
Chilean Journal of Statistics
Vol. 4, No. 2, September 2013, 61–74

ESTIMATION THEORY

RESEARCH PAPER

A New Version of Local Linear Estimators

Munaf Y. Hmood1,∗ and Ulrich Stadtmüller 2

1Department of Statistics,

Baghdad University, Baghdad, Iraq
2Department of Number and Probability Theory,

Ulm University, Ulm, Germany
(Received: 12 May 2011 · Accepted in final form: 10 July 2013)

Abstract

In the current article we proposed a new version of local linear estimators.The main
idea here is to combine two estimators to produce a new estimator having the best
features from the original estimators. The proposed estimator is a convex combination
between fixed and variable bandwidth local linear estimators and the aim is to choose
a suitable parameter steering this combination. We use least squares minimization to
select this parameter. Simulations are conducted to study a finite sample behavior of
the proposed estimator which is compared with both fixed and variable bandwidth local
linear estimators. Also real data on Buying and Selling Auction of the Central Bank of
Iraq for US$ and on the GDP of Iraq are applied to get an impression of the behaviour
of the estimators. The final results indicate that the proposed estimator performs well
being flexible and stable and can be considered as a good alternative to the individual
estimators.

Keywords: Local linear estimator. Fixed bandwidth. Variable bandwidth. Combining
two estimators. Rule of the thumb.
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1. Introduction

A regression curve describes a general relationship between an explanatory variable X and
a response variable Y . We resort to Kernel method to estimate the regression function
when no assumption is made about the form of regression function. The kernel method
has been studied extensively in the literature since the Nadaraya (1964) and Watson
(1964) estimator. There are different kinds of this estimator (PC, GM, Local linear and
polynomial estimators) see Mller (1987), Fan (1992) (1993), Fan and Gijbels (1996). The
kernel method is studied in both fixed and random designs contexts, so if we have n
independent observations (Xi, Yi)

n
i=1, then the regression function in the case of random

design is equal to:
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m(x) = E(Y | X = x)

while σ2(Xi) = V ar(Yi | Xi = xi) is the variance function.
In the other case with fixed design (xi)

n
i=1 are ordered non-random numbers, therefore the

response (Yi)
n
i=1 follow:

Yi = m(xi) + σ(xi)εi, 1 ≤ i ≤ n (1)

where the (εi) are iid random variables with

E(εi) = 0, V ar(εi) = 1 hence E(Yi) = m(xi), V ar(Yi | Xi = xi) = σ2(xi).

Often it is assumed that σ2(xi) ≡ σ2 for all i , in this case the model is said to be
homoscedastic, otherwise the model is heteroscedastic.
The aim of current paper is to compare between so called local linear estimator for both
fixed and variable bandwidth with the proposed estimator that combine these estimators
by using a combinig (tuning) parameter that depends on the observations. There are many
reasons for choosing local linear estimator, it has nice properties and for more details see
Fan (1992, 1993), Fan and Gijbels (1992, 1996). The paper is organized as follows: In
section 2 the proposed method is described. In section 3 local linear estimator with variable
bandwidth is introduced. In section 4 the combining parameter selection procedure is
explained. Bandwidth selection method algorithm is presented in section 5.The simulation
experiment results are presented in section 6 and finally Real data applications on (Buying
and Selling Auction of the Central Bank of Iraq for US$ and on the GDP of Iraq) and the
recommendations are presented in sections 7 and 8 respectively.

2. THE PROPOSED ESTIMATOR

”Whether any method is always best and if not whether there are distinct situations where one is
preferable and if there exist such estimator, Are there any estimators better than it?

