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Abstract

Motivated by the analysis of wind directions, in this paper we consider skew-symmetric
circular distributions generated by perturbation of a symmetric circular distribution.
This class of models is able to describe different distribution shapes, including symmet-
ric, skewed, and bimodal, which are often observed in circular data, as in our motivating
example of wind directions at a site in Spain. We propose a wrapped version of the
flexible generalized skew-normal distribution to fit these data. The model is presented
and the parameters of the proposed model are estimated by the maximum likelihood
method. We also note that in the considered area, typical sea breeze and land breeze
directions are observed. Thus, we consider a subdivision of the data to fit these direc-
tions separately. The likelihood ratio test shows that the proposed model outperforms
the wrapped skew-normal, and the Akaike information criterion reveals that it fits our
wind-direction data with comparable performances with respect to other well-known
bimodal circular distributions.

Keywords: Circular model - Flexible generalized skew-normal distribution - Wind
directions - Wrapped distributions - Wrapped skew-normal distribution.
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1. INTRODUCTION

Circular data are observed in many sciences and a number of statistical models have
been proposed to describe data related to directions, that is, represented by mathematical
angles. Mardia (1972) is probably the first book related to statistics for circular data, which
relied substantially on Rao Jammalamadaka’s PhD dissertation (see Rao, 1969), but this
book has been followed by many others; see, e.g., Fisher (1993), Mardia and Jupp (1999),
and Jammalamadaka and SenGupta (2001). In addition to these books, many authors have
proposed models and statistical methodology for analyzing circular data.
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As pointed out by Pewsey (2006), among others, most of the classical statistical mod-
els for circular data involve symmetric distributions, and since this kind of data is very
often asymmetric, they are rarely applied in practice. However, a number of models that
include asymmetry have recently been proposed; see Jammalamadaka and Kozubowski
(2003), Fernandez-Duran (2004), Gatto and Jammalamadaka (2007), and Umbach and
Jammalamadaka (2009). Pewsey (2000a) obtained a skewed circular model by wrapping
the Azzalini skew-normal (SN) distribution. Other wrapped distributions have been ob-
tained more recently by Jammalamadaka and Kozubowski (2003), by wrapping a skewed
Laplace distribution, and by Pewsey (2008), by wrapping a four-parameter stable family
of densities.

Often, real circular data exhibit not only skewness but also bimodality. Recently, models
have been proposed to fit multimodal data; see Kato and Jones (2010) and Abe and Pewsey
(2011). In this paper, motivated by the analysis of wind data collected at a station in the
Alicante region of Spain, we propose wrapping what Ma and Genton (2004) called a flexible
generalized skew-normal (FGSN) distribution, thus obtaining a model that can deal with
skewness and bimodality.

In Section 2, we describe the motivating problem and the available data. In Section 3, we
review the SN distribution and its generalization. In Section 4, we propose the new model,
and in Section 5, this model is fitted to the available data. In Section 6, we compare the
proposed model with other bimodal models and in Section 7 a discussion of the results is
included.

2.  WIND DIRECTIONS IN VILLENA

We are interested in modeling wind directions observed at a single point. Specifically, we
consider wind directions registered at a meteorological station in Villena, a town in the
province of Alicante, Spain. This site is along the river Vinalop6 at a height of 504 meters
above mean sea level. The town is in a valley which forms part of the Prebaetic System, a
chain of mountains in the south of Spain, covering more than 600 km between Gibraltar
and Cabo de la Nao, running roughly south-west to north-east. The weather in Villena is
typical Mediterranean, but due to its height and its proximity to the mountains, weather
oscillations are more pronounced. In addition, the Vinalopé River runs in a valley that
goes directly from the Villena region to the coast, providing a corridor for winds coming
from the sea to reach directly to the town.

The sea breeze and mountain breeze dynamics are observed daily in the area of Villena;
see Azorin-Molina et al. (2011). During the daytime, a wind (sea breeze) is expected from
the sea moving overland in a south-easterly direction, formed by increasing temperature
differences between the land and water. Over night and up until late morning, a mountain
breeze is also observed in the north-west direction. Mountain air cools and causes wind to
move down the valley.

