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Abstract

Thomas Kuhn’s structure of scientific revolutions (see Kuhn, 1962) identified an essen-
tial tension between normal science and paradigm shifts. On a far more modest level,
this article identifies several important tensions that confront teachers of statistics, urges
all of us who teach to welcome an opportunity to rethink what we do, and argues, more
narrowly, for replacing the traditional year-long sequence in probability and mathemat-
ical statistics with a one-semester course in theory and applications of linear models.
Some of the general areas addressed include goals for our students, attitudes toward
abstraction, the role of geometric thinking, and attitudes toward mathematics as tool
and as aesthetic structure. These are illustrated by comparing different approaches to
the proof of the Gauss-Markov theorem and derivation of sampling distributions.
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1. Introduction

As statisticians we are scientists, and as scientists we owe a continuing debt to Kuhn (1962,
1977) for recognizing and clarifying the role in science of the “essential tension” between
“normal science” and times of “paradigm shift”. The paradigm shifts that Kuhn wrote
about were truly seismic, each creating a sudden “world out of joint”. I don’t presume to
offer one of those seismic shifts in this article – at most I may put a few noses out of joint –
but Kuhn’s work convinces me that there can be value in regularly questioning tradition,
even in much more modest ways. With Kuhn, I suggest that we can benefit by questioning
normal science as part of doing normal science. In the same spirit, we can advance the cause
of statistics teaching and learning by identifying and questioning unexamined assumptions
about what we do, why we do it, and when we do it.
My goal in this article is to raise some questions about what I see as the “normal”

way of teaching statistics. In raising these questions, I do not mean to suggest that the
conventional way is mistaken, or even necessarily inferior to the alternatives I will describe.
Rather, I merely suggest that it can be a useful exercise to rethink the standard ways of
doing things, and I hope to persuade my readers that there are good reasons to regard

Corresponding address: George W. Cobb. 40 Harris Mountain Road, Amherst, MA 01002, USA.
Email: gcobb@mtholyoke.edu

ISSN: 0718-7912 (print)/ISSN: 0718-7920 (online)
c⃝ Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs



32 G. Cobb

this time of rapid change in our subject as an opportunity to question what we teach as
deeply and broadly as possible.
At the same time and in parallel, I will be making an argument for teaching a course in

linear statistical models as a first statistics course for students of mathematics. For many
years now I have been teaching such a course to undergraduates at Mount Holyoke College
in Massachusetts. The course requires no previous experience with probability or statistics,
only one semester of calculus and one of matrix algebra. Thus it has fewer prerequisites
than the usual first course in mathematical statistics, and so it can provide an earlier and
more direct path into statistics. Like the course in mathematical statistics, a course in
linear models can be mathematical enough in its content to justify being counted as an
upper-division elective in a mathematics major. Unlike the mathematical statistics course,
however, a course in linear models can also be a good vehicle for introducing ideas of data
analysis and statistical modeling.
I have made a deliberate decision not to write this article mainly as a description of

the linear models course that I have taught. Such an approach strikes me as unnecessarily
narrow and limiting, because I don’t expect that many readers will end up teaching such
a course, and I would like to think that some of the ideas in this article will be of interest
and possible value to colleagues who care about statistics education regardless of which
courses they teach.
In the sections that follow, I structure my thinking as a sequence of choices, a sequence

of tensions between pairs of extremes: about our goals when we teach statistics (Section 2),
about how we use abstraction in our teaching (Section 3), about two geometries for rep-
resenting data (Section 4), two attitudes toward mathematics (Section 5), and two ways
to structure the theory of linear models (Sections 6 and 7). Sections 8 and 9 present, re-
spectively, two approaches to the Gauss-Markov theorem and two approaches to sampling
distributions. The article concludes with an argument for the centrality of linear models.

2. Two Kinds of Statistical Challenges

When we teach statistics, what is it that we want our students to learn? Surely the most
common answer must be that we want our students to learn to analyze data, and certainly
I share that goal. But for some students, particularly those with a strong interest and
ability in mathematics, I suggest a complementary goal, one that in my opinion has not
received enough explicit attention: We want these mathematically inclined students to
learn to solve methodological problems. I call the two goals complementary because, as
I shall argue in detail, there are essential tensions between the goals of helping students
learn to analyze data and helping students learn to solve methodological problems. For a
ready example of the tension, consider the role of simple, artificial examples. For teaching
data analysis, these “toy” examples are often and deservedly regarded with contempt.
But for developing an understanding of a methodological challenge, the ability to create a
dialectical succession of toy examples and exploit their evolution is critical. As Einstein’s
former research assistant, John Kemeny used to tell his students at Dartmouth: “There
are two kinds of mathematicians, those who use examples and those who use examples but
won’t admit it”.
It is my position in this article that our profession needs (at least) two kinds of statis-

ticians, those who analyze data using methodological solutions devised by others, and
those who care more about devising solutions to methodological challenges than they care
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about any one particular data set.1 Our introductory applied course has been evolving,
and continues to evolve, in ways that help students learn to analyze data. Our standard
introduction for mathematics majors, the two semester sequence in probability and math-
ematical statistics, the course that ought to help students learn to solve methodological
problems, has for half a century evolved mainly and sadly in Gould’s punctuated sense,
with our typical punctuation mark being a full stop. With a small number of notable ex-
ceptions, exceptions that I describe later in this article, the content of today’s books on
mathematical statistics is not much changed from that of the pioneering books by Hoel
(1947) and Hogg and Craig (1959). Whereas the mathematical statistics course remains
stuck in the curricular tar pits, a course in linear models can offer a vibrant mix of modeling
and methodological challenges.
The purpose of the following two examples is to illustrate first how a linear models

course lends itself to rich analyses and modeling challenges based on complex data sets,
and second how the same course can also be structured as a succession of methodological
challenges.

Example 2.1 [Faculty salaries] The scatter plot in Figure 1 plots mean academic
salary versus the percentage of faculty that are women, with points for 28 academic sub-
jects. The data come from a national survey of universities; the complete data set is given
in Appendix 1, reproduced from Bellas and Reskin (1994).

Figure 1. Mean academic salary versus percentage women faculty, for 28 academic subjects.

My decision to blacken five dots and label the axes gives away a lot. Please ignore all
that as you consider the first of four sets of questions that arise naturally in the context
of this data set.

Question 1. Pattern and context. Imagine seeing just the points, with no axis labels, and
none of the points blackened: Based on abstract pattern alone, how many clusters do you

1I wrote “at least two kinds”, because I salute a third valuable contributor to statistics, the abstract synthesizer.
For an example, consider the work by Dempster et al. (1977), which unified decades of work and dozens of research
publications by recognizing the unifying structure of what they called the “EM algorithm”.
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see? (Many people see three: a main downward sloping cluster of 22 points, a trio of roughly
collinear outliers above the main cluster, and a triangle of points in the lower right corner.)
Now rethink the question using the axis labels, and the fact that the points are academic
subjects. The three highest paid subjects are dentistry, medicine, and law. The other two
darkened circles are nursing and social work. All five of these subjects require a license
to practice, which would tend to limit supply and raise salaries. (The remaining subject
in the triangle is library science, which does not require a license.) With the additional
information from the applied context, two linear clusters now seems a better summary
than one main group with two sets of outliers. Adding context has changed how we see
the patterns.

Question 2. Lurking variables, confounding, and cause. There is a strong negative re-
lationship between salary and percent women faculty. Is this evidence of discrimination?
Labeling the points suggests a lurking variable. Engineering and physics are at the extreme
left, with the most males and the most dollars. Just to the right of engineering and physics
are agriculture, economics, chemistry, and mathematics, also having few women faculty
and comparatively high salaries. Music, art, journalism, and foreign languages form a clus-
ter toward the lower right; all have more than 50% women faculty and salaries ranking
in the bottom third. Nursing, social work, and library science form the triangle at the far
right, where both men and money are in shortest supply. The overall pattern is strong:
heavily quantitative subjects pay better, and have fewer women; subjects in the Humani-
ties pay less, and have more women. How can we disentangle the confounding of men and
mathematics?

Question 3. One slope, or two; correlation and transforming. The five darkened points
lie along a line whose slope is steeper than a line fitted to the other 23 points. Is the
difference in slopes worth an extra parameter? How can we measure the strength of a
fitted relationship? If we convert salaries to logs, how does our measure of fit change?
Does converting to logs make a one-slope model (two parallel lines) fit better?

Question 4. Adjusting for other variables; added variable plots, partial and multiple corre-
lation. There is no easy way to measure the confounding variable directly, but the complete
data set includes additional variables related to supply and demand: the unemployment
rate in each subject, the percentage of non-academic jobs, and the median non-academic
salary. The correlations tend to be about what you would expect: subjects in the humani-
ties have higher unemployment, fewer non-academic jobs, and lower non-academic salaries.
How can an analysis take into account these economic variables, make appropriate adjust-
ments, and see whether the remaining pattern shows evidence of discrimination?

This data set and corresponding open-ended questions are typical of a great many that
can serve as examples in either a second applied course or a first statistics course in linear
models. They are not typical, however, of what we see in the probability and mathematical
statistics sequence. As I hope to convince you in Example 2.3, when data sets are included
in books on mathematical statistics they tend to be chosen to illustrate a single concept
or method, perhaps two, and they too often lack the open-ended quality that research in
statistics education encourages us to offer our students.
When I teach a course for mathematic majors, I of course want them to learn about

data analysis, but I also want them to develop solutions for methodological challenges.
Fortunately, teaching least squares makes it natural to combine data analysis problems
and methodological questions in the same course.
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Example 2.2 [The Earth, the Moon, Saturn: Inconsistent Systems of Linear
Equations] The origins of least squares date back to three problems from eighteenth
century science, all of which led to inconsistent sets of linear equations at a time when
there was no accepted method for “solving” them; for more details, see Stigler (1990).

The shape of the Earth. Newton’s theory predicts that a spinning planet will flatten
at the poles. If Newton is right, then the earth should have a larger diameter at the
equator than from pole to pole, with ratio 231/230. To check the prediction, scientists
made observations which led, after simplification, to an inconsistent set of linear equations
that had to be “solved” to answer the question.

The path of the Moon. Centuries ago, navigation depended on knowing the path of the
moon, but the moon wasn’t behaving as predicted. Careful observation and theory led
again to an inconsistent linear system whose “solution” was needed.

Saturn and Jupiter. The motions of Saturn and Jupiter show apparent anomalies sug-
gesting that the smaller planet might fly out of the solar system while the heavier one would
slowly spiral into the sun. Understanding these anomalies, too, led to an inconsistent linear
system.