”Jennen-Steinmetz and Gasser (1988)”

This question leads us to use local linear estimator which has good properties and also
compares favorably with other estimators to build a new version of it. The main idea
here is to use a suitable combination between fixed and variable bandwidths local linear
estimator. The reason for studying this combination is due to fact that there exist exper-
iments that require a fixed bandwidth and other a variable bandwidth choice. The fixed
bandwidth is used when the unknown regression function shows approximately the same
smoothing overall the estimation range and the data are homoscedastic; see Fan and Gij-
bels (2000).This means the bandwidth is used for the entire range of X in the regression
function. On the other hand the variable bandwidth is used when the regression func-
tion shows different behavior in different regions or the data are heteroscedastic and this
happens when the regression function has a complicated structure (low smoothness) (very
rough), we therefore propose this new estimator with the aim of reducing the uncertainty.
The key idea in this paper is to fit the regression function by:

m̂(x, γ) = γm̂V (x) + (1− γ)m̂F (x) (2)

Where 0 ≤ γ ≤ 1 is a tuning parameter and is unknown and can be estimated from the
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data. Furthermore,
m̂V (x) denotes the variable bandwidth local linear estimator and
m̂F (x) is the fixed bandwidth local linear estimator.
Other combinations of estimators such as spline, wavelets, etc are also possible. The ra-
tionale for the proposed estimator is that when the data conform closely to the variable
bandwidth local linear estimator then γ should give greater weight to m̂V (x), so that the
estimated γ̂ is close to one.
On the other hand, when the data conform to fixed bandwidth local linear estimator then
more weight will be given to m̂F (x) and the estimate γ̂ is close to zero.

3. VARIABLE BANDWIDTH LOCAL LINEAR ESTIMATOR

In this paper we will just exhibit the variable bandwidth local linear estimator and its
properties because this estimator is constructed similarly to the local linear with fixed
bandwidth but the difference to the fixed bandwidth case that is the smoothing parameter
is allowed to vary from one data point to another and it will proportional to some function
of the observation .The idea is to use a larger kernel in regions of low design density points
to avoid the roughness. To put the basic idea of this estimator assumes that the observed
data (Xi, Yi)

n
i=1 are a random sample from a certain population (Y,X). We minimize

n∑
1

(Yi − β0 − β1(Xi − x))2Kh(Xi)(Xi − x) With respect to β0 and β1 (3)

Here Kh(X) = 1
hK(xh) is a kernel with bandwidth h and h(x) = h.λ(x) with some small

but positive h; see Silverman (1986).

λ(x) = (
f(x)

g
)

−1

2

Where g denotes the geometric mean of probability density function f(Xi) where f(Xi)
can be estimated by using kernel density estimator with reference bandwidth and kernel
of degree 2. For other choices of h(x); see Silverman (1986), Jennen-Steinmetz and Gasser
(1988).
The solution of the aforementioned equation can be put in matrix notation. Assuming
invertibility of XTWX, this leads to the solution:

β̂ = (XTWX)−1XTWY (4)

Where

XTWX =

(
S0(x, h(.)) S1(x, h(.))
S1(x, h(.)) S2(x, h(.))

)
XTWY =

(
T0(x, h(.))
T1(x, h(.))

)
And Y = (Y1, ..., Yn)T is the (n× 1) vector of responses. Furthermore
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X =


1 (X1 − x)
. .
. .
. .
1 (Xn − x)


Is an (n× 2) design matrix.

W = diag{Kh(X1)(X1 − x),Kh(X2)(X2 − x), ...,Kh(Xn)(Xn − x)} be an (n× n) diagonal
matrix of kernels with variable bandwidth and

Sλ(x, h(.)) =

n∑
i=1

Kh(Xi)(Xi − x)(Xi − x)λ, λ = 0, 1, 2 (5)

Tk(x, h(.)) =

n∑
i=1

Kh(Xi)(Xi − x)(Xi − x)kYi, k = 0, 1

Since the estimator of regression function is the intercept coefficient, i.e. m̂V (x) ≡ β̂0,
we find

m̂V (x) = e1
T β̂ =

S2(x, h(.))T0(x, h(.))− S1(x, h(.))T1(x, h(.))

S2(x, h(.))S0(x, h(.))− S2
1(x, h(.))

(6)

Where e1 = (1, 0)T .
To avoid zero in the denominator, we can modify (6) by adding (nh)−1 in the denominator.

3.1 ASYMPTOTIC PROPERTIES

For the asymptotic properties of local linear estimator the following conditions must be
satisfied; see Fan (1992).