Data were collected using an Oregon Scientific WMR928NX automatic weather station
(AWS) during June of 2009. The anemometer of the station was positioned at a height of
10 meters above ground. Figure 1 represents the topography of the Villena area and the
location of the station. The software recorded observations every 20 minutes, collecting
2160 measurements. Occasionally, the data failed to be recorded, so a small number of
observations were missing. In addition, when no wind was observed, the data were con-
sidered to be missing. Therefore, we discarded 327 measurements, leaving us with 1833
available observations. Figure 2 shows a rose diagram of the wind directions observed in
June of 2009. The external points show the observed angles, while inside the circle, we
have plotted the rose diagram with classes of 20° intervals.
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Figure 1. Topographic map of the Villena area with the location of the Villena AWS station.

Figure 2. Rose diagram and raw circular data plot of the wind direction data collected in Villena in June 2009.

The rose diagram reveals that the distribution is bimodal with modes made up from the
directions associated with the sea and mountain breezes. Furthermore, at least one of the
modes, the one in the west/north-west direction, is clearly skewed. Our goal is to model
such a bimodal skewed distribution.
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3. SKEW-NORMAL AND FLEXIBLE GENERALIZED SKEW-NORMAL DISTRIBUTIONS

Pewsey (2000a, 2006) proposed a circular distribution by wrapping a SN distribution onto
the unit circle. The univariate SN distribution, as defined by Azzalini (1985), has density

faigwa) =20 (2250 (o (225)), (1)

where z € R and ¢ and ® denote the standard normal density and distribution functions,
respectively, £ € R, w > 0, and o € R are location, scale, and shape parameters (usu-
ally referred to as its ‘direct parameters’). Let us denote this distributional relationship
as X ~ SN({,w,a). Moments for the SN distribution are available (see, e.g., Genton,
2004; Azzalini, 2005), and it is possible to parameterize the SN distribution by using the
mean, variance, and skewness index, using its so-called centered parameterization. The
centered parameters, p1, o2, and 71 (which are the mean, variance, and third cumulant of
X, respectively), are related to the direct ones according to

_ _ 2 2 _ 2 2 — (4 —mp?
M_E[X]—u\/;wé, o’ = (1—;5) N S

where 6 = a/v'1+ 2. As pointed out by Azzalini (1985), and discussed in Azzalini and
Capitanio (1999) and Pewsey (2000b), the direct parameterization may present some es-
timation problems in particular cases, which can be circumvented by using the centered
version.

The circular random variable ® = X (mod 27), corresponding to wrapping X onto the
unit circle, has density

e e}

fgwa =2 Y o (T2 e (o (B22E)) ©)

r=—00

for 0 < 6 < 27, and is denoted as ©® ~ WSN(&,w, ). The properties of the wrapped
SN distribution are derived in Pewsey (2000a), where it is shown that there is not an
equivalent with the centered parameterization for the circular SN distribution. However,
Pewsey (2000a) proposed to use a so-called circular parameterization by working with the
mean direction, one minus the circular variance, and the circular skewness index introduced
by Batschelet (1981) instead of &, w, and o. Ma and Genton (2004) showed that density in
Equation (1) is unimodal, a characteristic inherited by the wrapped version in Equation
(2), while Figure 2 clearly shows that our motivating data have more than a single mode,
suggesting that model given in Equation (2) is not appropriate for our aim.

A bimodal circular random variable can be obtained by generalizing the SN distribution
using the results obtained by Azzalini and Capitanio (2003), Ma and Genton (2004),
and Wang et al. (2004). They showed that for any symmetric density function fp and
distribution function G with symmetric density, the function

f(@) = 2fo(2)G (w(z))

is a density function for any odd function w. Clearly, when fo = ¢, G = ¢, and w(z) = ax,
we get Equation (1). Under this framework, setting w(x) = az + Sz3, we obtain the FGSN
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distribution, with density

f<x;g,w,a,ﬁ>=§¢(x;f)q><a(“;f)+ﬁ(“;f)3). )

The same authors proved that the density given in Equation (3) has at most two modes
and noted that, in general, if w is an odd polynomial, the number of modes is positively
related to its degree.