Like the AAUP example, this one also leads to an open-ended set of questions, but this
time the challenge is methodological: What is a good way to reconcile an inconsistent set
of linear equations? One approach, used by Tobias Mayer in 1750 (see Stigler, 1990, pp.
16 ff.) is to reduce the number of equations by adding or averaging. A more sophisticated
variant, used by Laplace in 1788 (see Stigler, 1990, pp. 31 ff), is to recognize natural clusters
and form suitable linear combinations. An alternative approach is closer to the spirit of
least squares: find a solution that minimizes the largest absolute error, or the sum of the
absolute errors, or . . . As students explore these possible solutions, they develop a sense
of properties of a good method: it should be free from ambiguity, so that all practitioners
agree on the solution; it should produce a solution; it should produce only one solution;
and it should be analytically tractable.
One end result of this exploration is that students come to recognize that the least

squares solution came comparatively late, after earlier approaches had been tried and
found wanting. A second, deeper, end result is that students see an abstract structure to
the solution: applied problems lead to an abstract methodological challenge, whose solution
requires first choosing criteria for success, then using mathematics to satisfy the criteria.
A second methodological challenge in the same spirit as the challenge of solving an

inconsistent linear system is to find a measure of how well the “solution” solves the system,
in statistical language, to find a measure of goodness of fit. Residual sum of squares seems
a natural choice, but working with simple examples reveals that it is not scale invariant.
Dividing by raw sum of squares solves the problem of scale invariance, but the revised
measure is no longer location invariant. Dividing instead by the mean-adjusted total sum
of squares solves the problem, in a way that generalizes easily to multiple predictors.
Moreover, the process of adjusting both the numerator and denominator sums of squares
can lead later on to partial correlations and added variable plots.
Yet a third methodological challenge is to develop a measure of influence. Some exper-

imentation with examples reveals that changing the value of yi and plotting ŷi versus yi
gives a linear relationship, which suggests that points with steeper slopes have greater
influence, and raises the question of how to find the slope without doing the plot. At this
point I typically refer the students to Hoaglin and Welsch (1978), and ask them to prove
some of the results in that article.
Note that all three of these challenges can be addressed without relying on probability,

which not only makes the challenges accessible to students who have no background in
probability or statistics, but also makes the results applicable in applied settings where
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distributional assumptions might be hard to justify. (I return to this point in Sections 6
and 7).
A fourth and final methodological challenge that can be addressed without probability

is to quantify multicollinearity and its effect on model choosing and fitting. One might
be tempted to conclude that the usual analysis in terms of “variance inflation factors”
necessarily involves probability, but while a probabilistic interpretation can be both rel-
evant and useful, collinearity can be addressed in a distribution-free setting, as a purely
geometric and data-analytic phenomenon.
Examples 2.1 and 2.2 have illustrated how, in the context of a course on linear models, it

is possible to pose both data analytic and methodological challenges. Notice that neither of
the standard introductions to statistics offers the same variety of challenges. The usual first
course with applied emphasis is not suited to offering methodological challenges, mainly
because it is pitched at a comparatively low level mathematically. Moreover, although such
courses do directly address analysis of data, they don’t ordinarily begin with an open-
ended data-analytic challenge that will eventually call for multiple regression methods, as
in Example 2.1. The methods taught in a typical applied first course – e.g., t-tests, tests
for proportions, simple linear regression – do no lend themselves to interesting modeling
challenges the way a least squares course does.2

Of course my comparison is unfair: the introductory course is not designed for mathe-
matically sophisticated students who have the background for a course in linear models. To
be fair, then, consider what we offer students who take a course in mathematical statistics.
Although it is possible to teach the mathematical statistics course as a succession of

methodological challenges (see, in particular Horton, 2010; Horton et al., 2004), the course
content does not ordinarily lend itself to interesting data analytic questions in the same
way that a linear models course can. (But see Nolan and Speed, 2000, for a striking, orig-
inal, and valuable book that swims bravely against the current.) Within the mainstream,
however, consider four pioneering books that have earned my admiration because of the
way they have anchored theory in the world of real data: in probability, Breiman (1969),
and Olkin et al. (1980); and in mathematical statistics, Larsen and Marx (1986), and Rice
(1995). Much as I applaud these books and their authors, I nevertheless characterize their
use of real data largely as “illustrative”. When we teach linear models, it is easy to pose
data-based questions that are open-ended (“Evaluate the evidence of possible discrimina-
tion against women in academic salaries”). When we teach probability or mathematical
statistics, our questions tend to be much more narrowly focused. The following example
illustrates two data-based problems from mathematical statistics courses, and two method-
ological challenges.

Example 2.3 [Engine Bearings, Hubble’s Constant, Enemy Tanks, SD from IQR]

Engine bearings [Rice (1995, p. 427)] “A study was done to compare the performances of
engine bearings made of different compounds . . . Ten bearings of each type were tested. The
following table gives the times until failure . . . (i) Use normal theory to test the hypothesis
that there is no difference between the two types of bearings. (ii) Test the same hypothesis
using a non-parametric method. (iii) Which of the methods . . . do you think is better in
this case? (iv) Estimate π, the probability that a type I bearing will outlast a type II
bearing. (v) Use the bootstrap to estimate the sampling distribution of π̂ and its standard
error”. Comment: this is a thoughtful exercise whose multiple parts are coordinated in a
way that takes the task beyond mere computational practice. All the same, this exercise
does not offer the kind of modeling challenge that is possible in a course on linear models.

2A notable exception is the book by Kaplan (2009), which takes a modeling approach in a first course.
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Hubble’s constant [Larsen and Marx (1986, pp. 450-453)] Hubble’s Law says that a
galaxy’s distance from another galaxy is directly proportional to its recession velocity from
that second galaxy, with the constant of proportionality equal to the age of the universe.
After giving distances and velocities for 11 galactic clusters, the authors illustrate the
computation of the least squares slope H for the model v = Hd. Comment: this example
is made interesting by the data, and the fact that the reciprocal of H is an estimate for
the age of the universe. However, there is no data analytic challenge: the model is given,
and fits the data well.

Enemy tanks [Johnson (1994)] Suppose tanks are numbered consecutively by integers,
and that tanks are captured independently of each other and with equal chances. Use the
serial numbers of captured tanks to estimate the total number of tanks that have been
produced. Abstractly, given a simple random sample X1, . . . , Xn from a population of
consecutive integers {1, . . . , n}, find the “best” estimate for N . Comment: this problem is
so simple in its structure and so removed from data analysis that it almost qualifies as a
“toy” example. Nevertheless, it offers a proven effective concrete context that is well-suited
to thinking about particular estimation rules, general methods for finding such rules, and
criteria for evaluating estimators.

SD from IQR [Horton (2010)] “Assume that we observe n iid observations from a normal
distribution. Questions: (i) Use the IQR of the list to estimate σ. (ii) Use simulation to
assess the variability of this estimator for samples of n = 100 and n = 400. (iii) How does
the variability of this estimator compare to σ̂ (usual estimator)?” Comment: answering
this question requires a mix of theory and simulation, and students explore important ideas
and learn important facts in return for their efforts. Yet it is also typical of the way that
the content of our consensus curriculum for the probability and mathematical statistics
courses tends to bound us and our students away from data analysis. (I return to this
point in the final section.)

As a matter of personal preference, I’m very much in sympathy with the approach of
Horton (2010): I like to structure the entire course in linear models as a sequence of
methodological challenges, as set out in Appendix 2. Others might prefer instead to insert
just one or a few such challenges into a course, whether linear models or probability or
mathematical statistics.
Of course if your main goal in a linear models course is to teach your students to analyze

data, you don’t want to spend a lot of time on the logic and choices that lead from
questions to methods; you naturally want to focus on using those methods to learn from
data. To some extent the decision about goals depends on one’s attitude toward the role
of abstraction in a particular course.

3. Two Attitudes Toward Abstraction

When it comes to abstraction, there is an essential tension between wholesale and retail,
nicely captured by Benjamin Franklin’s childhood impatience with his father’s habit of
saying a lengthy blessing before each meal. “Why not save time”, young Ben asked, “by
saying a single monthly blessing for the whole larder?” Franklin senior was not amused. He
thought there was value in systematic, concrete repetition with minor variations. In this
section, much as I sympathize with Franklin junior’s wish for abstract efficiency, I end up
siding with Franklin senior and his recognition that understanding grows from repeated
encounters with concrete examples.
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When it comes to teaching statistics, we teachers and authors recognize that abstract
formulations can be both precise and efficient, and the conventional attitude seems often
to be that our exposition should be as abstract as our students and readers can manage.
On this view, the only check on abstract exposition is the ceiling imposed by the capacity
of our audience.
Consider, for example, how efficient we can be if we rely on the standard template

for mathematical exposition – definition, example, theorem, proof – to present the linear
model.

Example 3.1 [An abstract exposition of the linear model] (see, e.g., Hocking,
1996, p. 20, Graybill, 1961, p. 109, and Searle, 1971, p. 79)

Definition. A linear model is an equation of the form Y = Xβ+ ε, where Y is an n× 1
vector of observed response values, X is an n × p matrix of observed covariate values, β
is a p× 1 vector of unknown parameters to be estimated from the data, and ε is an n× 1
vector of unobserved errors.3

Illustration. For the AAUP data of Example 2.1, consider the model Yi = β0xi0+β1x1i+
β2x2i + εi, where for subject i = 1, . . . , 28, Yi is the academic salary, x0i = 1, x1i is the
percent women faculty, and x2i is an indicator, equal to 1 if the subject requires a license,
0 otherwise.

Definition. The principle of least squares says to choose the values of the unknown pa-
rameters that minimize the sum of squared errors, namely, Q(β) = (Y −Xβ)⊤(Y −Xβ).

Theorem. Q(β) is minimized by any β that satisfies the normal equations X⊤Xβ =
X⊤Y . If the coefficient matrix X⊤X has an inverse, there is a unique least squares
solution β̂ = HY , where H = X(X⊤X)−1X⊤.

Depending on the intended readership and emphasis, an exposition as formal and com-
pact as this may be entirely appropriate. However, for some courses, a much less common
alternative approach may offer advantages. For this approach, my goal is for students to
develop an abstract understanding themselves, working from simple, concrete examples,
looking for patterns that generalize, eventually finding a compact formal summary, and
then looking for reasons for the pattern. The normal equations lend themselves in a natural
way to this approach.

Example 3.2 [Patterns in normal equations]

Background. This exercise assumes that students have already seen applied settings for
all the models that appear in the exercise, and that students who have not seen partial
derivatives in a previous course have been given an explanation of how to extend the logic
of finding the minimum of a quadratic function of a single variable to functions of two or
more variables.