(1) The regression function m(x) has a bounded and continuous second derivative.
(2) The variance function σ2(x) is bounded and continuous.
(3) The kernel is symmetric about zero and has a bounded support and first derivative.
(4) The bandwidth h is a sequence satisfying h→ 0 and nh→∞ as n→∞.
(5) The marginal density f of the covariate X is continuous and bounded away from

zero in an interval (a, b).

In addition to the above conditions assume that f ′ is continuous and suppose that λ(.)
is bounded function with inf{λ(z)} > 0. It follows from (6) that:

E{m̂V (x)−m(x) | X1, X2, ..., Xn} =
1

2
m′′(x)e1

T (XTWX)−1XTW


(X1 − x)2

.

.

.
(Xn − x)2

+... (7)

Where · · · denote terms of smaller order. In order to compute a simpler approximation
of this term observes that:
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Sλ(x, h(.)) =

{
n(h(x))λdλf(x) + op(nh

λ) λ even

n(h(x))λ+1dλ+1f
′(x) + op(nh

λ+1) λ odd

Where dλ =
∫
uλK(u)du. This will lead to:

XTWX =

(
nf(x) + op(n) n(h(x))2f ′(x)d2 + op(nh

2)

n(h(x))2f ′(x)d2 + op(nh
2) n(h(x))2f(x)d2 + op(nh

2)

)

XTW


(X1 − x)2

.

.

.
(Xn − x)2

 =

(
S2(x, h(.))
S3(x, h(.))

)
=

(
n(h(x))2f(x)d2 + op(nh

2)
n(h(x))4f ′(x)d4 + op(nh

4)

)
(8)

And then to

(XTWX)−1 =

(
n(h(x))2f(x)d2 + op(n

−1) −n(h(x))2f ′(x)d2 + op(n
−1)

−n(h(x))2f ′(x)d2 + op(n
−1) nf(x) + op(n

−1h−2)

)
(nh(x))2d2(f2(x)− (h(x))2(f ′)2(x)d2)

(9)

Combining these equations we get the conditional bias of m̂V (x).

E{m̂V (x)−m(x) | X1, X2, ..., Xn} =
1

2
m′′(x)

d2(h(x))2(f2(x)− (h(x))2(f ′(x))2(d4

d2
))

(f2(x)− (h(x))2(f ′(x))2d2)
+ op(h2)

(10)

Under the assumption on f(x) has a bounded support on [0, 1] we find

E{m̂V (x)−m(x) | X1, X2, ..., Xn} =
1

2
m′′(x)(h(x))2d2 + op(h

2) (11)

To approximate the conditional variance we need first to define:

rλ(x, h(.)) =

{
n(h(x))λ−1rλf(x)σ2(x) + op(nh

λ) λ even

n(h(x))λ−1rλf
′(x)σ2(x) + op(nh

λ) λ odd

Where rλ =
∫
uλK2(u)du

Then the conditional variance approximation of m̂V (x) is:

V ar{m̂V (x) | X1, ..., Xn} = eT1 (XTWX)−1XTΣX(XTWX)−1e1 (12)

Where

Σ = diag{K2
h(X1)(X1−x)σ2(X1), ...,K2

h(Xn)(Xn−x)σ2(Xn)} is an (n× n) diagonal matrix.
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XTΣX =

n∑
i=1

K2
h(Xi)

(Xi − x)σ2(Xi)

(
1 (Xi − x)

(Xi − x) (Xi − x)2

)
=

(
r0(x, h(.)) r1(x, h(.))
r1(x, h(.)) r2(x, h(.))