4. WRAPPED FLEXIBLE GENERALIZED SKEW-NORMAL DISTRIBUTION

We propose a bimodal skewed model by wrapping the FGSN distribution given in Equation
(3) onto the unit circle. If X has a FGSN distribution, then © = X (mod 27) is its wrapped
version with density

F(0: 6,0, 0, 8) = Z ¢(6+27r7’ g) ( <9+27r7’ g) +6<9+2m~ g) >7 (4)

for0 <0 <2m, €R,w>0,aa € R and B € R, and is denoted by © ~ WFGSN (¢, w, a, 3).

As for the linear FGSN distribution, circular moments of the WFGSN distribution exist,
but are not available in closed form. Therefore, centered or circular parameterizations are
not explicitly available for this distribution. Figure 3 shows the shape of the density given
in Equation (4) for various choices of o and 3, and £ = 0 and w = 1. Mazzuco and Scarpa
(2011) performed a simulation based study on how the values of o and 3 affect the shape
of the FGSN distribution. However, their findings can also be generalized to the WFGSN
distribution. They found that: (a) if o and  have the same sign, the resulting density
has only one mode (in some cases, the density shows a small “bulge”, but this is never an
additional mode); (b) if @ and 3 have opposite signs, the resulting density has two modes;
(c) if the absolute value of [ increases, the height of the second mode increases; and (d)
the higher the absolute value of «, the more distant the two modes between them are.

Inference for the parameters of the WFGSN distribution can be performed by the maxi-
mum likelihood method. When n independent observations 1, . .., 8, from this distribution
are available, the log-likelihood function is

(& w,a,B3;0) =nlog(2) — nlog(w) (5)

0 ] — ) o 3
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which can be maximized using a numerical algorithm such as, for example, Nelder and
Mead’s algorithm; see Nelder and Mead (1965).

We assume that the different observations are independent although there may be de-
pendence between the wind directions over time. Breckling (1989) and Fisher and Lee
(1994), among others, proposed a temporal model that takes into account autocorrelation
by wrapping time series processes. In discussing these procedures, Coles (1998) pointed
out that, even for a Gaussian model, the wrapping operation makes inference complicated.
Working directly with the wrapped version of a Gaussian process, to compute, for example,
the maximum likelihood estimates is intractable. The use of skew-symmetric distributions
clearly adds an additional level of complexity to the procedure.
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Figure 3. Examples of wrapped flexible generalized skew-normal (WFGSN) densities with € = 0, w = 1 and various
combinations of o and 3.

However, as pointed out, for example by Chandler and Bate (2007) who discussed more
general dependence structures, estimates obtained assuming independence usually exhibit
little bias, although they often lack efficiency. In our case, this means, for example, that
profile likelihood based confidence intervals obtained under the assumption of indepen-
dence among observations are likely to be narrower than the true ones. Some authors,
such as Chandler and Bate (2007) and Pace et al. (2011), proposed corrections in order
to obtain better approximations of the intervals. We could use similar modifications for
our estimates of the Villena wind direction data. Here, we concentrate on assessing the
improvement in fit of the WFGSN distribution over the WSN distribution, and leave the
analysis of dependence structures for future research.

5. MODELS FOR WIND DIRECTION DATA

5.1 A MODEL FOR THE FULL DATA SET

Model given in Equation (4) is a reasonable candidate for wind direction data in Villena,
which, as we have seen in Section 2, are skewed and bimodal. Estimation of parameters
was obtained using the maximum likelihood method, and the corresponding density is
shown in Figure 4. To avoid local maxima, we carry out an optimization algorithm with
several different starting points, widely scattered in the effective part of the parameter
space. Starting from many different points, we arrive at a small number of local maxima,
of which we select the one corresponding to the maximum value of the likelihood function.
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Figure 4. Raw circular data plot and rose diagram for the Villena wind direction data together with wrapped skew-
normal (WSN) and wrapped flexible generalized skew-normal (WFGSN) densities fitted by maximum likelihood
estimation.

