of the R∗ test

kind. Nevertheless there exist tests for the Pareto II distribution which include the heavy-
tailed subfamily of Pareto II distributions. The comparison may not be fair, but it will give
us an idea of the performance of the proposed test. We chose the test for the Pareto II
distribution of Gulati and Shapiro (2008).

Gulati and Shapiro (2008) use one reparametrization of the Pareto II distribution given
as

F (x; θ, k) = 1− (1 + θx)(−1/k), x ≥ 0, θ ≥ 0, k > 0,

where if one assumes that k < 1, then the distribution has a finite first moment. The
approach that Gulati and Shapiro suggest involves first obtaining numerically the maximum
likelihood estimates of the parameters of this model, and then transforming the data as
T = ln(1 + X), noting that T has an exponential distribution with mean k. With the
transformed data they obtained a test statistic (T ∗), which has chi-squared distribution
with two degrees of freedom, then we reject the null hypothesis (data that come from a
Pareto II distribution) if T ∗ > χ2

α for an α-level test.
Power of the proposed R∗ test and T ∗ are presented in Table 4. One may observe that the

power of the R∗ test is higher to reject light-tailed distributions than the T ∗ test. On the
other hand the Gulati-Shapiro test has higher power in some cases when the alternative is
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Figure 4. Lognormal and Pareto Distributions

Table 4. Comparison of the power of two tests based on 10,000 Monte Carlo replicates for α = 0.05.
R∗ T ∗ R∗ T ∗

Alternative n = 50 n = 100
Weibull(0.75,1) 0.16 0.25 0.29 0.47
Weibull(1,1) 0.71 0.10 0.95 0.10
Weibull(1.25,1) 0.97 0.56 1.00 0.84
Weibull(1.5,1) 1.00 0.96 1.00 1.00
Weibull(2,1) 1.00 1.00 1.00 1.00
Lognormal(0,0.5) 0.90 1.00 0.98 1.00
Lognormal(0,1) 0.26 0.55 0.53 0.84
Lognormal(0,1.5) 0.01 0.04 0.01 0.04
Gamma(0.5,1) 0.10 0.71 0.21 0.95
Gamma(0.75,1) 0.42 0.19 0.71 0.33
Gamma(1.25,1) 0.88 0.29 1.00 0.48
Gamma(1.5,1) 0.95 0.63 1.00 0.88
Gamma(2,1) 0.99 0.97 1.00 1.00
Halfnormal 0.99 0.65 1.00 0.92

a heavy tailed distribution with n = 50, 100. Of course, the main advantage of the R∗ test
is that it is not needed to obtain the estimates of the parameters.
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4. Real Data Analysis

In order to investigate the performance of the test in real situations, we analyzed four data
sets from previous studies. The proposed R∗ test agrees with all previous results which gives
another evidence of its good performance.

Castillo and Hadi (1997) used the generalized Pareto distribution (GPD) to model the
excess over a given threshold. They analyzed a data set which consists of the zero-crossing
hourly mean periods (in seconds) of the sea waves measured in Bilbao, Spain. They used a
graphical method to verify if the data comes from the GPD and concluded that indeed the
data can be reasonably modeled by the GPD. We carried out the R∗ test for the Castillo and
Hadi’s data set and obtained the following result R∗ = −0.9587. According to the decision
rule, we reject H0 if R∗ < C0.01,−1/2,179 = 0.8508. Therefore, we conclude that data does
not belong to the Pareto II family F∗. According to the Castillo and Hadi (1997) results
the estimate of k was 0.654, which provides evidence that the data does not belong to the
Pareto II distribution.

Choulakian and Stephens (2001) analyzed a data set of 72 exceedances of flood picks
(in m3/s) of the Wheaton river near Carcross in Yukon territory, Canada. The proposed
threshold was 27.50 and the 72 exceedences were obtained from 1958 to 1984. The test
statistic obtained in this case is R∗ = −0.1275, according to the decision rule, we reject
H0 if R∗ < C0.01,−1/2,72 = 0.1951; therefore, we reject the null hypothesis and conclude
that this data set does not come from the Pareto II family F∗. Choulakian and Stephens
(2001) obtained an estimate of k = −0.006, tested the null hypothesis that data come from
the GPD using the Cramer-von Mises (CvM) and the Anderson-Darling (AD) tests and
concluded that the data set does not come from the GPD.

Rizzo (2009) analyzed the losses due to wind-related catastrophes. The data set has 40
observations that represent the losses of events where the amount was 2 million dollars
or larger. Using the proposed test, we obtained R∗ = 0.8111, compared it against the
corresponding quantile (C0.05,−1/2,40 = 0.2063) and conclude that the data come from the
Pareto II F∗ at α = 0.05. The maximum likelihood estimate (mle) for k is −0.764 (Rizzo,
2009) which agrees with our null hypothesis. In addition, Rizzo (2009) tested by CvM, AD,
Kolmogorov-Smirnov and her proposed tests for the null hypothesis that the data come from
the Pareto II distribution and concludes that yes, they do.

Rizzo (2009) presented a data set of claims due to fires; the data set represents the total
damage by 142 fires in Norway for the year 1975, for claims above 500,000 Norwegian krones.
Using the proposed test, we obtained R∗ = 0.9944, compared it against the corresponding
quantile (C0.01,−1/2,142 = 0.7745) and conclude that the data come from the Pareto II family
F∗ at α = 0.01. Rizzo (2009) concluded that the Pareto II distribution fits well, she obtained
a mle for k equal to −1.218.

5. Concluding Remarks

The estimation difficulties to carry out a goodness of fit test for the subfamily of heavy-
tailed Pareto II distributions were overcome. The linearity of the mean residual life function
with respect to a threshold for Pareto II (σ,−1 < k < 0) distribution is used to propose
a goodness of fit test for these distributions. The proposed R∗ test assesses the adequacy
of the heavy-tailed Pareto II distributions with unknown parameters (σ and k) for a given
data set, and its main advantage is that it does not require to estimate the parameters.
A power simulation study shows that the proposed test has high power (> 0.90) against
light-tailed distributions when sample sizes are equal or larger to 50 and reasonable power
(> 0.50) against heavy-tailed distributions when sample sizes are larger than 150. The use of
the R∗ test applied to some data sets agrees with the results obtained by other researchers.
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This test will be specially useful for practitioners in the extreme value framework. Although
we expect a kind of robustness on the proposed test, it will be interesting to evaluate the
performance of the test using another MRL function estimator. The estimation problem of
the parameters for the Pareto II distribution when (k ≤ −0.50) is still open though some
proposals have been done.
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7. Appendix

The Kendall’s τ correlation coefficient, is a nonparametric measure of association based on
the number of concordances and discordances in paired observations (Kendall, 1938; Chok,
2010; Abdi, 2007).

Two pair of observations (Xi, Yi ) and (Xj , Yj) are concordant if they are in the same
order with respect to each variable. That is, if

• Xi < Xj and Yi < Yj , or if
• Xi > Xj and Yi > Yj ;
they are discordant if they are in the reverse ordering for X and Y, or the values are arranged
in opposite directions. That is, if

• Xi < Xj and Yi > Yj , or if
• Xi > Xj and Yi < Yj .

Let the number of concordant and discordant pairs be nc and nd respectively. The total
number of pairs that can be constructed for a sample size of n is n(n− 1)/2.

Kendall’s rank correlation denoted by RK is obtained as follows:

RK = nc − nd
n(n− 1)/2 . (7)
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