)

=

(
n(h(x))−1r0f(x)σ2(x) + op(n) nr1f

′(x)σ2(x) + op(nh)
nr1f

′(x)σ2(x) + op(nh) nh(x)r2f(x)σ2(x) + op(nh
2)

)
Hence the conditional variance becomes:

V ar{m̂V (x) | X1, ..., Xn} =
σ2(x)f(x)(f2(x)r0 − 2h(x)r1f

′(x) + (h(x))2r2(f ′)2(x))

nh(x)(f2(x)− (h(x))2(f ′)2(x)d2)2
+ op{(nh)−1}

If f(x) has bounded support [0, 1], then the conditional variance will be equal to:

V ar{m̂V (x) | X1, ..., X − n} =
σ2(x)r0

nh(x)f(x)
+ op{(nh)−1} (13)

Theorem 3.1 (Fan and Gijbels 1992) Assume the conditions (1−5) are satisfied and assume
the weight function w(.) is nonnegative, bounded and continuous function on (a, b) and
that f(x) is uniformly Lipschitz continuous of order ν > 0. Suppose that λ(.) is bounded
and continuous function on (a, b) and minλ(z) > 0, then the conditional MISE of m̂V (x)
is:

E{
∫ ∞
−∞

(m̂V (x)−m(x))2w(x)dx | X1, ..., Xn} =
d2

2

4

∫ ∞
−∞

(m′′(x))2(h(x))4w(x)dx+ (14)

r0

4

∫ ∞
−∞

σ2(x)

h(x)f(x)
w(x)dx+ op{(nh)−1 + h4}

Simple algebra yields the optimal global bandwidth:

hopt = (
r0

∫∞
−∞

σ2(x)
λ(x)f(x)w(x)dx

d2
2

∫∞
−∞(m′′(x))2(λ(x))4w(x)dx

)1/5n−1/5 (15)

Substituting this optimal choice in to (14) leads to:

AMISE(m̂V (x)) =
5d

2

5

2 r
4

5

0

4n
4

5

(

∫ ∞
−∞

(m′′(x))2(λ(x))4w(x)dx)1/5(

∫ ∞
−∞

σ2(x)

λ(x)f(x)
w(x)dx)4/5

(16)

4. CHOICE OF COMBINING PARAMETER

One can choose a combining parameter by minimizing the least squares problem with
respect to γ. That is we minimize:
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n∑
i=1

(Yi − Ŷi)2 =

n∑
i=1

(Yi − γm̂V (Xi)− (1− γ)m̂F (Xi))
2

with respect to γ.
This will result to estimator of γ which is:

γ̂ =
−
∑n

i=1(Yi − m̂F (Xi))(m̂F (Xi)− m̂V (Xi))∑n
i=1(m̂F (Xi)− m̂V (Xi))2

(17)

We must note that the above formula depends on the data hence we can get this estimator
easily. Also we can put some restrictions on this estimator; if the value of this estimator
is negative then we can put it equal to zero, and if its value is greater than one then we
can set it equal to one.

5. BANDWIDTH CHOICE

There are different automatic bandwidth selectors that produce asymptotically optimal
Kernel smoothers {for more details see Fan and Gijbels (1996), Härdle (1990), Hart (1997),
Simonoff (1996)}. In this section we will discuss one of these methods which named rule
of thumb.

5.1 RULE OF THUMB (ROT)

A rule of thumb method is a simple bandwidth selector obtained by using the global fixed
bandwidth (15) and considering a reference parametric model for the unknown regression
function m(x). The following algorithm illustrates this selector.

5.2 ALGORITHM

• Take m(.) to be a polynomial of degree four, i.e. m(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4.

This choice would imply that m′′(x) is a quadratic function, leaving certain flexibility
for fitting functions with a curvature.

• Fit the parametric model to the data.

• Fit the standardized residual sum of squares from this parametric fit (σ̃)2

• Substituting the estimated quantities σ̃2 and (m̃′′)2(x) in (15) will lead to the estimated
expression

ĥROT = (
r0σ̃

2
∫∞
−∞w0(x)dx

nd2
2

∫∞
−∞(m̃′′(x))2w0(x)f(x)dx

)1/5 (18)

The denominator in (18) can be written as nEb(m̃′′(x))2w0(x)c which can be estimated
by
∑n

i=1(m̃′′(Xi))
2w0(Xi)).