Exercise. Find the normal equations for the following linear models. Start by using cal-
culus to minimize the sums of squares, but keep an eye out for patterns. Try to reach a
point where you can write the set of normal equations directly from the model without
doing any calculus:

3Distributional assumptions are treated in later sections.
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(a) Yi = α+ εi,
(b) Yi = βxi + εi,
(c) Yi = β0 + β1xi + εi,
(d) Yi = α+ βxi + γx2i + εi,
(e) Yi = β0 + β1x1i + β2x2i + εi.

Results. Students recognize that for each of these models, the number of partial deriva-
tives equals the number of unknown parameters, and so the linear system will have a
square matrix of coefficients and a vector of right-hand-side values, giving it the form:
Cβ = c. Moreover, students recognize that the individual coefficients and right-hand val-
ues are sums of products, and in fact are dot products of vectors. This leads naturally to
rewriting the model in vector form Y = β0 1+β1x1+ · · ·+βkxk+ε and stating explicitly
that the coefficient in equation i of βj is xi · xj , with the right-hand side xi · Y and 1
being a vector of ones. From there, it is but a short step to the matrix version of the model
and X⊤Xβ = X⊤Y .

Is there a quick way to see why the normal equations follow this pattern? One standard
way is to introduce notation for vectors of partial derivatives and set the gradient to
zero, but I regard this as little more than new notation for the same ideas as before.4 An
alternative that deepens understanding is based on geometry, rather than more calculus.
The pattern in the normal equations has already suggested the usefulness of the vector
form of the model Y = β0 1 + β1x1 + · · · + βkxk + ε. Apart from the error term, we
are fitting the response Y using a linear combination of vectors, that is, by choosing a
particular element of the subspace spanned by the columns of X. Which one? The one
that minimizes the squared distance ∥Y −Xβ∥2, namely, the perpendicular projection of
Y onto the subspace. Some students may have done enough already with the geometry
of Rn to be able to benefit from so brief an argument. Others will need to spend time
developing the geometry of variable space, as in the next section.
Almost every topic we teach offers us a range of choices, from the efficient, abstract,

top-down approach of Franklin junior at one extreme to Franklin senior’s slower, bottom
up approach based on concrete examples. This is the essential tension between traditional
teaching and the method of discovery, of R.L. Moore, and of constructivism. Because the
content of a course in linear models is so highly structured, while at the same time the
models and applied settings are so varied, teaching a course in linear models offers the
instructor an unusually rich set of possibilities for choosing between abstract exposition
and teaching through discovery.

4. Two Ways to Visualize the Data: Individual Space and Variable Space

It is well-known, and long-known, that the standard picture for representing a least squares
problem has a dual, one that dates back at least to Bartlett (1933). A seminal paper is
Kruskal (1961), which treats the dual geometry with a “coordinate free” approach; see
also Eaton (2007). Dempster (1968) labels the two complementary pictures as “individ-
ual space” and “variable space”, and is explicit that the two pictures are related (with
appropriate minor adjustments) in the same way that dual vector spaces are related.
Bryant (1984) offers an elegant, brief, and elementary introduction to the basic geometry
of variable space and its connections to probability and statistics. Herr (1980), reviews
eight major articles as the core of his brief historical survey of the use of this geometry

4Unless the course takes the time to connect the vector of partials with the direction of steepest descent.
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in statistics. Textbooks that offer a substantive treatment of this geometry include, in
chronological order, Fraser (1958), Scheffe (1959), Rao (1965), Draper and Smith (1966),
Dempster (1968), Box et al. (1978), Christensen (1987), Saville and Wood (1991), Kaplan
(2009), and Pruim (2011), among others. Despite the existence of this list. however, on bal-
ance the geometry of variable space plays only a small part in the mainstream exposition
of linear models.
In the remainder of this section, I first introduce the two complementary pictures by way

of a simple example, then discuss some possible consequences for teaching linear models.

Example 4.1 [The crystal problem (adapted from Moore, 1992)]
Let β be the width of a one-celled crystal, and let 2β be the width of a four-celled

crystal, as in Figure 2. Suppose we want to estimate β, and we have two measurements,
one for each crystal: Y1 = β + ε1 and Y2 = 2β + ε2; see Figure 2. In order to keep the
arithmetic and diagrams cleaner, I have assumed unrealistically large errors of 2 and -1,
giving observed widths of y1 = 3 for the smaller crystal and y2 = 1 for the large one.

Figure 2. The crystal problem.

The usual “individual space” picture for this problem (Figure 3, left panel) is the familiar
scatter plot, with each case (observation) plotted as a point (x, y) whose coordinates are
determined by the variables. In this representation, the set of possible models – the set of
all βx with β ∈ R is the pencil of lines through the origin, and the least squares principle
says to choose the line that minimizes the sum of squared vertical deviations from the data
points to the line.
The “variable space” representation (Figure 3, right panel) plots each variable as a

vector, with cases corresponding to coordinate axes. Now the set of all possible models
or “model space” – in this instance all scalar multiples Xβ – is the subspace spanned by
x. The sum of squared residuals ∥Y − Xβ∥2 is the squared distance from Y to β x, a
quantity that is minimized by taking the perpendicular projection of the response vector
Y onto model space.

More generally, for any linear model Y = Xβ+ε, model space ⟨X⟩ is the column space
of X, that is, the set of all linear combinations of the columns of X. For any choice of
the parameter vector β, the product Xβ lies in model space, and the squared length of
the difference vector Y −Xβ equals the residual sum of squares. For this general case the
dimension of variable space equals the number n of cases, and the picture is impossible to
draw, but a useful schematic version is possible, as shown in Figure 4.
The horizontal plane represents model space, the p-dimensional subspace of all linear

combinations β01 + β1x1 + · · · + βkxk of the columns of X. The vertical line represents
error space ⟨X⟩⊥, the (n − p)-dimensional subspace that is the orthogonal complement

of model space. The vector Ŷ = Xβ̂ of fitted values is the orthogonal projection of the
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Figure 3. Individual space and variable space pictures for the crystal problem For the individual space picture on
the left, each case is plotted as a point, and each coordinate axis corresponds to a variable. For the variable space
picture on the right, each variable is plotted as a vector, and each case corresponds to a coordinate axis. Model space
is the set of all linear combinations of the predictor variables; error space is the orthogonal complement of variable
space, and the least squares estimator is the perpendicular projection of the response vector onto model space.

Figure 4. A schematic representation of variable space.

response vector y onto model space, and the residual vector ε̂ = Y − Ŷ is the orthogonal
projection of y onto error space. The vectors Y , Ŷ , and ε̂ form a right triangle.
Once a student has become familiar with the geometry of variable space, there is a short

geometric derivation of the normal equations:

(a) The sum of squares function Q(β) is the squared Euclidean distance from Y to
Xβ.

(b) That distance is minimized by Xβ̂, the orthogonal projection of Y onto model
space.

(c) For the projection to be orthogonal, the difference vector must be orthogonal to
model space, i.e., X⊤(Y −Xβ) = 0.

Depending on a student’s linear algebra background, it can take time to develop the
geometry of variable space, time that could instead be devoted to something else. Is it
worth it? The answer, of course, depends on a teacher’s goals and priorities, but learning
the geometric approach offers a variety of benefits.
Perhaps the greatest benefit is the directness and simplicity of the geometric argu-

ment. Compare, for example, the geometric and calculus-based derivations of the normal
equations, and notice how the calculus-based argument requires one to think about the
structure of the quadratic function Q(β) = ∥Y − Xβ∥2 in order to justify the use of
partial derivatives to find the minimizing value of β. In effect the calculus approach re-
quires both the individual space picture and an auxiliary picture of the graph of Q. This
extra picture takes students on a cognitive detour, because the picture is not in any sense
a representation of the data, and once we have the normal equations, we have no more
need for the picture. In contrast, the variable space picture simultaneously represents the
data and contains within it a simple way to visualize Q(β) as a squared distance. Not

only is the minimizing Xβ̂ visually apparent, but, moreover, the orthogonality of X and
Y −Xβ̂ gives the normal equations at once. After that, the same geometric representation
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can be used, over and over, in a variety of contexts, to deepen one’s understanding of basic
concepts and results. All correlations, whether, simple, multiple, or partial, are cosines of
angles in variable space, and thus the restriction of values to [-1,1] and invariance with
respect to location and scale changes are simple consequences of the geometry. Every sum
of squares is a squared distance; every partitioning of a sum of squares is tied to a right
triangle, and the usual F -statistic for nested models is, apart from a scaling factor, the
squared cotangent of an angle:

Pythagorean relationships.

∥Y − Ȳ 1∥2 + ∥Ȳ 1∥2 = ∥Y ∥2

SSRegression + SSResidual = SSTotal

∥Ŷ − Ȳ 1∥2 + ∥Y − Ŷ ∥2 = ∥Y − Ȳ 1∥2.

Correlation and angle.

(a) Simple. Corr(X,Y ) = cos(θXY.1) where θXY.1 is the angle between X − X̄ 1 and
Y − Ȳ 1.

(b) Coefficient of determination. R2 = cos2(θY Ŷ .1) where θY Ŷ .1 is the angle between

Y − Ȳ 1 and Ŷ − Ȳ 1.
(c) Partial correlation. Corr(X,Y |Z) = cos(θXY.1Z), where θXY.1Z is the angle be-

tween the two difference vectors obtained by projectingX and Y onto the subspace
spanned by 1 and Z.

General regression significance test (nested F -test).

F =

RSSFull − RSSReduced

dfReduced − dfFull
RSSFull

dfFull

∝ cot2(θ),

where RSSFull and RSSReduced are residual sums of squares for two nested linear models
having residual degrees of freedom dfFull and dfReduced, and θ is the angle between Ŷ Full−Ȳ 1
and Ŷ Reduced − Ȳ 1.

Finally, the geometry of variable space can provide a useful finite-dimensional introduc-
tion to the geometry of Hilbert space that some students will need later when they study
Fourier series and stochastic processes.
Quite apart from its value for understanding statistical ideas, the geometry of variable

space has an inherent aesthetic appeal for some students. As I argue in the next section,
even in a course with an applied emphasis, there can be good reasons to attend to issues
of mathematics for its own sake.