Also in Figure 4, we plot the fit of the Pewsey wrapped SN distribution. This fit was
obtained by maximizing the log-likelihood function for the circular parameters, as sug-
gested by Pewsey (2000a), so as to avoid the known problems of maximum likelihood
estimation under the direct parameterization; see, e.g., Azzalini and Capitanio (1999) and
Pewsey (2000a). Table 1 presents point estimates and 95% profile confidence intervals for
the direct parameters of the WSN and WFGSN distributions.

Table 1. Point estimates and 95% profile confidence intervals (in parenthesis) for the parameters of the WSN and
WPFGSN distributions fitted to the Villena wind direction data.

Parameter
Distribution £ w « I}
WSN 2.09 3.06 23.41 —
(2.04, 2.14) (2.90, 3.25)  (17.79, 33.28)
WFGSN —-3.01 1.92 —6.59 16.21

(—3.04, —2.99) (1.88,1.96) (—6.84, —6.33) (15.47, 17.00)

For the FGSN distribution, and consequently for the WFGSN distribution, there is no
closed forms for centered parameterization, that is, explicit expressions for the cumulants
are not available. Therefore, we maximize the log-likelihood function in Equation (5).
However, in the case of Villena wind direction data, their distribution was not expected to
be symmetric or even similar to a wrapped normal distribution, so that the typical saddle
point of the log-likelihood function seems to be far away from the expected maximum,
not affecting our estimates. Because the WSN distribution is nested within the WFGSN
distribution, a likelihood ratio test can be performed to detect the significance of the
extra parameter. The value of the test statistic is 585.3, giving a p-value of approximately
zero, indicating that the improvement in fit is highly significant for these data. Formal
assessment of goodness-of-fit for these models is complicated due to the complexity of
the wrapping procedure, by the uncertainty of the values of the wrapping coefficients (see
Coles, 1998), and by the complexity of the SN densities given in Equations (2) and (4).
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Table 2. Point estimates and 95% confidence intervals (in parenthesis) for the parameters of the WSN and WFGSN
distributions fitted to the sea breeze and mountain breeze subsamples of the the Villena wind direction data.

Parameter

Breeze Distribution 19 w Q@ 16}

Sea WSN 2.00 2.17 11.70 —
(1.94, 2.04) (2.07, 2.27) (9.21, 15.07)

Sea WFGSN 3.20 1.49 —5.02 6.56
(3.17, 3.23) (1.45, 1.52) (—4.81, —5.27) (6.26, 6.99)

Mountain WSN 4.49 3.09 32.99 —
(4.43, 4.55) (2.84, 3.42) (17.40, 120.25)

Mountain WFGSN 0.15 1.83 —2.94 2.41
(0.08, 0.21) (1.78,1.90) (—3.12, —2.76) (2.23, 2.60)

5.2 SEA BREEZE AND MOUNTAIN BREEZE

As was discussed in Section 2, winds in Villena are characterized by the phenomena of
a sea breeze during daytime and a mountain breeze during nighttime. The specification
of these types of breezes for the region under analysis is typical in the analysis of wind
direction data; see, e.g., Breckling (1989, Chapter 4). As discussed in Azorin-Molina et al.
(2011), in the Villena area (see the map in Figure 1), the Vinalop6 River connects the town
to the sea in a south-easterly direction, explaining the presence of the typical sea breeze
from this direction during the warm hours of the day. In addition, on the north-west/west
side of the town, the mountain chain of the Subsistema Prebético creates winds during the
colder hours of the day. To allow for these specific directions in our analysis, one possibility
is to pursue the logic of other authors (see, e.g., Neumann and Mahrer, 1971; Mak and
Walsh, 1976) who fitted separate models for daytime and nighttime. Therefore, we divide
the hours in a day in two, namely, between 0:30 and 12:30 (nighttime), where we expect a
mountain breeze, and between 12:30 and 00:30 (daytime), where we expect a sea breeze.
There were a total of 752 nighttime observations and 1081 daytime observations. Clearly,
not only sea and mountain breezes are observed in the considered time spots, so we may
expect skewed or even bimodal distributions. For each of the two separate time periods,
we fit the wrapped distributions described in Sections 3 and 4. Here too, we compute
the maximum likelihood estimates using the Nelder and Mead algorithm. For both time
periods, we plot in Figure 5 a rose diagram of the observations within it, as well as the
fitted densities for the wrapped SN and WFGSN distributions.