• Then the Rule of thumb estimator is:

ĥROT = (
r0σ̃

2
∫∞
−∞w0(x)dx

d2
2

∑n
i=1(m̃′′(Xi))2w0(Xi)

)1/5 (19)
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For uniform density over [a, b] and constant variance, the resultant ROT selector for
h becomes:

ĥROT = (
r0σ̃

2(b− a)

nd2
2

∫∞
−∞(m̃′′(x))2w0(x)f(x)dx

)1/5 ≈ (
r0σ̃

2(b− a)

d2
2

∑n
i=1(m̃′′(Xi))2w0(Xi)

)1/5 (20)

6. SIMULATION RESULTS

In this section we investigate the performance of the proposed estimator and we present
the results of comparison between this estimator with both fixed bandwidth and variable
bandwidth local linear estimators.
In each of these experiments, we use Gaussian kernel. The following four regression func-
tions were studied with the case of random design:

• m1(x) = x2

• m2(x) = sin(πx)

• m3(x) = 1
(x−0.3)2+0.01 + 1

(x−0.9)2+0.04 − 6

• m4(x) = sin(2x) + 2exp(−16x) See Fan and Gijbels (1992).

For the regression functions m1(x),m2(x), and m3(x) we generate data according to

X ∼ U(0, 1) and X ∼ 2 − 2(1 − 7
8U)

1

3 , U ∼ U(0, 1). While for m4(x) we generate data

according to X ∼ U(−2, 2), X ∼ N(0, 1) and X ∼ 2 − 2(1 − 7
8U)

1

3 , U ∼ U(0, 1). The
number of simulations samples (replications) was (500). The error terms were taken to
be N(0, σ2) the same values of σ2(0.30, 0.09) were used with each function. Sample sizes
n = 50, 100 were used for each experiment.
For a comparison we present the results of the three estimators with their empirical
MASE (Mean Averaged Square error) and their respective standard errors.
Tables 1-2 summarize the results of the simulations. Each table has three lines (one line
for each of the above estimators) and four columns.
The second column gives the value of the variance of error terms; the last three columns
give the MASE (and the standard error) for the first three models with different sample
sizes.
Table 3 also summarizes the simulation results but now by using the fourth model with
different distributions of the random variable X as the columns.

Table 1: MASE and its standard error (in parenthesis) for the models 1,2 and 3 with X ∼ U(0, 1)

Regression
function

estimators

σ2 m1(x) m2(x) m3(x)

N 50 100 50 100 50 100
LLSF 0.30 0.0120(0.036) 0.0066(0.013) 0.022(0.11) 0.810(15.90) 843.3(16497) 61.3(431.8)
(Fixed

bandwidth)
0.09 0.0034(0.004) 0.0170(0.310) 0.023(0.25) 0.003(0.007) 3175(68605) 54.6(255.1)

LLSV 0.30 0.011(0.016) 0.007(0.004) 0.018(0.056) 0.014(0.040) 42.8(98.52) 33.0(9.7)
(Variable

bandwidth)
0.09 0.006(0.026) 0.003(0.0012) 0.020(0.240) 0.003(0.0012) 42.4(56.95) 33.1(9.4)

Proposed estim.
0.30 0.0098(0.007) 0.0064(0.0038) 0.014(0.010) 0.011(0.020) 38.03(12.54) 32.98(6.36)
0.09 0.0032(0.002) 0.0027(0.001) 0.005(0.003) 0.003(0.0011) 39.82(16.73) 33.40(7.07)
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Table 2: MASE and its standard error (in parenthesis) for the models 1, 2 and 3 with

X = 2− 2(1− 7/8U)1/3, t ∼ U(0, 1)

Regression function
estimators

σ2 m1(x) m2(x) m3(x)

N 50 100 50 100 50 100
LLSF 0.30 0.019(0.22) 0.007(0.040) 0.017(0.098) 0.0124(0.08) 89.6(390.7) 64.2(249.8)

(Fixed bandwidth) 0.09 0.016(0.32) 0.002(0.001) 0.30(6.530) 0.020(0.28) 64.0(19.90) 53.4(24.70)
LLSV 0.30 0.014(0.030) 0.009(0.005) 0.0156(0.01) 0.012(0.0050) 83.8(520.5) 47.0(55.1)