5. Two Attitudes Toward Mathematics: As a Tool or for its Own Sake?

When teaching subjects like physics, or economics, or statistics, it is common to regard
mathematics as a tool, and thus to regard mathematics as a means to an end, not as an
end in itself. In teaching the sciences, where mathematics is a means to an end, getting to
the destination efficiently is a guiding principle, and the aesthetics of the path is secondary.
To a pure mathematician, however, mathematics is an aesthetic object, one that Bertrand
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Russell compared to sculpture because of the cold austerity of its renunciation of context.
Physicists use mathematics to study matter, economists use mathematics to study money,
and statisticians use mathematics to study data, but mathematicians themselves boil away
the applied context, be it matter or money or data, in order to study the clear crystalline
residue of pure pattern. As a former colleague once put it, mathematics is the art form for
which the medium is the mind.
In this section I suggest that even though as statisticians we often and appropriately

regard mathematics as a tool and put a priority on efficiency of derivation and exposition,
there are reasons to regard mathematics also as an end in itself, and, at times, to sac-
rifice expository efficiency in order to teach in a way that celebrates mathematics as an
aesthetic structure. Before presenting an argument, however, it seems useful to be more
concrete about what I mean by the aesthetic aspects of mathematics, and how teaching
with mathematics as an end in itself differs from teaching with mathematics as a means
to an end.
I don’t have anywhere near the qualifications (or for that matter, the patience) to at-

tempt an aesthetic analysis that would be worthy of a philosopher. Instead, I shall focus
on just one important feature that to me helps distinguish the mathematical aesthetic,
namely, surprise connections revealed by abstract understanding. Over and over in mathe-
matics, things that seem completely different on the surface turn out, when understood at
their natural level of generality, to be variations on a common theme. As just one example,
consider the way an abstract formulation of the EM algorithm by Dempster et al. (1977)
brought a sudden and clarifying unity to a vast array of applied problems and methods.
The corresponding experience of revelation – literally a drawing back of the veil – that
suddenly illuminates, after one has, at last and through effort, achieved an abstract un-
derstanding – can strike with all the sudden power of lightening. But just as the discharge
in an electrical storm requires preparation through a gradual buildup of positive and neg-
ative poles, teaching for aesthetic effect takes time, because students cannot experience a
surprise connection between A and B unless they have first come to understand each of A
and B as separate and distinct. Hence the tension between efficiency and aesthetic.
For a caricature analog, imagine the choice between a gourmet meal at a fancy restau-

rant and a continuous IV drip of essential nutrients. The IV drip gets the necessary job
done, with minimal claims on time and attention, but flavor and presentation are equally
minimal.
A course about linear models offers many opportunities for surprise connections, al-

though each such opportunity must be paid for with a nominal loss of efficiency. Example
5.1 offers a half-dozen instances. Each offers the possibility of a surprise connection between
an (i) and a (ii). For each, the (i) is a standard element of the mainstream curriculum, and
always taught. The (ii) is typically regarded as optional, sometimes taught, sometimes not.
When it is taught, however, it is typically presented as an auxiliary consequence of (i). In
order to teach the connection between (i) and (ii) as a surprise, it would be necessary to
present (ii) independently and de novo, a choice that would ordinarily be declined as an
unaffordable luxury.

Example 5.1 [Six possible surprise connections]

Least squares and projections. (i) Least squares estimators minimize the sum of
squared residuals – the vertical distances from observed to fitted – and are found by
setting derivatives to zero. (ii) The residual sum of squares is the squared distance from
the response vector to the column space of the covariates; the least squares estimate is
obtained by perpendicular projection.
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Correlation and angle. (i) The correlation measures the goodness of (linear) fit. Invari-
ance criteria dictate that the squared correlation is a suitably normalized residual sum of
squares. (ii) The correlation is the cosine of the angle between the mean-adjusted response
and covariate vectors.

Covariance and inner product. (i) When moments exist, the covariance is the integral
of the product of the mean-adjusted response and covariate. (ii) If the usual moment
assumptions hold (see Section 6), the covariance of two linear combinations is proportional
to the usual Euclidean inner product of their coefficient vectors.

Least squares and Gauss-Markov estimation (i) Least squares estimators have mini-
mum variance among linear unbiased estimators, with an algebraic proof. (ii) The linear
unbiased estimators constitute a flat set; the estimator with minimum variance corresponds
to the shortest coefficient vector in the flat set, which, like the least squares estimator, is
obtained by orthogonal projection; see details in Section 8.

The multivariate normal density and the Herschel-Maxwell theorem (see details
in Section 9) (i) The multivariate normal has density proportional to

exp

(
− [Y − µ]⊤Σ−1[Y − µ]

2

)
.

The chi-square, t and F distributions are defined by their densities, and their relation-
ships to the multinormal are derived by calculus. Calculus is also used to show that the
multinormal is spherically symmetric, and that orthogonal components are independent.
Standard results of sampling theory are derived by calculus. (ii) Given spherical symmetry
and the orthogonality property which together define the normal, and given definitions of
chi-square, t and F in terms of the multivariate unit normal, the sampling theory results
can be derived without relying on densities.

The nested F -test and angle. (i) Given a full model Y = β0x0+β1x1+ε and a reduced
model Y = β0x0 + ε, a test of the null hypothesis that the reduced model holds can be
based on the F -ratio comparing the two residual sums of squares, as described in Section 4.
(ii) Alternatively, a test can be based on the angle between the projections of the response
vector onto the full and reduced model spaces.

With these examples as background, the argument for presenting the theory and practice
of linear models in a way that celebrates their mathematical beauty is straightforward:
The continued health and growth of our profession depends on attracting mathematically
talented students who can rise to the methodological challenges and provide the unifying
abstractions of the future. Many of these students we most need, especially the most
mathematically talented, are attracted to mathematics for its own sake. If we present
statistics as nothing more than applied data analysis, we may lose them to other subjects.
In this context, and in passing, it is worth noticing another tension: Applied data anal-

ysis, because it is anchored in context, tends to pull our profession apart, in opposing
directions. If you choose to analyze data related to marketing, and I choose to analyze
data from molecular biology, the more you and I devote ourselves to our separate areas of
application, the less we have in common. In contrast to applied context, our profession’s
mathematical core is one of the things that hold us together. Even if you choose to do
market research and I choose to work with microarrays, we both may well use generalized
linear models or hierarchical Bayes. Prior to either of those, we both need a course in linear
statistical models.
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This section and the one before it might be seen as an argument for moving our teaching
back toward mathematics, and so away from analyzing data, but that is not my intent. My
conviction is that we can recognize the tension between data analysis and mathematics for
its own sake without sacrificing one to the other. We can hope that our more mathemati-

cally talented students will aspire to be like the 19th century pioneers Legendre and Gauss,
who cared about solving scientific problems and cared about pure mathematics. Statisti-
cians know Legendre and Gauss for their work with least squares; pure mathematicians
know them for their work in number theory.

6. Two Organizing Principles for the Topics in a Course on Linear
Models

Like Leo Tolstoy’s happy families, almost all expositions of least squares follow the same
general organization, according to the number of covariates in the model: Start with simple
linear regression (one covariate), then move on to a treatment of models with two covari-
ates, and from there to models with more than two covariates. (Some treatments skip the
middle stage, and go directly from one covariate to two or more.) This organization-by-
dimension echoes the way we traditionally order the teaching of calculus, first spending
two semesters on functions of a single variable, and only then turning to functions of two
or more variables.
Starting with simple linear regression (and one-variable calculus) offers the very major

advantage that there are exactly as many variables in the model (one response plus one
covariate) are there are dimensions to a blackboard or sheet of paper, which makes it
comparatively easy to draw useful pictures. With two covariates, you need three dimen-
sions, and pictures require perspective representations in the plane. With three or more
covariates, you need to rely on training your mind’s eye. A course organized by number
of covariates fits well with the escalating difficulty of visualization; see Kleinbaum and
Kupper (1978).
Despite the very real advantage based on visualization, I conjecture that the main reason

for the near-universality of the usual organization-by-dimension comes from our prerequi-
site structure. We take it for granted that students in a least squares course have taken
(and indeed, we assume, should have taken) at least one previous course in statistics. Such
students will have seen simple linear regression already, so in accordance with an “over-
lap principle”, it is sound pedagogy to start the least squares course with something that
overlaps with what is already at least partially familiar. In short: If we assume students
already know about simple linear regression, it makes sense to start their new course with
simple linear regression.
Suppose, however, that your students have taken linear algebra, but have never taken

probability or statistics before. Is the usual organization the best choice for these students?
As context for thinking about this question, Figure 5 below shows a sense in which the
content of a least squares course has a natural two-way structure.

Figure 5. Two way structure of the content of a least squares course.
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The rows of Figure 5 correspond to three different versions of the linear model:

(a) No distributional assumptions: Y = Xβ + ε, with no assumptions about ε.
(b) Moment assumptions Y = Xβ + ε, with E[ε] = 0 and Var[ε] = σ2I, that is, (a)

E[εi] = 0, (b) Var[εi] = σ2, (c) Corr(εi, εj) = 0 if i ̸= j.
(c) Normality assumption: Y ∼ Nn(Xβ, σ2I), that is, Y = Xβ + ε, with E[ε]=

0,Var[ε] = σ2I, and each εi is normally distributed.

In the context of Figure 5, the standard organization for a least squares course is “one
column at a time”. (i) Start with simple linear regression, and move down the column.
First, find the formula for the least squares slope and intercept. Then find the sampling
distribution of the estimators, and use those for confidence intervals and tests. (ii) Having
thus completed the left-most column, move to the middle column and repeat the process:
estimators, sampling distributions, intervals and tests. (iii) At some point it is common to
make a transition to matrix notation in order to allow a more compact treatment of the
general case. This rough outline offers some flexibility about where to locate additional
topics such as residual plots, transformations, influence, and multicollinearity, and different
authors have different preferences, but the general reliance on this outline is near-universal.
An alternative organization for a linear models course is “one row at a time”. (i) Start

with no assumptions other than the linearity of the model and the fact that errors are
additive. With no more than this it is possible to fit linear models to a whole range of data
sets, with an emphasis on choosing models that offer a reasonable fit to data and context,
as in Example 2.1. All four of the methodological challenges described in Example 2.2 can
be addressed in this first part of a course. (ii) Next, add the moment assumptions. There
are three main theoretical consequences: The moments of the least squares estimators, the
expectation for the mean square error, and the Gauss-Markov theorem, discussed at length
in Section 8. (iii) Finally, add the assumption that errors are Gaussian. At this point it
becomes possible to obtain the usual sampling distributions, and to use those distributions
for inference.
I see five important advantages to organizing a least squares course by strength of as-

sumptions.

(a) Organizing by assumption follows history, taking what Toeplitz (1963) advocated
as the “genetic” approach to curriculum. For least squares, the earliest work was
distribution free. The moment and normality assumptions came later, after the
least squares principle and solutions had taken root. As Toeplitz argues, often
(though not automatically) what comes earlier in history is easier for students to
learn.