Figure 5. Raw circular data plots and rose diagrams with wrapped skew-normal (dashed) and WFGSN (solid)
densities fitted using maximum likelihood estimation to the sea breeze (left) and mountain breeze (right) subsamples
of the Villena wind direction data.

Table 2 presents point estimates and 95% profile likelihood based confidence intervals of
the parameters for both fitted models in each of the two subsamples.
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The parameters of the WFGSN model are estimated much more precisely than the cor-
responding ones for the WSN, especially if we consider the estimation of «. The likelihood
ratio test on the extra parameter 3 was performed in both cases and gave the values 291.6
and 131.5 for the sea and mountain breeze subsamples, respectively. In both cases, the p-
value is approximately 0, indicating that the WFGSN model provides a highly significant
improvement in fit over the WSN one.

6. COMPARISONS WITH OTHER BIMODAL MODELS

We compare the fit to our data of the WFGSN distribution and some of the several
families of distributions recently proposed as models for circular data. We use the Akaike
information criterion (AIC) as the measure with which to conduct this comparison.

Gatto and Jammalamadaka (2007) considered a generalization of the von Mises distri-
bution obtained by re-expressing a particular case of the family of distributions proposed
by Maksimov (1967) with density

1

f(@) - 27TGO(5, K1, Iig)

exp (k1 cos(0 — 1) + ko cos 2(0 — p2)),

where 0 < 0 < 2m, 0 < g < 2w, 0 < pg < 7, k1 > 0, and ko > 0 are the four parameters
of the distribution, and § = (1 — p2) mod 7. The normalizing constant is

2T
Go(0, k1, kK2) = %/ exp (k1 cos 0 + kg cos2(6 + 9)) db.
0

More recently, Kato and Jones (2010) applied the Mobius transformation (see, e.g., Rudin,
1987) to a von Mises random variable, in order to obtain a new random variable with
density

1y k{& cos(d —n) — 2rcosv} 1
1) = 27Zo(kK) P ( 1472 —2rcos(6 —7) 1472 —2rcos(6 —v)’

where 0 < 6 < 27, v = pu+v, &€ = /r*+22cos(2v)+1, n = pu +
arg (r?{cos(2v) + isin(2v)} 4+ 1), and Zo(k) is the modified Bessel function of the first
kind and order 0. The four parameters of this distribution are 4 > 0, v < 27w, 0 < r < 1,
and k > 0. Finally, Abe and Pewsey (2011) proposed a perturbation of a symmetric base
density different from the FGSN distribution in Equation (3) by introducing the family
of sine-skewed circular distributions. In particular, they suggested using the sine-skewed
Jones-Pewsey circular distribution, which can be multimodal and has density

(cosh(k2)) 4 sinh(k)) cos(8 — p))Y¥ (1 + Asin 6)
21 P/ (cosh (k1)) ’

fz) =

where 0 < § < 27 and P/, is the associated Legendre function of the first kind, degree 1/,
and order zero. As with the other models, this family has four parameters: —m < p < 7,
k>0, eR, and -1 <A< 1.