(Variable bandwidth) 0.09 0.004(0.002) 0.004(0.002) 0.020(0.25) 0.005(0.0013) 61.5(118.7) 45.7(22.6)

Proposed estim.
0.30 0.010(0.0220) 0.006(0.0040) 0.013(0.008) 0.010(0.0048) 53.9(13.9) 45.8(8.30)
0.09 0.002(0.0015) 0.002(0.0012) 0.005(0.007) 0.004(0.0013) 53.3(14.3) 45.5(7.87)

Table 3: MASE and its standard error (in parenthesis) for the model 4 with X ∼ U(−2, 2), X ∼
N(0, 1) and X = 2− 2(1− 7/8U)1/3, t ∼ U(0, 1)

Regression function
estimatiors

σ2 X ∼ U(−2, 2) X ∼ N(0, 1) X ∼ 2− 2(1− 7/8t)1/3,
t ∼ U(0, 1)

N 50 100 50 100 50 100
LLSF 0.30 0.81(13.3) 0.15(1.84) 1.33(22.3) 0.37(2.190) 0.0290(0.23) 0.012(0.0054)

(Fixed bandwidth) 0.09 0.14(0.65) 0.09(0.73) 0.77(7.73) 3.26(42.46) 0.0087(0.04) 0.010(0.110)
LLSV 0.30 0.15(0.94) 0.060(0.019) 0.36(3.36) 0.14(0.33) 0.020(0.07) 0.010(0.0047)

(Variable bandwidth) 0.09 0.36(2.65) 0.047(0.0111) 0.37(4.57) 0.13(0.54) 0.009(0.08) 0.004(0.011)

Proposed estim.
0.30 0.075(0.04) 0.058(0.016) 0.12(0.045) 0.11(0.038) 0.016(0.013) 0.011(0.0049)
0.09 0.073(0.21) 0.046(0.011) 0.11(0.040) 0.10(0.030) 0.004(0.002) 0.003(0.0012)

From tables 1-3 we see that the adequate performance of the proposed estimator is
confirmed in simulated data. It has the smallest MASE and a fairly stable standard error
for all the models simulated, sample sizes used and error variances, except in few cases
which indicates a close behavior for all estimators.

Also as is well known we see that the values of MASE decrease with increasing samples
size. The same behavior is true for error variances used although for some cases a positive
relationship between increasing MASE and error variance was observed.

Finally we provided for each simulated model figures to give an indication of what our
results will mean in terms of the actual curves, note that in each figure the bold solid
curve is m(x), the dashed solid is the regression function estimator, and from these figures
we observe that the proposed estimator has better performance than the other estimators
near the left hand side although a close behavior inside the interior interval .The skip near
the left hand side due to the design points and we refer to Fan and Gijbels (1992) to this
case.
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7. EMPIRICAL EXAMPLE

We now apply the estimators constructed previously to two different financial data. First
real data set was (Buying and Selling Auction of the Central Bank of Iraq for US$ from
4/10/2003 to 31/12/2008) as a function in terms of the exchange rate of the Iraqi diners
(ID) compared with the U.S. dollar ($) for the same period and the second data set was
on the GDP of Iraq.

Figures (25), (26) and (27) present the plot of the actual data of (Buying and Selling
Auction of the Central Bank of Iraq) and the aforementioned compared estimators respec-
tively. We can observe preference the proposed estimated on the rest of the estimators,
Notice that the estimated combining parameter was .

On the other hand the figures (28), (29) and (30) present the plot of the GDP of Iraq
over the periods (1968-2010) with the aforementioned estimators’ .From these figures equal
performance of the proposed estimator with a variable bandwidth LLS is appear, i.e. . We
note also converge the estimators (Proposed and LLSV) in figures (29) and (30) respectively
with the real curve, this will refer to the acceptable representation of these estimators for
the real curve.
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8. RECOMMENDATIONS

Finally, since the proposed estimator performs considerably well on data exhibiting varied
patterns; we recommend its use in data analysis. Further studies can also be carried out
to develop a general class of estimators of the type studies in this paper.
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