(b) A course organized this way follows a “convergence principle”, beginning from the
least restrictive assumptions and most broadly applicable consequences, then nar-
rowing in stages to the most restrictive assumptions and most narrowly applicable
consequences.

(c) This organization gives students an immediate entrée to the challenge of model
choosing. Good applied work in statistics almost always involves the creative pro-
cess of choosing a good model, a process that is hard to teach within the narrow
confines of simple linear regression, a context where the only y and x are both
given. Put differently, starting with simple linear regression risks coming off as
“spinach first, cake after” because the traditional ordering tends to emphasize the
mechanical and technically difficult, postponing what is most interesting about an-
alyzing data until much later in the course. Allowing multiple covariates from the
start gives students an early taste of “the good stuff.”
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(d) Organizing by assumptions means that the first part of the course uses no prob-
ability, and involves no inference. For several weeks, the course can focus on the
creative challenge of choosing models that offer a good fit to data and a meaningful
connection to context, without the technical distractions of distributions, p-values,
and coverage probabilities.

(e) Finally, and certainly not least, the organization reinforces the important logical
connection between what you assume and what consequences follow. To the extent
that we want to help our students learn to solve methodological problems, we owe
it to them to make clear how what you assume determines what you can conclude.

As I see it, these advantages are relevant for any least squares course, but focus for the
moment on the mathematics student who has taken matrix algebra but has not yet taken
probability or statistics. For such a student, the algebraic aspect of working with several
simultaneous variables is familiar ground. The more fortunate student may even be ac-
quainted with the geometry of several dimensions. Probability and statistics, however, are
new, and as experienced teachers know, probability is hard. For students new to the sub-
ject, being expected to learn all at once, at the start of a course, about continuous densities,
probabilities as areas under curves, expected values and variances both as integrals and as
measures of long-run behavior, not to mention the initially counter-intuitive post-dictive5

use of probabilities for hypothesis testing – this is a lot to ask, even in the limited context
of simple linear regression. Organizing a least squares course by assumptions introduces
probability only after several weeks of working with linear models.
Moreover, probability is introduced in two stages, starting with moments only. By de-

ferring sampling distributions and inference, the “moments-only” section of the course is
able to focus on the difficult cognitive challenge of integrating the abstract mathematical
description with an intuitive understanding of random behavior and the long run. Since
moments can be understood as long-run averages, a “moments-only” section offers a gen-
tler introduction to probability than does one that covers moments, sampling distributions,
and inference all at once.
For the third part of the course, the basic results are pretty much standard: inference

about βj , inference about σ2, and the F -test for comparing two nested models. Some
courses may prefer to state and illustrate the results without deriving them, and among
the many books that do present derivations, there is a variety of approaches. Some authors
work directly with multivariate densities. Others (see, e.g., Hocking, 1996, Chapter 2) rely
instead on moment generating functions. Toward the end of the next section, I describe
yet a third approach, based on the Herschel-Maxwell theorem.
The next section provides more detail about a possible least squares course organized

by assumptions.

7. One Model or Three?

The organization by assumptions described in the last section amounts to teaching linear
models as a hierarchy of three classes of models based on assumptions about errors: none,
moments only, and the normal distribution for errors. A common alternative is to work
with a single class of models, those for which the conditional distribution of Y given X is
normal with mean Xβ and variance σ2I. Some books (see e.g. Ramsey and Schafer, 2002,
p. 180) list all four assumptions of the model simultaneously. Draper and Smith (1966),
on the other hand, is explicit that the assumptions need not come as a package. The first
16 pages of the book make no assumptions about errors. Then, on p. 17, the moment and

5Dempster (1971) distinguishes between the ordinary, predictive, use of probability and its retrospective, backward-
looking, “postdictive” use to assess a model in the context of observed data.
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normality assumptions are presented together for the one-predictor case. When the multi-
variable case is presented on p. 58, the moment and normality assumptions are included as
part of a single package description of the model. The three kinds of estimation (minimizing
the sum of squared residuals, minimizing the variance among linear unbiased estimators,
maximizing the likelihood of the data) are clearly distinguished, but presented one after
the other in the space of just two pages.
Other books (see e.g. Casella and Berger, 2002; Christensen, 1987; Searle, 1971; Ter-

rell, 1999), whose emphasis is more mathematical, are clear and explicit that there are
three models that correspond to three sets of increasingly strong assumptions and three
corresponding sets of consequences, but, sadly in my opinion, books that emphasize data
analysis tend not to be clear that there are three distinct sets of assumptions, while books
that are explicit about the hierarchy of assumptions tend not to devote much time and
space to modeling issues, in particular, to the connection between the applied context and
the appropriate set of assumptions.
The question, “One model or three?” might be rephrased as a question about the ori-

gins of linear models, in the form “Least squares or regression?” As Stigler (1990) explains
in detail, there are two different origins, separated by almost a century. The later of the
two origins is cited by one of our best known expositions of linear models, (Neter et al.,
1989, p. 26): “Regression was first developed by Sir Francis Galton in the latter part of

the 19th century”. Some books, whether elementary (Freedman et al., 1978) or interme-
diate (Ramsey and Schafer, 2002), introduce regression models by means of conditional
distributions of Y given X. Either, as with Galton, Y and X are assumed to have a joint
bivariate normal distribution (see e.g. Freedman et al., 1978), or else the distribution of
X is not specified but the conditional distribution of Y given X is Gaussian (see e.g.,
Ramsey and Schafer, 2002). For this approach, there is essentially one model, namely, that
Y |X ∼ Nn(Xβ, σ2I).
Least squares, in its earliest uses, began about a century earlier than Galton’s work

with the bivariate normal (Stigler, 1990), in a context where the methodological challenge
was to find a “solution” to an inconsistent linear system of equations. In the context of
the astronomical and geodesic challenges in the second half of the 1700s, there was no
perceived need, and no recognized basis, for distributional assumptions. The least squares
solution evolved, and then became established, long before Galton. Historically, then, we
had linear models and least squares before, and independently of, any assumptions about
the behavior of the errors of observation.
Because I have been unable to find a book on least squares whose organization follows

the alternative path I have described, I will spell out in more detail the kind of organization
I use in my own course on linear models. The course has three parts, of roughly six, three,
and three weeks each (leaving a week for the inevitable slippage).

Part A [Linearity of the model, additivity of the errors: Y = Xβ + ε] For a course
organized according to assumptions, the first part takes the deliberately naive view of data,
that “what you see is all there is”, i.e., there is no hidden “correct model” to be discovered,
no unknown “true parameter values” to be estimated. The goal of the analysis is to find an
equation that summarizes the pattern relating y values to x values, an equation that gives
a good numerical and graphical fit to the data and good interpretive fit to the applied
context, without being needlessly complicated.
The essential content for this part of a course has already been described in Section 2

in the context of the AAUP data of Example 2.1. There are four main clusters of topics,
each driven by a methodological challenge: (i) Solving inconsistent linear systems; finding
least squares estimates and the geometry of variable space; (ii) measuring goodness of fit
and strength of linear relationships; simple, multiple, and partial correlation; adjusting for
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a variable and partial residual plots; (iii) measuring influence and properties of the hat
matrix; and (iv) measuring collinearity and the variance inflation factor.
As argued in Section 6, the pedagogical advantage of waiting to introduce probability is

that you are thus able to focus in the first several weeks exclusively on issues of modeling,
assessing fit, adjusting one set of variables for another set, and the influence of individual
cases.

Part B [The moment assumptions: E[εi] = 0, Var[εi] = σ2, Corr(εi, εj) = 0 if i ̸= j] The
three Moment Assumptions are a Trojan Horse of sorts: Hiding behind an innocent-seeming
outer technical shell of probabilistic statements, these assumptions smuggle into our model
the very strong implied assertion that, apart from random error and modulo the Box
caveat,6 the response we observe is in fact a true value whose exact functional relationship
to the predictors is indeed known. To me, it is important to do all we can to impress upon
our students how hard it should be to take these assumptions at face value.
Mathematically, the three main consequences of the moment assumptions are the

moment theorem, that least squares estimators are unbiased with covariance matrix
σ2(X⊤X)−1, the variance estimation theorem, that the expected residual mean square is
σ2, and the Gauss-Markov theorem, that among linear unbiased estimators, least squares
estimators are best in the sense of having smallest variance. The first two theorems are
direct, matrix-algebraic corollaries of the moment properties of linear combinations of
vectors of independent random variables with mean 0, variance 1.

Proposition Let Z = (Z1, . . . , Zn)
⊤ satisfy E[Zi] = 0, Var[Zi] = 1, Corr(Zi, Zj) = 0 if

i ̸= j, a, b ∈ Rn be vectors of constants and c a scalar constant. Then E[a⊤Z + c] = c,
Var[a⊤Z + c] = ∥a∥2, and Cov(a⊤Z, b⊤Z) = a · b.

Corollary [Moment theorem] For a linear model that satisfies the Moment Assump-
tions, E[β̂] = β and Var[β̂] = σ2(X⊤X)−1.

The proof is just a matter of applying the proposition to β̂j = µ⊤
j (X

⊤X)−1X⊤Y , where
µj is a vector of zeros except for a 1 in the jth position.

Proposition Let Z be as above, and A an n×n matrix of constants. Then, E[Z⊤AZ] =
σ2tr(A).

Corollary [Variance estimation theorem] E[Y ⊤[I −H]Y ] = σ2(n− p), where p is the
rank of the hat matrix H = (X⊤X)−1X⊤.

The Gauss-Markov theorem, that least squares estimators are best among linear unbiased
estimators, is typically given short shrift, if it gets any attention at all, but in my opinion
this important result deserves much more attention than it ever gets. Accordingly, I have
given it in this article a section unto itself, Section 8.

Part C [The normality assumption: the εi are normally distributed] Whereas the
moment assumptions specify a long-run relationship between observed values and an un-
derlying (assumed) truth, and represent a major step up from the distribution-less model,
adding the third layer, that distributions are Gaussian, is a comparatively minor escala-
tion, for the usual two reasons: theory guarantees normality when samples are sufficiently
large; and experience testifies that a suitable transformation can make many unimodal
distributions close to normal. In short, if you’ve got the first two moments, normality can
be just a matter of transformation and possibly a little more data.