The same perturbation was performed on the von Mises distribution, obtaining the so-
called sine-skewed von Mises distribution introduced by Umbach and Jammalamadaka



138 E. Herndndez-Sanchez and B. Scarpa

(2009), but so named by Abe and Pewsey (2011), with density

exp(k cos(0 —
116) = 2T IN  vsings ),
where — 7 <0 <7 k>0, —1>p<m —1<X<1,and Zy(k) is the modified Bessel
function of the first kind and order zero. This distribution is a special case of the sine-
skewed Jones-Pewsey distribution of Abe and Pewsey (2011), obtained when ¢ = 0. Note
that this model only has three parameters and is seldom bimodal.

We fit these models to the complete set of wind direction data, as in Section 5.1, and
to each of the sea breeze and mountain breeze time periods, as in Section 5.2. Figure 6
shows the fitted distributions for the three datasets. It seems clear that different models
fit different portions of data well, while all of the models present some degree of lack of fit.

— WFGSN

--- Gen.VonMises
KatoJones

-- SineSkewed-JP

-- SineSkewed-VM

Figure 6. Raw data plots, rose diagrams and fitted densities for the full set of Villena wind direction data (bottom)
and its sea breeze (top-left) and mountain breeze (top-right) subsamples

We compare the fits of the different models using the AIC (see Akaike, 1973), based on the
maximized value of the log-likelihood function and the number of parameters estimated.
Most of the models require the estimation of four parameters, whilst the WSN and sine-
skewed von Mises distributions require the estimation of just three. The AIC is calculated
as —2(log(L) —p), where log(L) is the maximized value of the log-likelihood function and p
is the number of parameters to be estimated. The maximized log-likelihood and AIC values
are presented in Table 3. For the complete dataset and for the mountain breeze period,
the WFGSN distribution seems to fit best the data, while for the sea breeze period, the
Jones and Pewsey sine-skewed distribution fits best. However, from a joint consideration of
Table 3 and Figure 6, it is evident that, whilst the competing distributions display various
attractive features, there is not one of them that dominates overall.
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Table 3. Maximized log-likelihood (MLL) and AIC values for six different distributions fitted to the complete dataset
of Villena wind direction data and its sea breeze and mountain breeze subsamples. The minimum AIC values for
each sample are identified using bold type.

Complete Sea breeze Mountain breeze
Distribution MLL AIC MLL AIC MLL AIC
WSN —3106.7 6219.4 —1640.0 3288.0 —1272.2 2550.5
WFGSN —2814.0 5636.0 —1493.7 2995.3 —1201.6 2411.2
Generalized von Mises —2919.1 5846.2 —1474.5 2957.3 —1245.6 2499.3
Kato and Jones —3011.4 6030.8 —1498.1 3004.3 —1227.7 2463.4
Sine-skewed Jones-Pewsey —3027.3 6062.5 —1434.6 2877.2 —1272.6 2553.2
Sine-skewed von Mises —3265.2 6536.5 —1953.3 3914.7 —1273.7 2553.3

7. (CONCLUSIONS

Wrapping the flexible generalized skew-normal distribution around the circle is a natural
method of constructing models for bimodal and skewed circular data. In this paper, we
have explored how well this model fits wind direction data collected in the Spanish town
of Villena. Separate models for daytime and nighttime seem to describe the shape of the
observed distribution quite well. We have compared the new model with others capable
of modelling the shape of bimodal circular data. A comparison based on the AIC has
identified the WFGSN distribution to fit the Villena wind data best. However, some of
the other distributions considered have been found to fit some of the features of the data
distribution better, so we are unable to conclude that there is one model that fits best
globally. As observed in Section 4, wind directions are typically autocorrelated and this
was indeed observed for the Villena data. We have considered the possibility of correcting
our inferences for this autocorrelation, so as to obtain more reliable confidence intervals
and a more accurate p-value for the likelihood ratio test for the improvement in fit of the
wrapped generalized flexible skew-normal model over the wrapped skew-normal model.
Nevertheless, the observed p-value of the likelihood ratio test without any such correction
have been very small, so that we expect that the modified test would not change the final
decision, namely that the wrapped generalized flexible skew-normal distribution fits better
than the wrapped skew-normal one.
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