6Essentially, all models are wrong; some are useful; see Box and Draper (1987, p. 424).
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Although from a practical point of view, going from Part B to Part C is not a big step, I
suggest that nevertheless, there are important pedagogical and curricular reasons to teach
Parts B and C as very distinct and separate units.
The pedagogical reason for working first with just moments, and only later to tackle

entire distributions, was addressed in Section 6: this organization allows a course to focus
on how means and variances of linear combinations are tied both to long-run averages and
to the geometry of variable space.
The main curricular reason to teach “moments first, distributions after” is, as all along,

to highlight the connection between assumptions and consequences. Our third set of as-
sumptions – that distributions are normal – allows us to assign probabilities to outcomes.
From a practical standpoint, going from moment assumptions to normality is but one small
step, but from a theoretical standpoint, it is a giant leap. If we can assign probabilities to
outcomes, we can do three very important new things: we can choose estimates that max-
imize the postdictive probability of the data; we can use models to assign p-values to tail
areas, and use these p-values to compare models; and we can associate a probabilistically-
calibrated margin of error with each estimator. In short, the normality assumption opens
the door to maximum likelihood estimation, hypothesis testing, and confidence intervals,
none of which are possible if all we have are the first two moments.
This section, and the one before it, have presented some reasons to reconsider the way

we organize our exposition of linear models. The next two sections raise questions that are
independent of whether a course is organized by dimension or by assumptions: How much
attention does the Gauss-Markov theorem deserve? How should we teach the sampling
distribution theory we need for inference?

8. The Role of the Gauss-Markov Theorem

In compact acronymic form, the Gauss Markov theorem says that OLS = BLUE: the
ordinary least squares estimator is best (minimum variance) within the class of linear
unbiased estimators. In my opinion, the Gauss-Markov theorem offers a litmus test of
sorts, a useful thought experiment for clarifying course goals and priorities. How much
time does the result deserve in your treatment of least squares? Among books with an
applied emphasis, most don’t mention Gauss-Markov at all. Some books just state the
result; a few state the theorem and give a quick algebraic proof, of the sort illustrated later
in this section. No book that I am aware of, certainly no book suitable for a first course in
statistics, devotes much time and space to the result, although, as I hope to persuade you,
a geometric proof can offer students a deeper understanding of the remarkable connections
among Euclidean geometry, statistics, and probability.
As I see it, a risk in presenting the Gauss-Markov theorem too quickly is that students

will see the result as merely asserting a secondary property of least squares estimators,
namely, that their variances have the nice feature of being as small as possible. What
is at risk of getting lost is that there are two quite different sets of assumptions about
data, each with its own approach to estimation. Assuming nothing more than linearity of
the model with additive errors, we get least squares estimation as a method for solving
inconsistent linear systems. Adding a set of very strong and restrictive assumptions about
errors opens up an entirely different approach to estimation, starting from the infinite set
of all unbiased linear estimators, then choosing the one(s) that minimize variance. On the
surface, there is no reason to expect that the two approaches will always give the same
estimators, and yet they do.
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To me, the implication for teaching is clear. To motivate students to appreciate the
importance of the Gauss-Markov theorem, we have to convince them, through concrete
examples, that best linear unbiased estimation is in fact based on a logic very different
from that of least squares. Using that logic to obtain Gauss-Markov estimators for specific
examples is an effective way to emphasize the difference. Least squares is purely a method
for resolving inconsistent linear systems, a method that makes no assumptions whatever
about the behavior of errors apart from their additivity. Gauss-Markov estimation rests
on very strong assumptions: For every observed value, there is an unobserved, unknown
true value, and the differences between the observed and true values are random and
uncorrelated, with mean zero, and constant SD.
These are such strong assumptions that it is not hard to persuade students that for such

a very high price, we should get something better than mere least squares in return. So
our class devotes half a week to finding best linear unbiased estimators, for a variety of
simple, concrete examples, only to find that we always end up with estimators that are
the same as the least squares estimators. Temporarily at least, the denouement should
be a let-down: On the surface, our strong additional assumptions seem to buy us zero!
However, on reflection, we can see the result as a surprise endorsement of least squares,
in that the assumptions guarantee, via the moment theorem7 that over the long run, least
squares estimates average out to the true values, provided the model is correct.

Example 8.1 [Best linear unbiased estimators for the crystal problem] Con-
sider again the problem of estimating the crystal width β from two observed values
Y1 = β+ε1 and Y2 = 2β+ε2. (a) Linear unbiased estimators: Find the set of all a=(a1, a2)

⊤

for which E[a⊤Y ] = β. (b) “Best”, which one(s) of the estimators in (a) give the smallest
variance? Solution (see Figure 6):

(a) Linear unbiased estimators: Setting E[a1Y1 + a2Y2] = β leads to a single linear
equation a1 +2a2 = 1 whose solution is a flat set in R2. More generally, the coeffi-
cient vectors for the linear unbiased estimators are solutions to a non-homogeneous
linear system, and so they form a flat set in Rn.

(b) “Best”: The moment assumptions imply that Var[a1Y1+a2Y2] = σ2(a21+a22). More
generally, given the usual moment assumptions, the variance of any linear estimator
is proportional to the squared length of its coefficient vector. Thus the “best” linear
unbiased estimator corresponds to the shortest of the vectors in (a).

Figure 6. The linear unbiased estimators for the crystal problem Three linear unbiased estimators are shown
as vectors: (1, 0) is the estimator y1; (0, 1/2) is the estimator y2/2; and (1/5, 2/5) is the least squares estimator
(y1 + 2y2)/5. The set of all linear unbiased estimators forms the solid line, which is parallel to error space. The
shortest coefficient vector is the one with minimum variance.

7E[β̂] = β, Var[β̂] = σ2(X⊤X)−1
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After students have solved a few problems of this sort, they find it natural to ask about
the general situation: Which subspace is it that gets translated in order to get the flat set
of unbiased estimators? (Answer: It is always error space ⟨X⟩⊤. Is there a quick way to
find the shortest coefficient vector? (Answer: The shortest vector will always be perpen-
dicular to error space.) Which is better: least squares or Gauss-Markov? (Answer: You’ll
be surprised.) In short, students are motivated, based on their experience, to understand
the Gauss-Markov theorem, and to want to know why it is true.
To the extent that there is a “standard” proof of the Gauss-Markov theorem, it tends

to be algebraic, essentially a variation on the derivation of the “computing rule” for the
sample standard deviation: Complete the square, and show that the sum of cross-products
is zero.
Here, to set the stage, is an abbreviated version of the elementary algebraic derivation

of the “computing” formula for the sample variance:

n∑
i=1

y2i =

n∑
i=1

[(yi − ȳ) + ȳ]2 =

n∑
i=1

(yi − ȳ)2 + 2

n∑
i=1

ȳ (yi − ȳ) +

n∑
i=1

ȳ2 =

n∑
i=1

(yi − ȳ)2 + nȳ2.

In Neter et al. (1989, pp. 66-67), a similar proof is given that the least squares slope for
simple linear regression is best among linear unbiased estimators: Write the least squares
slope as

∑
kiyi, and write an arbitrary linear unbiased estimator as

∑
ciyi =

∑
(ki+di)yi,

where di is the difference between the least squares coefficient and that for the arbitrary
estimator. Then, much as for the sample variance:

Var
[∑

ciYi

]
= σ2

∑
c2i = σ2

(∑
k2i + 2

∑
kidi +

∑
d2i

)
= σ2

(∑
k2i +

∑
d2i

)
.

The proof that the cross products sum to zero requires substituting for ki from the for-
mula for the least squares slope and doing some messy algebra, leading to Var[

∑
ciYi] ≥

σ2(
∑

k2i ); see Fox (1997, p. 127), Freedman (2005, p. 53), and Graybill (1961, pp. 115-116).
A matrix version of the same idea (see Terrell, 1999, p. 393) handles the general case. Let

AY be an arbitrary linear unbiased estimator for β, and write A = (X⊤X)−1X⊤ +D.
Then,

AA⊤ = [(X⊤X)−1X⊤ +D][(X⊤X)−1X⊤ +D]⊤

= (X⊤X)−1 +DX(X⊤X)−1 + (X⊤X)−1X⊤D⊤ +DD⊤

≥ (X⊤X)−1 +DD⊤.

Here, as before, the cross product terms vanish – algebraic proof required – and since
DD⊤ is positive semi-definite, the result follows.8

I find these proofs instructive because of the way they echo a useful, recurring algebraic
trick, but I do not find them illuminating in the sense of shedding bright light on deep ideas.
Deep ideas in mathematics tend to come from abstraction-as-process, starting concretely,
with simple examples, looking for patterns, gradually and systematically escalating the
complexity of examples in order to see which patterns fall away and which others survive,
and finally, discovering a general argument that explains why the patterns must be what
they are.
Here are four ideas I consider deep, ideas that we can illuminate and reinforce via a

proof of the Gauss-Markov theorem.

8An alternative proof using Lagrange multipliers is given in Hocking (1996, p. 97) and in Searle (1971, p. 88).
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(a) Every least squares estimator is a linear function of the observed values, with
coefficient vector in model space.

If the standard three moment assumptions hold, then:

(b) The SD of a linear combination is proportional to the length of its coefficient vector.
(c) Any linear estimator whose coefficient vector belongs to error space is an unbiased

estimator of 0, and vice-versa: if the coefficient vector belongs to error space, the
linear estimator is unbiased for 0.

(d) Every linear unbiased estimator is a Pythagorean sum of (a) the corresponding
least squares estimator and (b) some unbiased estimator of 0.

For simplicity the proof that follows will consider only estimators of individual compo-
nents βj , but the results apply to any estimable c⊤β. Every linear estimator a⊤Y can be
identified with its coefficient vector a. In what follows, a and a⊤Y denote an arbitrary
linear estimator; aj and a⊤

j Y denote an arbitrary linear unbiased estimator of βj ; âj and

â⊤
j Y denotes the least squares estimator of βj .
The proof of the Gauss-Markov theorem rests on the four facts (a)-(d) listed above. Each

is truly important, each deserves individual attention, and each has its own one-line proof.
After that, the Gauss-Markov result should be all but self-evident, with no algebraic trick
required:

(a) The coefficient vectors for least squares estimators belong to model space: if β̂j =

â⊤
j Y , then âj ∈ ⟨X⟩. This is because β̂j is the jth element of (X⊤X)−1X⊤Y ,

so âj must be a linear combination of columns of X.
(b) (“Error space lemma”) The linear unbiased estimators of 0 correspond to er-

ror space: E[a⊤Y ] = 0 for all β ⇔ a ∈ ⟨X⟩⊤. This is because E[a⊤Y ] =
a⊤Xβ, so a⊤X must be 0.

(c) The linear unbiased estimators of βj form a flat set parallel to error space:

E[a⊤
j ] = βj ⇔ E[a⊤

j Y − â⊤
j Y ] = 0 ⇔ (aj − âj) ∈ ⟨X⟩⊥.

Theorem [Gauss-Markov] Among all linear unbiased estimators for bj , the least squares
estimator has minimum variance.

Proof Taken together, (a)-(c) establish that any linear unbiased estimator aj is the hy-
potenuse of a right triangle whose perpendicular sides are the least squares estimator âj

and the difference (aj − âj). Thus, ∥aj∥2 ≥ ∥âj∥2, as required. �

9. Two Approaches to Sampling Distributions

Regardless of whether you choose to teach the moment assumptions and their consequences
prior to, and separate from, the normality assumption and its consequences, or you decide
instead to combine the two sets of assumptions and teach their consequences as part of
the same integrated logical development, whenever you do eventually come to sampling
distributions and their use for inference, you face an important choice: To what extent do
you rely on probability densities and calculus-based derivations? To what extent might
you want to avoid those?
The core content is the same either way. Students need to learn about t-tests and intervals

for regression coefficients, about the scaled chi-square distribution for error mean square,
and about the F -distribution for the ratio of mean squares used to test a nested pair of
linear models. These goals set a multi-layered agenda of (i) four distributions to define,
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(ii) five basic probabilistic relationships to establish, (iii) three key sampling distributions
to derive (at a minimum), and (iv) the use of those sampling distributions for inference.
Four layers of the core agenda for Part C:

(a) Four distributions to define: multivariate normal, chi-square, t, and F .
(b) Five probability results:

(b.1) Linear functions of multivariate normals are normal.
(b.2) Projections of normals into orthogonal subspaces are independent.
(b.3) The squared length of a standard normal vector (mean 0 and variance I) is

chi-square.
(b.4) A standard normal divided by the square root of an independent chi-square

is t.
(b.5) The ratio of two independent chi-squares over their respective degrees of free-

dom is F .
(c) Three essential sampling distributions

(c.1) A studentized regression coefficient has a t distribution.
(c.2) The residual sum of squares divided by the true variance is chi-square.
(c.3) When the reduced model is true, the F -statistic for comparing full and reduced

models has an F -distribution.
(d) Use of the sampling distributions for inference.

At the extremes, I see two competing approaches to the distribution theory. One approach,
which for the convenience of having a label, I call “classical”, defines the four distributions
in terms of their probability densities. The five results of the second layer are then derived
using classical, calculus-based, probability methods. For example, to show (c.1), write the
product of densities for n unit normals, change to new variables including u = z21+ · · ·+z2n,
and integrate over the other variables to obtain the marginal density for u. This result,
along with the other four, can then be applied to obtain the three sampling distributions
of the third layer.
This “classical” approach sketched above relies heavily on change of variable methods,

multiple integration, and often on generating functions as well. An alternative, which I call
here the “Herschel-Maxwell” approach after the theorem that provides logical justification,
makes it possible to avoid calculus entirely. Astronomer Herschel (1850) and physicist
Maxwell (1860) are credited with the two-dimensional and three-dimensional versions of
the theorem that bears their names:9

Theorem [Herschel-Maxwell] Let Z ∈ Rn be a random vector for which (i) projections
into orthogonal subspaces are independent and (ii) the distribution of Z depends only on
the length ∥Z∥. Then Z is normally distributed.

If your students are already familiar with multivariate probability densities from a pre-
vious probability course, then establishing the converse of the theorem, proving (i) and
(ii) above starting from the multivariate normal density, turns out to be easy. However, if
you are teaching this material – inference for least squares – to students who have not yet
seen probability densities, and who may not have seen any multivariable calculus either,
the “classical” approach will be a stretch, at best. You can always finesse the distribution
theory as “beyond the scope of this course”, and many good books with an applied empha-
sis choose to do just that. But when I am teaching a course for students of mathematics,
although I may be willing to omit an occasional proof, I would be embarrassed to present
key sampling distributions as a set of black boxes.

9See Jaynes (2003, pp. 201-201) for Herschel’s argument for the two-dimensional case, which Maxwell later extended
to three dimensions.
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Fortunately, the Herschel-Maxwell theorem justifies using properties (i) and (ii) as a
definition, which can then lead to a simple, straightforward, density-free exposition. To
start, let a random vector Z ∈ Rn have a distribution that is both spherically symmetric
(any rigid rotation leaves its distribution unchanged) and “ortho-independent” (projec-
tions into orthogonal subspaces are independent), and suppose the components Zi have
variances equal to 1. Thanks to Herschel-Maxwell, these properties can serve to define the
standard n-dimensional multivariate normal. The general normal family then comes from
taking linear transformations of Z, and, with appropriate care about uniqueness, proper-
ties (c.3)-(c.5) above can be taken as definitions of the chi-square, t, and F distributions:
A chi-square distribution is the distribution of ∥PU (Z)∥2, where PU is the orthogonal pro-
jection onto a subspace U whose dimension equals the degrees of freedom. The statistics
u⊤Z/

√
∥PU (Z)∥2/dim(U) and

[
∥PU (Z)∥2/dim(U)

]
/
[
∥PV (Z)∥2/dim(V )

]
follow t and F dis-

tributions, respectively, where u is a unit vector orthogonal to the subspace U and U and
V are orthogonal subspaces.10

The necessary sampling distributions follow quickly from the definitions. (i) Since β̂ is a

linear function of normals, its distribution is normal. (ii) Since Ŷ and ε̂ lie in orthogonal

subspaces, they are independent, and since β̂ is a function of Ŷ and the mean squared
error is a function of ε̂, it follows that β̂ and MSE are independent. (iii) Apart from
scaling, MSE is the squared length of a projection of a normal vector into error space,
from which the chi-square distribution for SSE/σ2 follows; similarly for the t distribution
of a studentized regression coefficient. (iii) For testing whether the reduced model in a
pair of nested linear models is “true”, variable space is decomposed into three mutually
orthogonal subspaces: error space, reduced model space (column space for the smaller
model), and “difference space” (the orthogonal complement of reduced model space in full
model space). Projections into these subspaces are independent. Under the null hypothesis
that the reduced model is true, both the numerator and denominator in the usual F -
test have scaled chi-square distributions, and so the ratio of their mean squares has an
F -distribution.
Which approach is better, “Classical” or “Herschel-Maxwell?” Of course instructor tastes

and priorities differ, course goals differ, and student backgrounds differ, but for me, ty-
ing the sampling distributions directly to the geometry of variable space highlights the
connections that matter most for a deep understanding of the ideas. This is not at all to
say that the calculus is a bad thing to teach, only that we should not allow calculus to
usurp exclusive right-of-way to the sampling distributions we need for working with linear
models, and so calculus should not be allowed to dictate how and when we teach linear
models. Even if you prefer the calculus-based approach, the existence of the alternative
I have just sketched demonstrates that a least squares course need not wait until after a
multivariable-calculus-based probability course. Granted, for a first course in statistics, we
may not want to take time in the statistics course to teach the needed calculus to stu-
dents who haven’t seen it before, and traditionally, teaching linear models to mathematical
students has too often seemed to require all that calculus. But since we can teach least
squares without the calculus, we are at the least logically free to reconsider how soon we
might want to teach a course in linear models. In particular, teaching linear models as a
first course remains an option.

10This way of defining the descendant distributions of the normal is in no way original with me, and has long been
part of “the folklore”. Published variants include Rice (1995), which defines the descendant distributions in terms
of the normal and then derives their densities using calculus-based methods.
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10. Linear Models: A First Statistics Course for Mathematics Majors?

In this final section I compare what I see as the advantages and disadvantages of the linear
models course with those of the two standard introductions to statistics: (i) the lower level
course with a an applied orientation, perhaps followed by a second applied course with an
emphasis on modeling, and (ii) some variant of the standard two-semester upper division
sequence in probability and mathematical statistics.
The applied introduction has the two main advantages of requiring little preparation in

mathematics, and, in the better of its current incarnations, doing a good job of introducing
students to the basics of data analysis. However, this course is not (and has never claimed
to be) an introduction designed for students of mathematics. It has little mathematical
substance, no explicit methodological challenges, little to appeal to a mathematical aes-
thetic, and no basis for carrying credit as an upper-level elective in a mathematics major.
None of this is a criticism of the course itself; it was never intended to do the things I have
just complained about.
I note in this context that the recent book Investigating Statistical Concepts and Meth-

ods (Rossman and Chance, 2006) does offer an applied introduction explicitly designed for
students of mathematics. This book is brilliantly conceived and effectively implemented
based on research about how students learn statistics, with interesting data sets and a
thoughtful reworking of the usual introductory content in a way that makes it a much
better match for mathematically motivated readers. Even this book, however, despite its
originality, is in my judgment limited by its choice of content. If you start from the premise
that you want to teach a variant of the usual introductory curriculum to mathematically
strong students, it is hard to imagine a better approach than the one Rossman and Chance
have given us. But for me the question remains: If you are designing a course for mathe-
matics majors, why start with content from a course designed for a different readership?
Why not start from scratch, with content chosen specifically to introduce mathematical
students to statistics?
The standard sequence in probability and mathematical statistic has the one salient ad-

vantage of offering good practice with multivariable calculus, but I find little to recommend
the typical course as a first statistics course for any student. Whereas the introductory
applied course has been evolving steadily and in healthy ways since the 1960s, the main
stream upper division sequence in probability and mathematical statistics has changed
very little. The probability course can be, and often is, a course of great value, but proba-
bility is a branch of mathematics in a way that statistics is not, and so, from the point of
view of introducing statistics, the probability course is yet another mathematics prereq-
uisite that delays the first statistics course. The mathematical statistics course, like the
probability course, offers practice with multivariable calculus, but all too often offers little
else beyond its venerable parade of geriatric definitions and theorems, feebly searching for
points of contact with modern practice.
Regarded as an introduction to statistics, the usual sequence has numerous shortcomings.

Surely one of the most restrictive is the combination of prerequisite structure and the fact
that in the typical year-long sequence, statistics comes so late. Although it is possible
to teach mathematical statistics while requiring only three semesters of previous work in
mathematics (two semesters of calculus plus probability), the typical course does a lot of
multiple integrals, and the typical student would be better off starting with an additional
semester of calculus.
Besides, how many year-long introductions to “X” do you know that defer talking about

“X” until after an entire semester of getting ready? Would economists or physicists teach
a year-long introduction to their subject with a first semester devoted exclusively to math-
ematics?
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Another shortcoming is that the traditional mathematical statistics course remains de-
voted to problems with closed-form analytic solutions, e.g., finding the maximum likeli-
hood estimator of a Poisson mean from a simple random sample, at a time when statistical
practice relies increasingly on computer-intensive approximate methods.
Still another major shortcoming is that mathematical statistics, by its nature, cannot be

about the analysis of data in any deep sense. We know, thanks to the inspiring examples of
Larsen and Marx (1986), and Rice (1995), how to incorporate real data and authentic ex-
amples into our teaching of mathematical statistics. But, important as these real examples
are, they are essentially illustrations of theory and methods, not invitations to detective
work with data. Each data set is chosen to illustrate a particular given model; the model
itself is given. Contrast this situation, with model given and data set chosen accordingly,
to Example 2.1, where the data set is given and a variety of models will be considered in
order to obtain a good fit and answer questions of interest. Of course future statisticians
need and should learn the content of mathematical statistics, but for a first course, before
students have had a chance to decide whether they might in fact be future statisticians,
we should offer them an introduction that does a better job of showing the kinds of things
that statisticians do in practice.
Finally, one should ask of our introductory statistics courses, “If this is a student’s first

statistics course, where does it lead?” The applied first course leads naturally to an applied
second course, ideally one with a modeling emphasis, as in Ramsey and Schafer (2002) or
Cannon et al. (2010). The probability course leads naturally to mathematical statistics
as a first statistics course, but what about a second statistics course? Although various
modeling courses are possible as second courses, these do not make essential use of much
of the content of the mathematical statistics course, and could have been offered instead
of it, as an immediate follow-up to the probability course. The only statistics course that
makes essential use of the core content from the standard first course in mathematical
statistics is a second, graduate-level course in mathematical statistics, and when it comes
to data analysis, that course suffers from the same shortcomings as the first course.
It is important for me to be clear. When I direct my complaints against the usual

mathematical statistics course as a first course in statistics, the two italicized words deserve
emphasis. (If I appear to be complaining that pizza doesn’t taste like lobster, I have failed
in my exposition.) “First”: For many students, some version of the mathematical statistics
course might be a very useful and engaging follow-up to some other first course that does
justice to applied data analysis. “Usual”: Fortunate students may have a teacher who
chooses to teach an unusual version of the mathematical statistics course. I don’t want
to take the time and space in this article to review the options in detail, although there
are now enough original books that I think our profession would benefit immensely from
a comparative review of that sort. For brevity, I will limit myself here to two main points,
followed by a quick summary of some of the most original books.
Two important facts about textbooks for mathematical statistics:

• The convex hull of content, organization, and approach has been expanding with Hubble-
like acceleration. I take this rapid curricular expansion as a healthy symptom of our
profession’s growing discontent with the usual course.

• Despite our rapidly expanding horizon of options, time remains an inelastic, zero-sum
quantity, and so it is in the nature of the content of probability and mathematical
statistics that any focus on abstract theory of inference takes time and attention away
from the challenge of modeling data relationships.

Caveats duly deployed, here are capsule salutes to some particularly impressive innovations,
in chronological order:
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• Larsen and Marx (1986). Although conventional in content by today’s standards, this
was the first mathematical statistics book to make effective use of real data carefully
chosen for intrinsic interest.

• Rice (1995). Much more mathematical, more demanding, and more statistically sophis-
ticated than Larsen and Marx (1986), this book is also a pioneer in its use of real data.

• Terrell (1999). This book broke new ground by plowing up the usual order of topics in
order to start with chapters on “Structural Models for Data” (Chapter 1: one and two-
way layouts, simple and multiple regression, contingency tables, and logistic regression),
and least squares methods (Chapter 2), before five chapters on probability through
sampling distributions. This book is written at a comparatively high level, and does
comparatively less with modeling than the topics of its first two chapters might seem
to promise, but ten years ago it was far ahead of its time in putting two chapters on
statistical topics ahead of probability.

• Nolan and Speed (2000). This is the most radical departure from the mainstream of any
in my list. The authors use a sequence of applied case studies as a vehicle for teaching
mathematical statistics. If you teach mathematical statistics and don’t yet know this
book, I urge you to challenge yourself by reading it, and thinking about how to use it
in your teaching; see also Nolan (2003).

• Rossman and Chance (2006). Investigating statistical concepts and methods. This book
is unique in the innovative way it rethinks and reshapes the usual introductory applied
course to suit mathematically inclined students, using many interesting real data sets
along the way.

• Lavine (2009); see also first edition (2006). You can get this book free from the web. It
would be unfair to say it is worth every penny. In fact, it is worth the time and attention
of anyone who teaches mathematical statistics to read this remarkable book carefully
and to think hard about the way it challenges us to reconsider what we teach. If you
have a year for your course, you have students who are skilled users of multivariable
calculus, and you want to cover the content of the usual two-semester sequence but
you also want to “focus on ideas that statisticians care about”, this book does all that
and much more. It is hard to condense my enthusiasm into just a few sentences that
might persuade others, but consider the content: Probability is covered as needed, in
chapters 1, 4 and 5 (of 8), to support an approach that puts likelihood front and center.
Chapter 2 is an overview of “Modes of Inference” – direct use of likelihood, estimators
and sampling distributions, Bayesian methods, prediction, and testing. Chapter 3 follows
with a treatment of normal regression models. Traditional mathematical statistics waits
until the final Chapter 8. Meanwhile, we get a chapter on Bayesian methods (including
MCMC, both Metropolis and Gibbs), and another chapter on additional models (random
effects, time series, and survival analysis). The mathematical demands are high, but
the return is comparably high. A student who master’s Lavine’s book has an excellent
foundation for advanced work in statistics; see MacEachern (2006).

• Chihara and Hesterberg (2011). This book assumes a semester of probability, but is much
more applied than the usual book on mathematical statistics. After a quick probability
review (Chapter 1), it begins with graphical approaches to data exploration (qq-plots
and scatter plots, Chapter 2), introduces testing via randomization (Chapter 3), followed
by chapters on sampling distributions and the bootstrap, leading to chapters on esti-
mation, confidence intervals, least squares, and Bayesian inference. It is less demanding
mathematically, more applied in its emphasis, and more modern in content than the
usual book, which makes it a good choice if you want a modern applied book at the
level of Larsen and Marx (1986).

• Pruim (2011). Like Chihara and Hesterberg (2011), this book combines material from
probability and mathematical statistics with serious attention to applications. The open-
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ing example is Fisher’s “lady tasting tea”, Chapter 1 introduces R and data summaries,
both graphical and numerical, Chapter 2, on probability, has a section on hypothesis
tests and p-values, and Chapter 3, on continuous distributions, has sections on kernel
density estimators and quantile-quantile plots. The first half of the book ends with a
chapter on estimation and testing, which includes one-sample methods for proportions
and means. The second half of the book starts with a chapter on likelihood-based meth-
ods, then concludes with two chapters on linear models. In its emphasis on linear models,
the book is similar to Terrell (1999), but Pruim’s exposition is less demanding mathe-
matically, and differs also in the use of R throughout, and the placement of the linear
models at the end of the book. A course based on this book would give students a much
better sense of data analysis and modeling than they would get from a more traditional
course.

• Horton (2010). Horton has not yet written a textbook for mathematical statistics, but
his description of a course using the “modified Moore method” and R is a pioneering
example we can all learn from.

Despite my deep admiration for all of these innovative efforts, many are by default not
suitable for the course I am advocating: a one-semester introduction to statistics that does
not require multivariable calculus or probability, a course designed to attract sophomore
mathematics majors to statistics, a course with substantial mathematics for its own sake, a
course that mixes methodological challenges with data modeling. Mathematical statistics,
by the nature of its content, is not suited to meeting these goals.
A linear models course is different. Not only can it be taught independently of a prob-

ability course, and without relying on change of variables or multiple integrals, but, in
addition, the centrality of linear models within statistics, like the centrality of a wheel
hub, offers radial paths in many directions. After taking a course in linear models, a stu-
dent is ready for a course on correlated data, or time-to-event modeling, or generalized
linear models, or time series, or Bayesian data analysis. Alternatively, the work with the
geometry of n-space can lead to data analysis in function spaces.
After more than two centuries, least squares and linear models remain at the core of

statistics, central to our practice, and central to our theory. Shouldn’t we make linear
models equally central to our curriculum?

Appendix 1: Possible Course Outline (see Section 7 for details)

(a) No assumptions. What you see is all there is:
(a.1) Combining observations: “solving” (reconciling) inconsistent linear systems

least squares theorem.
(a.2) Measuring fit and strength of relationship.
(a.3) Measuring influence.
(a.4) Measuring collinearity.

(b) Moment assumptions. Errors are uncorrelated, with mean 0 and constant SD:
(b.1) Moment theorem.
(b.2) Variance estimation theorem.
(b.3) Best linear unbiased estimation.
(b.4) Gauss Markov theorem.

(c) Normality assumption. Errors are normals:
(c.1) Herschel-Maxwell theorem and the normal distribution.
(c.2) Distribution of OLS estimators.
(c.3) t distribution and confidence intervals for βj .
(c.4) Chi-square distribution and confidence intervals for σ2.
(c.5) F distribution and the general regression significance test (nested F test).



60 G. Cobb

Appendix 2: AAUP Data (Bellas and Reskin, 1994)

Subject AvAcSal PctFem PctUnemp PctNonAc MedNASal
Dentistry 44214 15.7 0.1 99.4 40005
Medicine 43160 25.5 0.2 96.0 50005
Law 40670 34.0 0.5 99.3 30518
Agriculture 36879 12.9 0.8 43.4 31063
Engineering 35694 4.6 0.5 65.5 35133
Geology 33206 13.5 0.3 58.1 33602
Chemistry 33069 16.2 1.1 61.9 32489
Physics 32925 7.2 1.2 40.7 33434
LifeSciences 32605 29.8 1.4 27.4 30500
Economics 32179 14.8 0.3 34.2 37052
Philosophy 31430 23.1 1.8 17.1 18500
History 31276 30.5 1.5 20.5 21113
Business 30753 27.1 1.9 98.9 20244
Architecture 30337 31.6 1.1 98.3 21758
Psychology 29894 45.5 1.1 51.0 30807
EducPsych 29675 49.5 0.9 82.5 20195
SocialWork 29208 80.0 1.9 98.6 16965
Mathematics 29128 15.4 0.4 17.9 32537
Education 28952 48.1 0.7 97.1 19465
SocAnthro 27633 40.9 2.1 12.8 21600
Art 27198 57.6 2.1 96.6 11586
Music 26548 45.5 4.3 98.5 16193
Journalism 25950 52.3 3.1 93.4 20135
English 25892 53.6 1.9 12.1 18000
ForeignLang 25566 55.0 3.5 12.1 20352
Nursing 24924 94.2 1.4 96.2 17505
Drama 24865 58.5 5.5 97.1 20005
LibraryScience 23658 82.2 1.1 78.9 15980

Where AvAcSal = mean academic salary; PctFem = percentage of faculty who are women; PctUn
= percentage unemployed; PctNonAc = percentage of jobs that are not academic; MedNASal =
median non-academic salary.
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